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Shield as Signal: Lipopolysaccharides

and the Evolution of Immunity
to Gram-Negative Bacteria

Robert S. Munford*, Alan W. Varley

ccording to the innate immunity concept [1], animals

defend themselves from microbes by recognizing

pathogen-associated molecular patterns. To detect
many Gram-negative bacteria, animals use the CD14-MD-2-
TLR4 receptor mechanism to recognize the lipid A moiety of
the cell wall lipopolysaccharide (LPS). Lipid A is a
glucosamine disaccharide that carries phosphates at positions
1 and 4’ and usually has four primary (glucosamine-linked)
hydroxyacyl chains and one or more secondary acyl chains.
Gram-negative bacteria produce numerous variations on this
basic structure, yet sensitive LPS recognition and pro-
inflammatory signaling by human TLR4 occur only when
lipid A has both phosphates and is hexaacyl, with two
secondary acyl chains.

What might bacteria derive from producing this type of
lipid A, and what do animals gain from recognizing it? A
survey of diverse lipid A structures found that the best-
recognized configuration is produced by most of the aerobic
or facultatively anaerobic Gram-negative bacteria that can
live in the gastrointestinal and upper respiratory tracts. We
hypothesize that the CD14-MD-2-TLR4 mechanism evolved
to recognize not just pathogens, but also many of the
commensals (normal flora) and colonizers that can inhabit
the body’s most vulnerable surfaces. Producing this lipid A
structure seems to favor bacterial persistence on host
mucosae, whereas recognizing it allows the host to kill
invading bacteria within subepithelial tissues and prevent
dissemination. A conserved host lipase can then limit the
inflammatory response by removing a key feature of the lipid
A signal, the secondary acyl chains.

Acylation of Lipid A: Strengthening the Shield?

Gram-negative bacteria that inhabit water, soil, plants, or
insects display impressive diversity in their lipid A structures
(see Table S1). Although the backbone is almost always a
bisphosphorylated disaccharide that has three or more
primary fatty acyl chains, the secondary acyl chains differ in
their number, length, and degree of saturation. In contrast,
the lipid A structures produced by most of the aerobic and
facultatively anaerobic Gram-negative bacteria that live as
human mucosal commensals, colonizers, or pathogens [2] are
monotonously similar: they have two phosphates, four
primary hydroxyacyl chains (3-hydroxymyrisate or 3-
hydroxylaurate), and two saturated secondary acyl chains
(laurate, myristate, or both); we shall refer to this composition
as “mucosal” lipid A. Since these bacteria differ in many
other ways, the fact that their lipid As are so similar suggests
that this structure may confer some advantage.

Mucosal secretions contain numerous cationic
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antimicrobial peptides (CAMPs) [3]. As noted by Miller [4]
and others, increased resistance to CAMPs and other host
molecules may explain why Gram-negative bacteria that
colonize mucosae usually make LPS with six or more acyl
chains (Figure 1). Although we found no demonstration that
this lipid A structure enables commensal bacteria to thrive on
mucosal surfaces, the evidence that it does so for colonizers
and pathogens is extensive. Having hexaacyl (rather than
pentaacyl) lipid A enables Bordetella and Haemophilus species to
persist in the respiratory tract [5-7] and Neisseria gonorrhoeae
to survive within epithelial cells [8]. Pseudomonas aeruginosa
lives in water, produces a predominantly pentaacylated LPS,
and does not colonize the mucosae of normal humans. When
P. aeruginosa colonize the airways of children with cystic
fibrosis, however, the bacteria often adapt by producing
hexaacylated (and even heptaacylated) lipid A [9]. Mucosal
lipid A is also found in intestinal pathogens: Shigella and
Salmonella, pathogenic Escherichia coli [10], Aeromonas species,
Plesiomonas shigelloides, and Vibrio cholerae O1. In Salmonella and
some others, a PhoP/PhoQ-regulated transcriptional program
promotes lipid A palmitoylation (heptaacylation) along with
other changes that increase resistance to CAMPs [4,11-13].
Other mucosal bacteria may also produce lipid A that is more
hydrophobic than mucosal lipid A, with longer secondary
chains (Campylobacter jejuni) or more of them: heptaacyl
(Moraxella) or octaacyl (V. cholerae O139). Those that produce
less hydrophobic lipid A seem to be special cases: the
pentaacyl LPS of Chlamydia species is found in spore-like
elementary bodies, and Helicobacter pylori, with tetraacyl LPS, is
adapted to live in the stomach.
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Figure 1. Lipid A Structure, Bacterial Habitat, and Host Recognition

Approximate relationship between resistance to CAMPs, recognition by
MD-2-TLR4, and lipid A acyl chain composition for Gram-negative
aerobic or facultatively anaerobic bacteria living in different habitats. The
number, length, and saturation of the acyl chains may all influence
recognition by TLR4. In mucosal lipid A, the acyl chains are saturated and
usually have 12 or 14 carbons.

Many other disease-associated Gram-negative bacteria have
nonmucosal habitats. Their lipid A moieties differ from the
typical mucosal structure by having shorter or longer acyl
chains, unsaturated acyl chains, only four or five chains, or only
one phosphate (see Table S1): Legionella (water habitat, often in
free-living amoebae), Burkholderia pseudomallei (soil and water),
Yersinia pestis (small rodents, lice), Coxiella burnetti (intracellular,
livestock), Leptospira (water, animal urine), and Francisella
tularensis (ticks, rabbits, other small animals). These pathogens
usually enter vertebrate tissues via insect bites or cuts, within
inhaled droplets, or across the conjunctivae. Brucellae
(livestock), which inhabit macrophages yet are typically
acquired via ingestion, also produce a nonmucosal LPS [14].

How Animals Sense Mucosal Gram-Negative
Bacteria: Shield as Signal

Whereas bacterial peptide resistance and outer membrane
impermeability seem to vary directly with the number of acyl
chains, the inflammation-inducing CD14-MD-2-TLR4
sensory mechanism best recognizes lipid A that has the
hexaacyl mucosal lipid A structure [15-20] (Figure 1). In
support, Hajjar et al. [21] reported that a discrete
extracellular region of human TLR4 enables recognition of
hexaacyl, but not pentaacyl, P. aeruginosa LPS. Further
discrimination is performed by MD-2 [22]. The same
recognition pattern has been found for all mammals tested
except rodents [23].

Evidence that lipid A structure influences the recognition
of intact bacteria by host cells came from mutating enzymes
that attach secondary acyl chains to the backbone. Somerville
et al. [24] found an E. coli mutant that was unable to attach the
secondary myristate at position 3" and could not stimulate
human endothelial cells. Having a hexaacyl LPS also enhances
other responses to intact bacteria, including the induction of
tumor necrosis factor by Salmonella in vivo [25], the initiation
of intestine wall inflammation by S. flexneri [26], and the
production of IL-8 by bladder epithelial cells infected with E.
coli [27]. These and other studies convincingly showed that LPS
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is the major structure sensed by most host defense cells when
they interact with bacteria that produce mucosal lipid A [28].

Although the TLR4-based mechanism for sensing LPS has
been highly conserved [29], how it benefits the host is only
partly understood. Gastrointestinal epithelial cells evidently
do not express TLR4 on their lumenal surfaces under normal
in vivo conditions, so it is unlikely that they sense LPS or
Gram-negative bacteria in the fecal stream [30]. On the other
hand, Rakoff-Nahoum et al. [31] recently found that
subepithelial TLR4-dependent sensing protects damaged gut
from injury by commensal bacteria. Perhaps the key function
of this system is to sense bacteria as they enter submucosae,
thus mobilizing defenses that confine bacterial invasion, and
the inflammatory response to it, to the local site [32,33].
Shigella invasion through the colonic epithelium prompts
intense local inflammation, for example; the fact that Shigella
possess hexaacyl LPS may help the host confine infection to
the intestine (bacteremia rarely occurs) [26,34]. TLR4-
dependent responses to other enteric pathogens may also
damage the intestinal wall, yet these bacteria also do not often
spread to the bloodstream [35]. Similar local responses may
help restrict disease caused by most Haemophilus and Bordetella
species to the respiratory tract, most strains of N. gonorrhoeae to
the urethral mucosa, and E. coli to the bladder [27]. In contrast,
producing heptaacylated LPS may help Salmonellae [11] avoid
recognition within the intestinal submucosa and grow in
extraintestinal tissues.

Most mucosal Gram-negative bacteria that enter the
bloodstream are rapidly killed. In many instances, LPS
sensing is required for effective elimination [32,36]. Few
Gram-negative bacteria grow to high density in the blood of
immunocompetent humans [37]; of these, Y. pestis [38] and B.
pseudomallei [39] produce lipid A structures that are poorly
sensed by TLR4 [40-42]. As suggested by others [29,40,42],
these bacteria may be effective human pathogens, at least in
part, because the TLR4 mechanism does not recognize them.
This notion may also apply to other bacteria that lack the
mucosal lipid A structure and are weak TLR4 agonists: F.
tularensis [43,44], L. pneumophila [45], C. burnetti [46], H. pylori
[47], Brucellae [48,49], and Leptospira [50] species. According to
this hypothesis, engineering these bacteria to produce
mucosal lipid A should alter their ability to cause disease.

The most obvious exceptions are the pathogenic Neisseriae.
Both N. meningitidis and N. gonorrhoeae produce a mucosal lipid
A and colonize mucosal surfaces. How they invade the
bloodstream is not known [51], but they usually seem to do so
without triggering local inflammation. They illustrate the
important point that the lipid A-TLR4 interaction is but one
element of the confrontation between bacterial pathogen and
animal host.

Destroying the Signal: Acyloxyacyl Hydrolysis

Whereas Dictyostelium discoideum produces several lipid A—
deacylating enzymes, only one has been found in mammals.
Acyloxyacyl hydrolase (AOAH) removes only the secondary
chains from lipid A; it cleaves saturated, short secondary
chains, as are found in the mucosal lipid A structure, more
rapidly than it removes long unsaturated ones [52,53]. A
phylogenetic analysis revealed high conservation for both the
AOAH large subunit, which has the bacterial GDSL lipase
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Figure 2. AOAH Phylogenetic Tree

Topological algorithm derived using DisplayFam [69] analysis of available
sequences. Amino acid similarity/identity to the full-length human
sequence is shown (includes both subunits and the pro-peptide). AOAH-
like sequences have not been found in fish or insects. The asterisk
indicates that AOAH-like enzymatic activity has been demonstrated in
one or more cell types. See Table S2 for accession numbers.

motif [54], and the small subunit, a member of the saposin-
like protein family [55] and the likely LPS recognition motif
(Figure 2). Indeed, AOAH has evidently been more highly
conserved than has TLR4 [29]

In vertebrates, AOAH is produced by neutrophils,
dendritic cells, renal cortical epithelial cells, and monocyte-
macrophages. AOAH treatment greatly reduces LPS sensing
via TLR4 [52], and LPS may remain stimulatory for weeks in
mice that cannot deacylate it [56]. AOAH thus can limit
inflammatory responses to bacteria that produce mucosal
lipid A. Deacylation occurs slowly, reaching completion after
the early recognition phase of antibacterial innate immunity
has occurred.

Other Signals

The host response to LPS also has noninflammatory,
immunostimulatory elements. Lipid A analogs that lack the
optimal configuration for inducing inflammation may be
excellent adjuvants, enhancing acquired immune responses
in ways that mimic those induced by LPS itself [57,58]. The
mucosal lipid A motif triggers inflammation (and toxicity),
whereas adjuvanticity may also follow TLR4-based
recognition of lipid A molecules that have only one
phosphate and secondary chains of various lengths, numbers,
and/or configurations. These structure-function relationships
have been exploited to produce analogs that are either LPS
antagonists or nontoxic adjuvants.

LPS recognition by CD14-MD-2-TLR4 has received
intensive study because it initiates the inflammatory response
to so many disease-associated Gram-negative bacteria. Less is
known about how animals sense their far more abundant
flora of strictly anaerobic Gram-negative bacteria, although
doing so may be important for establishing beneficial
mutualism between bacteria and host [59,60]. Like the
tetraacylated LPS of Porphyromonas gingivalis, the
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pentaacylated monophosphoryl LPS of Bacteroides fragilis
seems to be sensed principally by TLR2 [61-63] and can
inhibit recognition of mucosal LPS by TLR4 [64,65].

Conclusions

An immune system that only recognizes pathogens would
leave animals vulnerable to the commensal and colonizing
microbes that enter subepithelial tissues at sites of
microtrauma throughout life [31]. An innate defense that
detects and responds to mucosal commensals as well as
pathogens is obviously not impenetrable, however; even
commensals may induce damaging responses when host
defenses are impaired by trauma, cuts, or tubes that provide
conduits across epithelia, immunosuppression, or an
inherited immune defect [29,66]. An even greater gap in host
defense may be exposed when a Gram-negative pathogen
evades TLR4 recognition by producing a nonmucosal lipid A.

If the synthesis proposed here is correct, it would not be
surprising to learn that other elements of innate immunity
also sense commensal microbes. Animals may also have
conserved enzymatic mechanisms for extinguishing microbial
signals that are sensed via other receptors [67,68]. B
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