
A Fluctuation Method to Quantify In Vivo Fluorescence Data

Nitzan Rosenfeld,* Theodore J. Perkins,y Uri Alon,* Michael B. Elowitz,z and Peter S. Swain{

*Departments of Molecular Biology and Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel; yMcGill Centre for
Bioinformatics, {Centre for Nonlinear Dynamics, Department of Physiology, McGill University, Montreal, Quebec, Canada;
and zDivision of Biology and Department of Applied Physics, Caltech, Pasadena, California

ABSTRACT Quantitative in vivomeasurements areessential for developingapredictiveunderstandingof cellular behavior.Here
we present a technique that converts observed fluorescence intensities into numbers of molecules. By transiently expressing a
fluorescently tagged protein and then following its dilution during growth and division, we observe asymmetric partitioning of
fluorescence between daughter cells at each division. Such partition asymmetries are set by the actual numbers of proteins
present, and thus provide ameans to quantify fluorescence levels.Wepresent aBayesian algorithm that infers fromsuchdata both
the fluorescence conversion factor and an estimate of the measurement error. Our algorithm works for arbitrarily sized data sets
and handles consistently any missing measurements. We verify the algorithm with extensive simulation and demonstrate its
application to experimental data from Escherichia coli. Our technique should provide a quantitative internal calibration to systems
biology studies of both synthetic and endogenous cellular networks.

INTRODUCTION

A goal of systems biology is to build a predictive, compu-

tational cellular model (1). Amajor challenge, however, is the

lack of quantitative in vivo data for the many parameters

required, such as protein concentrations and reaction rates (2).

Well-established techniques that address this issue directly

do exist for the confocal microscope, such as fluorescence

correlation spectroscopy (3,4), image correlation spectros-

copy (5), photon-counting histogram analysis (6), and fluo-

rescence intensity distribution analysis (7), but unambiguous

results usually require considerable expertise. Another ap-

proach is to construct amodel and extract parameters by fitting

in vivo data (8–10). Nevertheless, experimental data, such as

fluorescence levels of tagged proteins or immunoblots, is

usually limited to unitless ratios of expression levels that are

only proportional to the actual protein concentrations. Not

having direct measures can significantly hinder or complicate

finding parameter values (9). In many studies (see (11,12) for

reviews), the linear relation between the concentrations of

fluorescent proteins and their measured fluorescence intensi-

ties has been used to measure protein levels in living cells,

though only in relative terms and not in absolute numbers.

Here we present a fluctuation method for measuring and cal-

culating the conversion factor between the amount of a fluo-

rescent protein and the measured fluorescence level. We will

denote this conversion factor by n; it is measured in fluo-

rescence units per fluorescent protein (or, more generally,

fluorescence units per fluorescent particle).

For a cell or a cellular compartment with a fluorescence

intensity of y, the number of protein molecules, n, is given by
y/n. The measured fluorescence is, however, perturbed by

measurement error. Assuming that this error is additive, each

fluorescence measurement f actually satisfies

f ¼ y1 e ¼ nn1 e; (1)

with the magnitude of e reflecting the size of the measure-

ment error.

Analyzing the partitioning of proteins or other molecules in

daughter cells upon cell division provides, in principle, a

means to quantify fluorescence data (13,14).We constructed a

synthetic network in Escherichia coli that enables control of
the expression levels of a reporter protein (13). The l-phage

protein, CI, was fused to yellow fluorescent protein (YFP) to

make a fluorescent reporter CI-YFP. The reporter was placed

on a plasmid under the control of the tetracycline promoter,

pTet: a promoter tightly repressed by the tetracycline re-

pressor, TetR. The tetR gene, itself, was chromosomally in-

serted into the bacterial genome where it is constitutively

expressed. Consequently, only the presence of the inducer,

anhydrotetracycline (aTc), which inhibits the DNA binding

properties of TetR, allows fluorescent protein production. By

washing out aTc, fluorescent gene expression is cut off. Fig.

1 shows time-lapse images of an E. coli microcolony. The

colony originates from one cell taken from a population that

was briefly induced by aTc and therefore contains a fixed

amount of CI-YFP. No synthesis or significant degradation

or photobleaching of CI-YFP takes place (see Fig. 1 C), and
its concentration only dilutes through microcolony growth

(the average number of molecules per cell halving at each

division). Analysis of suchmovies gives not only quantitative

fluorescence levels, but also the lineage tree shown in Fig. 1B.
We shall denote by f2i and f2i11 the fluorescence levels in the
two daughter cells that originate from a mother cell with

fluorescence fi; see Fig. 1 D.
We present two methods to infer n from the fluorescence

data of such lineage trees. Assuming that fluorescent proteins
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are distributed with equal probability to either daughter cell

at division, daughter cells will only have, on average, equal

fluorescence levels. Our technique gathers information on n

by examining the deviation of actual daughter fluorescence

levels from this average behavior. Such fluctuation analyses,

although perhaps uncommon in molecular biology, are well

established in neuroscience (15). For example, fluctuations

in membrane current through a patch have long been used to

infer the numbers of conducting ion channels in the patch

(16). Although the mathematics of our analysis is different,

we follow the same philosophy.

METHOD I: AN APPROXIMATE SOLUTION

Method I ignores the structure of the lineage tree and as-

sumes no measurement error, i.e., e ¼ 0 in Eq. 1. The data is

collected into triads, each triad containing fluorescence from

a mother cell and its two daughters. A triad is represented as

(yi, y2i, y2i11), where i denotes a mother cell and runs from

1 to L, say, and y2i and y2i11 are the fluorescence levels in the
daughters.

Given a triad, we wish to infer the most probable value of

n. Using Bayes’s rule, the probability of n given the data, y, is

PðnjyÞ;PðyjnÞPðnÞ; (2)

where P(yjn) is the likelihood of the data given a value of n

and P(n) is the prior distribution for n. We assume the prior

distribution to be constant over a range of n and zero else-

where, so that, a priori, n is equally likely to be found any-

where between a minimum (1, say) and a maximum (100, for

example). As the fluorescent protein is neither synthesized

nor degraded, the number of proteins in the parent cell, ni, is
equal to the sum of the numbers in the daughters, ni ¼ n2i 1
n2i11. With no measurement error, conservation of proteins

implies that the fluorescence of the mother cell must also

equal the sum of the fluorescent values of the two daughters,

yi ¼ y2i 1 y2i11. In reality, measurement error causes this

relationship to hold only approximately; Method I ignores

these errors.

Calculation of P(njy) involves evaluating the likelihood,

P(yjn). Considering one triad, yi, y2i, and y2i11, denoted by

the vector t, the likelihood obeys

FIGURE 1 Partitioning of a fluorescent protein during

microcolony growth. (A) Snapshots from a typical dilution

experiment. Images are taken using yellow fluorescence

filters, and the time between the frames shown is;36 min.

(B) The lineage tree extracted from the same movie. Time

increases downwards as more and more divisions occur.

Measurements are marked by a dot and were taken

approximately every 9 min (giving a total of just over 700).

(C) Cellular fluorescence only decreases significantly at

cell division. For this dataset, fluorescence measurements

were taken every second frame, i.e., every 18 min. The first

cell divides after ;20 min, and its daughters in turn both

divide at 60 min. Notice the different fluorescence values

in each daughter cell become more apparent at later

divisions. For clarity, only the initial part of the movie is

shown. (D) Schematic of a lineage tree generated from an

initial cell with fluorescence value f1. Second-generation

cells have fluorescence f2 or f3, while third-generation cells
have f4, f5, f6, or f7.
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PðtjnÞ ¼
Z

dn dðt� nnÞPðnÞ; (3)

where the ni are approximated to be continuous, and the

vector notation implies three d-functions, one for each mem-

ber of the triad. The probability P(n) ¼ P(ni, n2i, n2i11) for
the protein numbers can be factorized

PðnÞ ¼ Pðn2i11jni; n2iÞPðn2ijniÞPðniÞ; (4)

where P(n2i11jni, n2i) is set by the constraint n2i11 ¼ ni – n2i,
and P(n2ijni) is an even binomial distribution: each fluores-

cent molecule has the same chance of going to either

daughter upon cell division.

An even binomial distribution can be approximated by a

normal distribution with mean ni/2 and standard deviationffiffiffiffi
ni

p
=2 (17). Using a d-function to enforce the conservation

of protein numbers, Eq. 4 then becomes

Pðni; n2i; n2i11Þ;dðn2i11 � ni 1 n2iÞ

3
e
�ð2n2i�niÞ

2

2niffiffiffiffi
ni

p 3
1

n
max

i � n
min

i

; (5)

where the prior distribution, P(ni), is a uniform bounded

distribution such that ni lies anywhere between nmin
i and

nmax
i a priori. Inserting Eq. 5 into Eq. 3, and using the relation

d(y – nn) ¼ d(n – y/n)/n to carry out the integrations, gives

PðtjnÞ;dðy2i11 � yi 1 y2iÞ3
e
�ð2y2i�yiÞ

2

2nyiffiffiffiffiffiffi
nyi

p 3
1

y
max

i � y
min

i

: (6)

Assuming independent measurements of each triad, P(yjn)
for the full set of L triads is a product of terms like Eq. 6,

PðyjnÞ;n
�L
2

YL
i

y
�1
2

i

 !
exp �1

n
+
L

i

ð2y2i � yiÞ2

2yi

� �
; (7)

assuming that the conservation constraints are satisfied. With

a constant prior distribution, P(n), the posterior (see Eq. 2)

has the same form as Eq. 7.

The most probable value of n maximizes the posterior

probability, and is found by differentiation. The maximum

occurs at n ¼ n*, with

n
� ¼ ðy2i � y2i11Þ2

yi

� �
; (8)

where angled brackets denote an average over all L triads,

and is equal to the average of the square of the difference in

fluorescence of the two daughters divided by the value of the

fluorescence in the mother cell. By evaluating the second

derivative of Eq. 7 at n ¼ n*, the error in the inferred value,

Eq. 8, is estimated as 6n�=
ffiffiffi
L

p
.

Method I, exemplified by Eq. 8, is equivalent to the more

ad hoc approach used previously (13,14). Although it does

ignore measurement error, it involves only a few simple

computations.

METHOD II

We assume that each fluorescence measurement satisfies Eq.

1, where the measurement error term, ei, or equivalently fi–yi,
has a normal distribution with zero mean and standard devi-

ation s. The size of s sets the magnitude of the measurement

error. The posterior for both n and s satisfies P(n, sjf) ;
P(fjn, s)P(n, s), or

Pðn;sjfÞ;
Z

dyPðfjy; n;sÞPðyjn;sÞPðsÞPðnÞ; (9)

using the product rule of probability theory and noting that

the prior distribution for s is independent of n.

Including measurement error

The probability of the data f given y depends only on the

measurement error, P(fjy, n, s) ¼ P(fjy, s). Using the nor-

mal distribution model for ei, we have

Pðfjy;sÞ; 1

s
N exp � 1

2s
2 +

N

i¼1

ðfi � yiÞ2
� �

; (10)

assuming that the errors in each measurement are indepen-

dent and that there are N measurements.

Including the tree

The second probability in Eq. 9, P(yjn, s), is independent of
the measurement error s. From conservation of proteins, the

yi obey P(y2i11jyi, y2i) ¼ d(y2i11 – yi 1 y2i) for a mother cell

and its daughters. Considering, for example, Fig. 1 D,
factorizing P(yjn) implies

PðyjnÞ ¼ Pðy1Þ3Pðy2jy1; nÞdðy3 � y1 1 y2Þ
3Pðy4jy2; nÞdðy5 � y2 1 y4Þ
3Pðy6jy3; nÞdðy7 � y3 1 y6Þ; (11)

where P(y1) is the prior distribution for the fluorescence level
in the first cell. For one mother-daughter pair, P(y2ijyi, n) is
given by the exponential term of Eq. 6, and so

PðyjnÞ;Pðy1Þ3 dðy3 � y1 1 y2Þdðy5 � y2 1 y4Þ

3 dðy7 � y1 1 y2 1 y6Þ3
n
�3
2ffiffiffiffiffiffiffiffiffiffiffiffi

y1y2y3
p

3 exp �1

n

ð2y2 � y1Þ2

2y1
1

ð2y4 � y2Þ2

2y2
1

ð2y6 � y3Þ2

2y3

� �� �
(12)

after rearranging the d-functions.
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The posterior distribution

Assuming constant (but bounded) prior distributions for n,

y1, and s, the posterior distribution satisfies

for the tree of Fig. 1 D (a more general expression is given in

the Appendix). Partly integrating Eq. 13, y3 is replaced by

y1 – y2, y5 by y2 – y4, and y7 by y1 – y2 – y6.
It is instructive to consider only three cells, i.e., just one

division event, and a given s: All the integrals in the equiv-

alent of Eq. 13 can be evaluated analytically, and the value of

n that maximizes this posterior is

n
� ’ ðf2 � f3Þ2 � 2s

2

ð2f1 1 f2 1 f3Þ=3
: (14)

In the limit of s / 0, f1 exactly equals f2 1 f3, and Eq. 14
recovers Eq. 8. Notice that the best estimate for y1, the
denominator of Eq. 14, is now a weighted sum of f1 and f2 1
f3, the latter being a second estimate of y1 in a data set with

measurement errors.

To evaluate Eq. 13 in general, we use the variable

elimination method (18) to numerically find the integral for

any given n and s. Let ys denote the set of independent y
variables—those not defined by the conservation of number

constraints. As the integrand factorizes into a product of

terms, one for each triad in the tree, the M-dimensional

integral over ys transforms into a series of tractable two-

dimensional computations. Typically, we perform this

calculation over a grid defined by a priori ranges of n and

s, thus giving a two-dimensional posterior distribution (see

Fig. 2 A for an example). For the case of a normal distri-

bution model of measurement error, however, we can derive

an accurate estimate of s (see Appendix),

s
� ’

min
ys

1

2
+

i
ðfi � yiÞ2

N �M

" #1
2

; (15)

where the d-function constraints in Eq. 13 hold. There are N
data points andM (,N) independent y variables. We use this

estimate with 20 steps of Golden section search to efficiently

explore the a priori interval for n. The results of Fig. 3 were

generated with this method. For such simulated data, we

compared the posteriors found with those generated using

the true value of s instead of s*. Their difference is

negligible.

Extra and missing data

It is often possible to measure fluorescence levels in a cell

several times before it divides (Fig. 1 B). The data is then

stored in a matrix, rather than a vector, where fij is the jth

measurement of fluorescence in cell i. Each measurement for

cell i improves the estimate of yi. The number of yi variables
does not change, and Eq. 10 just gains more terms. For

example, with C measurements per cell,

Pðfjy;sÞ; 1

s
NC exp � 1

2s
2 +

N

i¼1

+
C

j¼1

ðfij � yiÞ2
" #

; (16)

and the general form of Eq. 13 (see Appendix) remains

essentially unchanged.

Cells do not all divide synchronously (Fig. 1 B), and so for
some we have more measurements than for others. Con-

sequently, the C-values in Eq. 16 vary from cell to cell. Fig.

1 B also shows that data is missing from parts of the lineage

tree, particularly at the extremities. Usually these cells are

obscured by surrounding cells, as large microcolonies no

longer grow in a plane and terrace. Excluding the missing

data corresponds to deleting the unnecessary terms (includ-

ing those generated by the daughters of missing cells) in the

general form of Eq. 13. These cases are automatically

handled, our code generating as many terms as is appropriate

for each cell and only when the corresponding data exist.

Experimental methods

Cultures of l-cascade strains (13) were grown overnight in LB1 15 mg/mL

kanamycin at 37�C from single colonies and diluted 1:100 in MSC media

(M9 minimal medium 1 0.6% succinate 1 0.01% casamino acids 1 0.15

mg/ml biotin 1 1.5 mM thiamine). Cultures were grown to OD600 ; 0.1 at

32�C and then induced by adding aTc to a concentration of 100 ng/mL for

3 min at ambient temperature, followed by two washes with MSC to remove

aTc. Cells were allowed to grow and then diluted to give ’1 cell per visual

field when placed between a coverslip and 1.5% low-melt MSC agarose.

Growth of microcolonies was observed at 32�C using a Leica DMIRB/E

automated fluorescence microscope at 1003 magnification with a mercury

light source (Leica, Bannockburn, IL) and YFP filter cube Chroma #41028

(Chroma Technologies, Brattleboro, VT).

Custom software was used to control the microscope and related

equipment (Ludl motorized stage, Ludl, Hawthorne, NY; and Hamamatsu

Orca ERCCD camera, Hamamatsu, Shizuoka, Japan), via ImagePro Plus and

ScopePro packages (Media Cybernetics, Silver Springs, MD). Fluorescence

background values were estimated from regions of the fluorescent images

Pðn;sjfÞ;
Z

dy dðy3 � y1 1 y2Þdðy5 � y2 1 y4Þdðy7 � y1 1 y2 1 y6Þ3
1

s
7 exp � 1

2s
2 +

7

i¼1

ðfi � yiÞ2
� �

3
n
�3
2ffiffiffiffiffiffiffiffiffiffiffiffi

y1y2y3
p exp �1

n

ð2y2 � y1Þ2

2y1
1

ð2y4 � y2Þ2

2y2
1

ð2y6 � y3Þ2

2y3

� �� �
; (13)
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containing no cells. One background value was chosen for each movie (the

minimum of the measured background levels for the first 10–20 frames).

Cellular autofluorescence was measured in cells containing no YFP reporters

and was low, having values similar to the change in background fluorescence

from image to image. An autofluorescence value was therefore selected

within this range that led to the most constant YFP signal for the entire

microcolony and to constant YFP levels in cell divisions (so that the sum of

YFP fluorescence in the daughters would equal that in the mother cell). Flat-

field corrections were found to be negligible using an analytic correction

method developed previously (19).

With this normalization, the total colony YFP remains constant (to within

5%) during the first 4 h of growth. For later times, there is more variation

(arising from crosstalk with the cyan fluorescent protein designed to be

induced at lowCI-YFP levels in thel-cascade strains (13)). Themeasurement

error model incorporated in Method II automatically attaches less weight to

those cells whose fluorescence values are of orders or lower, and the inferred

n is not significantly changed when data from the last generations of the

lineage tree in Fig. 1 B is ignored. Cellular YFP levels are given in Fig. 1 C.

Software written inMatLab (TheMathWorks, Natick,MA) identified and

tracked cells from the phase contrast images and quantified their fluorescence

levels using the segmented images to identify the appropriate pixels for each

cell (13). Cellular fluorescence was measured by summing the fluorescence

intensities of all pixels within a particular cell. Typical intervals between

exposures were 9 min (for accurate tracking), but YFP fluorescence images

were taken on alternate frames to reduce photobleaching. Imageswere usually

acquired for ;8 h, with colonies reaching eight or nine generations.

FIGURE 3 Evaluation of the inference methods for simulated data using

the inference score ie ¼ j log 2(n/n0)j (a perfect fit has an inference score of

zero), with simulated n0 ¼ 25. (A) Inference improves with more data, but is

sensitive to signal/noise ratios; Method II is robust. Twenty different data

sets, each of seven generations, were created from an initial cell having

either 500 (first two bars) or 5000 fluorescent proteins (last two bars). For

generation numbers below seven, the appropriate lower part of the data tree

was discarded. Measurement error was added with s ¼ 150, and three

measurements were taken per cell. (B) The performance of Method II as the

size of the measurement error grows; inference improves by increasing the

number of measurements per cell. Notice the new y-axis scale. Twenty

different data sets with 500 proteins in the initial cell were fit, and the results

averaged to generate each bar. For both figures, we used the analytical

estimate for s (Eq. 15), and took the maximum of the posterior as the best

estimate for n. Error bars are standard errors.

FIGURE 2 Results of Method II applied to the data of Fig. 1. (A) A

contour plot of the posterior probability of s and n. The distribution has a

single peak with a most probable value of n ’ 156 4 fluorescence units per

fluorescent particle and of s ’ 1566 5 fluorescence units. (B) The posterior

marginalized over s. The most probable value of n is given at the maximum

and the error in this estimate by the peak width at half-maximum. The inset

shows the marginalized posteriors for the data of Fig. 1 (left curve) and for

three other data sets taken on the same microscope on the same day. Inferred

values of n are consistent.
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RESULTS

The performance of the algorithm is determined by two

competing effects: first, as the number of molecules increases

binomial deviations become less significant relative to mean

values, and so the numbers of molecules in daughter cells

become effectively indistinguishable; second, low numbers

of molecules have small signal/noise ratios and measurement

error can potentially swamp binomial deviations.

Fig. 2 A shows the two-dimensional posterior inferred by

Method II from the data of Fig. 1. Themost probable values of

n and s are given by the posterior maximum. The distribution

is orientated approximately parallel to the coordinate axes,

implying that the two parameters can be inferred indepen-

dently, and that the errors in such inference will be given by

the width of the distribution at half-maximum along the

appropriate axis. Summing over all values of s gives the

marginalized distribution for n shown in Fig. 2B. For this data
set, n* ’15 6 4 fluorescence units per fluorescent particle,

implying that the predicted number of fluorescent proteins

ranges from’840 in the initial cell to’10 for the generation-

eight cells. Method I predicts n*’156 1. The inferred value

of n is consistent (within a factor of two) over four separate

experiments, where a microcolony was grown from a dif-

ferent initial cell (Fig. 2 B). This level of accuracy is certainly
high enough to provide parameters for cellular models, where

only ballpark estimates are usually required (9), and could be

improved by increasing the number of measurements per cell

or the levels of intracellular fluorescent proteins (see below).

To illustrate the importance of the signal/noise ratio (fi/s for

a cell with fluorescence fi), we simulated data for an eight-

generation tree. Starting from an initial number of proteins in

the first cell, amicrocolonywas created by equally binomially

partitioning protein into daughter cells. Each data point was

multiplied by n0, arbitrarily set to 25. Normally distributed

samples with zero mean and standard deviation s were added

to each data point to include measurement errors. If, for ex-

ample, three measurements per cell were desired, three dif-

ferent normal samples were added to the original data point

to give three final data points.

Fig. 3 A shows that Method II performs robustly: its ac-

curacy increases steadily as the number of data points grows.

Method I, which ignores measurement error, performs as well

asMethod II only for those lineage trees whose cells all have a

high signal/noise ratio. We simulated two types of data: one

generated from an initial cell having 500 molecules (low

signal/noise ratios) and the other generated from an initial cell

containing 5000 molecules (high signal/noise). Although

lineage trees with seven generations were initially created, the

inference algorithms were run on data sets with just the first

three generations and then new data added generation by

generation to explore the inclusion of additional layers of the

lineage tree. In all cases, the true value of n, n0, was set to 25.

We use a relative measure, ie ¼ jlog2(v/v0)j, to score an

inferred value of n. An inference score ie ¼ 0 is thus an exact

inference, while ie¼ 1 implies that the inferred value is either

twice or half the true value.

Although large numbers of proteins increase the signal/

noise ratio, too many, as mentioned earlier, can degrade the

inference. Large numbers lead to very tight binomial distri-

butions and so to potentially immeasurable differences be-

tween the number of proteins in each daughter cell. For 5000

molecules (;3 mM; see Fig. 3 B) and 50,000 molecules (not

shown), accurate inference is not significantly affected, at

least for simulated data: the inference score for the 50,000

case increases by ’20% for colonies of six or seven gen-

erations. Such high numbers of molecules may be more fre-

quent in eukaryotic cells.

Higher s degrades inference, but this degradation is re-

duced by increasing the number of measurements per cell

(Fig. 3 B). Six measurements gives accurate inference for s

as high as 200 (i.e., 8n). For the same data, Method II

performed as well as or better than Method I 78% of the time,

increasing to 93% of the time when s ¼ 200.

DISCUSSION

The difference in fluorescence levels between two daughter

cells after cell division is determined by the number of fluo-

rescent proteins in the mother cell: the difference is on

average larger if the number of proteins in the mother cell

increases. We exploit this phenomenon to deduce in vivo

numbers of molecules by following a cell that has transiently

expressed fluorescent protein and recording the daughter cell

fluorescence levels as the fluorescent protein is diluted out

during growth. Our method assumes equal binomial parti-

tioning of proteins at cell division, so that each protein has

the same chance of going to either daughter cell.

We have introduced two algorithms to infer n. Method I,

exemplified by Eq. 8, is fast and easy to compute. It is re-

liable when the signal/noise is significantly greater than one.

Method II, shown in Eq. 13, although more computationally

demanding, is valid for both high and low signal/noise ratios.

It returns both the posterior probability for n and the mea-

surement error s. MatLab (The MathWorks) code for both

methods is available on request.

Although we use a normal distribution model for measure-

ment error, other distributions can be adopted providing they

allow Eq. 13 to be factored into triad terms. For example,

multiplicative measurement error with a corresponding log

normal distribution only changes the middle term of Eq. 13 to

Y
i

ðsyiÞ�1
exp � 1

2s
2 +

i

ðlog fi � log yiÞ2
� �

; (17)

with the variable elimination method working as before.

The fluorescent protein of interest must only be transiently

expressed, and then its expression fully repressed once fluo-

rescence measurements are begun. The copy number of the
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protein’s gene is therefore not important, providing repres-

sion remains tight after the transient expression. Conse-

quently, the fluorescent protein can be conveniently added

on a plasmid. Given the value of n of YFP, other fluorescent

proteins can be quantified by comparing their expression to

that of YFP in a bacterial strain that expresses both proteins

from identical promoters (13).

Our analysis assumes even partitioning of fluorescent pro-

teins into daughter cells, i.e., a protein is as equally likely to

go to one daughter as to the other. This assumption is rea-

sonable for a repressor protein: nonspecific DNA binding

presumably causes most to be carried from mother to daugh-

ters by (evenly partitioning) chromosomes. For cytosolic

proteins in cells that divide asymmetrically, for example by

budding rather than by fission, the situation may be more

complicated. Our algorithm could be adapted to include such

asymmetries, where, for example, the probability of a protein

going to a particular daughter cell could be proportional to the

volume of the daughter cell. Alternatively, it may be possible

to preprocess the data, restricting the analysis to daughter

cells of equal size where division events are, presumably,

even. In our movies, .85% of division events generated

daughters with a 5% difference in cell volume or less.

A protein that exists in several different multimer forms can

cause additional difficulties. If the distribution of the protein

between multimers changes at each measurement and partic-

ularly at each cell division, not only must our algorithm be

extended butmanymoremeasurements will be needed to gain

reliable statistics. The fluorescent protein considered here,

CI-YFP, dimerizes. Nevertheless, given that its dissociation

constant is ;10 nM (20,21), we assume that it only exists in

dimer form, and so only need to halve the inferred value of

n to find the proportionality constant per YFP molecule.

By calibrating fluorescence measurements, our method

allows parameters fit to network output to be expressed in

absolute rather than relative units, and so enables informa-

tion from different experiments to be easily combined into a

larger, predictive framework. The technique can be applied

in parallel to measurements of network function (13) and

properties (14), and potentially to eukaryotic cells.

APPENDIX

General expression for the posterior probability

For a complete lineage tree with N cells, Eq. 13 becomes

Pðn;sjfÞ;
Z

dy +
N�M

i¼1

dðy2i 1 y2i11 � yiÞ

3
1

s
N exp � 1

2s
2 +

N

i¼1

ðfi � yiÞ2
� �

3
n
�N�M

2QN�M

i¼1 y
1
2
i

3 exp �1

n
+

N�M

i¼1

ð2y2i � yiÞ2

2yi

� �
; (18)

with N – M ¼ (N – 1)/2.

DERIVATION OF AN ESTIMATE FOR THE
MEASUREMENT ERROR

The posterior for s satisfies

PðsjfÞ ¼
Z

dnPðs; njfÞ; (19)

where P(s, njf) is given by Eq. 18. After integrating out the d-functions in

Eq. 18, the number of y variables in the integral drops to M because of the

conservation of numbers constraints. We denote this set of M variables by

ys ¼ {y1, y2, ���, yM}.
To estimate the remaining integral in Eq. 18 (and so evaluate Eq. 19), the

exponent of the middle term of Eq. 18 can be rearranged into a quadratic

form in the ys, i.e., as ð�1=s2ÞðyTs Ays=21bTys1cÞ, where A is a symmetric

M 3 M matrix and b is a M 3 1 vector. This quadratic form can be

diagonalized through the transformation

ỹ ¼ Rðys 1A
�1
bÞ=s; (20)

with R the matrix of eigenvectors of A. The exponent then

becomes�½1=2ỹTLỹ1c̃=s2�, where L is the diagonal matrix of eigenvalues

li of A and c̃ ¼ c� ð1=2ÞbTA�1b.
Once diagonalized, the middle term of Eq. 18 can be written as a product

of normal distributions, one for each eigenvalue li, which we can integrate.

Defining Nðxj0;sÞ ¼ exp½�x2=ð2s2Þ�=ð
ffiffiffiffiffiffi
2p

p
sÞ, the middle term satisfies

1

s
Nexp � 1

2s
2 +

N

i¼1

ðfi � yiÞ2
� �

¼ s
�N
e
� c̃

s
2

Y
i

N ỹij0; l�1
2

i

� 	
;

(21)

remembering Eq. 20.

Integrating out the d-functions in Eq. 18 leads to its last term becoming a

function of ys rather than y,

n
�N�M

2QN�M

i¼1 y
1
2
i

exp �1

n
+

N�M

i¼1

ð2y2i � yiÞ2

2yi

� �
¼ n

�N�M
2

aðysÞ
1
2

e
�bðysÞ

n ; (22)

where a(ys) and b(ys) are algebraic functions of ys.
The posterior distribution for s, from Eq. 19, is thus

PðsjfÞ;s
�ðN�MÞ

e
� c̃

s
2

Z
dy
Y
i

N ỹij0; l�1
2

i

� 	
aðysÞ

�1
2

3

Z N

0

dv v
�N�M

2 e
�bðysÞ

v ; (23)

from Eqs. 21 and 22. Evaluating the integral over n gives

PðsjfÞ;s
�ðN�MÞ

e
� c̃

s
2

Z
dỹ
Y
i

N ỹij0;l�1
2

i

� 	
aðysÞ

�1
2bðysÞ

�N�5
4 ;

(24)

where

ys ¼ sR
�1ỹ�A

�1b (25)

from Eq. 20.

Most of the contribution to the integral in Eq. 24 will come from the

maxima of the normal distributions at ỹi ¼ 0. At these values, Eq. 25 shows

that ys will have little s-dependence and consequently that the entire integral
can be approximated as being independent of s. The term before the integral

dominates, and maximizing this term with respect to s gives the estimate in

Eq. 15. For 5000 simulated data sets with randomly assigned measurement

errors of s0, the mean of log2(s*/s0) was ’ �0.009, a negligible difference

for accurately inferring n.
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