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AsBmAcr Several different one-site, two-site, and multisite models of steady-state
ion transport across a membrane are investigated. The basic features, including
cooperative interactions between channels, are the same as in earlier papers in this
series. In particular, the present paper represents a considerable elaboration of part
m. The models might apply to artificial or possibly to biological membranes, but
particular applications must await further elucidation of the molecular structure
and operation of these membranes.

1. INTRODUCTION

This work is a continuation of three earlier papers (1-3) on the same general topic.
We shall make use of notation and concepts introduced earlier without repeating
details here. In particular, part III (3) is a preliminary version of the present paper.
Our original motivation in this work was possible application to K+ transport

across the nerve membrane. We now think this particular application is extremely
unlikely, and we are presently working on a rather different nerve model.' However,
because the models studied here are so basic and elementary, and because other
authors (4-6)2 believe that cooperativity between channels-as in the present models
-is an essential feature of excitable membranes, the analysis here may well have
eventual applications to or usefulness for some artificial and/or biological mem-
branes.

1 Hill, T. L. 1971. In Perspectives in Membrane Biophysics. D. Agin, editor. Gordon & Breach,
Science Publishers, Inc., New York. In press. See also T. L. Hill and Y. Chen. 1971. Proc. Nat. Acad.
Sci. U. S. A. Published in August 1971.

' Starzak, M. To be published.
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Because of present uncertainty about the structure and molecular operation of
biological membranes, it seems judicious to consider a variety of theoretical ap-
proaches, including this one which involves ion transport via binding on sites in the
membrane. As will be seen below, these models, except in very special cases, lead to
nonlinear steady-state flux-potential curves for a "pure" conformation. However, it
is in part for this reason that application to the squid membrane, at least, seems very
unlikely,' for the corresponding experimental ("instantaneous") curves are ap-
proximately linear, for both K+ and Na+.
Some of the paper (sections 3-5) will be concerned with models in which each

unit of the membrane can exist in two different conformations, as in our earlier
work (1, 3). However, as a necessary prerequisite, attention is also given to one-
conformation models (section 2). Section 6 is concerned with one-conformation,
multisite models.

2. SIMPLE ONE-CONFORMATION MODELS

We present in this section a partial "catalogue" of flux-potential curves for simple
one-site and two-site models. We limit the examples chosen in sections 2 A and 2 B
to the special case of equal ionic concentration in the baths (on either side of the
membrane). However, cases in which these concentrations differ are illustrated in
sections 2 C, 3, and 5. We shall refer here to the ion being transported as M+ (rather
than K+).

A. One-Site Model

Fig. 1 shows the model we consider first. The'singlebinding site for MI in each unit is
located at an arbitrary position y in the membrane:(y]= 0.50 in part III), where the
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FIGuRE 1 FxouRE 2
FIoURE 1 Variation of electrostatic potential 6 and binding potential energy U across
membrane. Binding site is at y.
FIGURE 2 States and rate constants for a membrane unit with site at y.
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electrostatic potential is yA. The assumed adsorption and desorption rate constants
are indicated in Fig. 2. Then the fractions of units in each of the two states, at steady
state, are

Pi = #e'(1 + e- )/: and plo = (aA + aB)/Z, ( 1 )

a/,6 0.2

I y=O.50 0.8-
2 0.75
3 0.90 0.6-
4 1.00

4

FIGURE 3 FIGURE 4
FIGURES 3 and 4 Ionic flux as a function of membrane potential (as = aB = a).

FIGURE 5 FIGURE 6
FIGURE 5 and 6 Ionic flux as a function of membrane potential (aA = aB = a).
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wherex= eq/kT(x = -+ '25mv) and

E = aA+ aB + .6eVX(I + e-). (2)

The flux (A -÷ B) for a membrane with M units is

J = M,9e"(aA- aBe)/. (3)

Figs. 3-6 show the dependence of J/Ma on x, all in the special case aA = aB = a,
for various values of a/, and y. Because of the symmetry of the model, it suffices to
consider the range 0.50 < y < 1. J is an odd function of x when y = 0.50. There is
considerable variety in these curves, even with such a simple model.

B. Two-Site Model

A two-site version ofthe above model is shown in Fig. 7. The maximum between the
two minima in the potential curve U is assumed for simplicity to be located at
(YA + YB)!2. The rate constants and notation for the four states are indicated in
Fig. 8, where

,B = ArsA, #B = IBSB,X KA = KASA/SBE KB = KBSBISAX
SA=e AX/, SB- eB,/2 =r . (4)

As usual, we have employed simple transition-state rate theory in making these
assignments. The ,'s and K'S are not all independent; detailed balance requires that
flIBKA = IAKB.

B (outside) A(inside)

(P')

YB (P0O

0 0

Y=O yeYA ye' ~~~~~~~~~~~(p00')
FIGuRE 7 FIGURE 8

FIGuRE 7 Variation of electrostatic potential X, and binding potential energy U across
membrane. Binding sites are at yA and YB .

FIGuRE 8 States and rate constants for a membrane unit with sites at yA and YB. See
also equations 4.
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40

FiouRE 9 Ionic flux as a function of membrane potential (aA = aB = a). The labels on
the curves indicate the location of sites, as shown in the inset.

The steady-state probabilities of the four states are easily found to be (7, 8)

PI = [pB (aA + aB + Pt + iB) + (#I + D)(Kj/3 + Kg,I3A)]/ (5)

Poi = [OaAI3(a + aB + #As + #3B) + KB (aA + aB)(&& + fiB)]/E (6)

plo = [aBjA (aA + aB + #A" + #B5) + KA (aA + aB)GO + 4)]/E, (7)

PO10 = [aAaB(aA + aB + #A' + O) + (aA + aB)(KAaA + KBaB)]/2,, (8)

where

=
(aA + aB + + MaA + i)(aB + )(+ Kc) +

Ki P]
+ (aA + aB)[KA(aA + 18A) + KB(aB + #)J. (9)

The steady-state flux is

J - MX(aA + aB + A' + '3B) (aAKAI B - aBKBIA)/Y (10)

At equilibrium, aA = aBe X and J = 0.
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Figs. 9-14 illustrate the dependence ofJIMa on x when aA = aB = a, /A = /30 = /,
and KA = KB = K. The remaining parameters are K//3, a//3, yA,I and YB . The shorthand
labeling system used in these figures for YA and YB is included in Fig. 9. Curves with
labels 00, 11, 22, etc., are odd functions of x. Also, a curve, say, for 04 is obvious (by
symmetry) from 40, etc.

Figs. 15-17 present a few examples in which #A/B3 = KA/KB 9 1, though we still
take aA = aB = a. Recall (1) that a deep potential well (Fig. 7) is associated with
strong binding and a small value of /3. For example, in Fig. 7, 0B > A and KB> KA .
In effect, in each family of three curves in these figures, a, #A , and KA are held con-
stant, while fl and KB are varied (KE/KA = #,B/#A). The symmetry of the J(x) curves
(referred to in the preceding paragraph) is of course destroyed when #As #0
It is apparent from these examples that asymmetry in the /3's can more or less du-
plicate the effects of asymmetry in site locations (seen in Figs. 9-14). But, for sim-
plicity, we confine ourselves in the remainder of this paper to cases in which#A = OD

C. Examples with asA aB

Some experimental results ofMozhayeva (9), and the well-known (10, 11) Goldman
equation, both suggest that we might illustrate aA4 aB by choosing cases in which
practically linear J(x) curves are obtained when aA = ay . It is clear from Figs. 3-
6 and 9-14 that, forparticular parameter choices, simple one-site and two-site models
do in fact lead to essentially linear curves. We have not made a study of the range of
parameters giving this kind of behavior, but merely select here two arbitrary exam-
ples, suggested by the above figures. These "linear" examples are included in Figs.
18 (one-site; a//3 = 2.5, y = 0.5) and 19 (two-site; K// = 20, a// = 5, label 22),
along with curves for ao/aBa 1. The Goldman equation is also illustrated in Fig.
19: the value of P (see below) is adjusted to make the linear (aB/aA = 1.00) Gold-
man curve coincide with the two-site linear curve; then, with this value of P, the
as/a= 0.219 Goldman curve appears as the dashed line in the figure. Intermediate
Goldman curves are omitted to avoid confusion.
The Goldman equation is usually derived (10, 11) from a continuum model, but

we show in section 6 that, as one might expect, it is also a limiting form of the flux
for a discrete-site model when the number of sites is large. In the notation of section
6, this equation can be written

J = MPx(aAes - aB)/(e - 1), (11)

where P is a permeability coefficient.

3. ONE-SITE, TWO-CONFORMATION MODEL

We here generalize section 2 A to a model in which each unit may exist in one of two
conformations, I and II, and each conformation has one binding site for M+. The

HILL AND CHEN Models of Steady-State Transport across Membranes. IV 695
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FiGuRE 20 States and rate constants for a one-site, two-conformation membrane unit.

notation is a combination of that in sections 2 A and 2 B. In conformation I, the
site is at y' ; in II, it is at Y2 . In the transition state between conformations I and II,
we assume the site to be located at (Yi + y2)/2. The diagram and rate constants are
shown in Fig. 20 (see also Fig. 1 of part III [3]), where si = ei"'2 and r =-e.
The present treatment is a generalization of part III in that the sites have arbitrary

locations (Yi and ys) and we may have aA $ aB .
The equilibrium grand partition function (g.p.f.) for one unit is the same as in

equation III-7 except that the two eC12 factors there are replaced by eCY and e"",
respectively. Equations 111-3, III-10, and 111-I1 all hold, as before.

After considerable algebra, the probabilities of the four states at steady state can
be written

pi = (,',2s2F),#is2 (1 + r)/l, (12)

plo = (,q'2s2F) (aA + ft)/E, (13)

P2 = (ij#%slF)%2s2 (I + r)/2, (14)

p2o = (ilfislF) (aA + aB)/12, (15)

where

F= I +r+ -[ + 7+ a7° (aA +CYB)] (16)
St S2 01 02 01 0

= Vg'32sF El + ?ffjs2F E2, (17)

i = aA + aB + isl (I + r) (i = 1, 2). (18)

Note that E, is the one-conformation E of equation 2.
It is interesting that, in this one-site model, the inclusion ofthe other conformation

in the steady state does not perturb the "internal" ratios pl/plo and p2/p2o (compare
equation 1 with equations 12-15). This is a quasi-equilibrium property which is not

BIoPHysICAL JouRNAL VOLUmE 11 1971696



maintained in models with two or more sites per conformation. However, in these
more complicated models, this property can be made the basis of a useful approxi-
mation (section 4).

According to equations 12-15, the ratio of the two conformations at steady state
is

P2 P2 + P20 -(E2/82 2) 19)
P1 pi + plO 71'(EI/ 12sl)

Here, ij/,j' is an equilibrium property (equation I1I-11), and the other quantities on
the right-hand side are one-conformation steady-state properties.
Four cycles contribute to the flux. The final expression for J is very simple:

J = PJ +P2J2, (20)

where
J, = M#jSA(aA - ar)/E2 (i = 1, 2) (21)

is the one-conformation flux (equation 3). The simple additivity in equation 20 is a
reflection of the lack of perturbation of one conformation by the other, referred to
above. Equation 20 does not hold exactly in models with more than one site per
conformation.
We illustrate the application of equation 20 by a case similar to those in!Figs. 3

and 4 of part III. We take:

I: aA/,l = 4.0, Yi = 0.80,

II: aA/#2 = 0.30, y2 = 0.80.

- 8B'AIR 1.00 J/M6A _

I-_ 0.0227 0.8

0.81/ 06 /
P2 p~~~

FIGURE 21 Illustration of model in Fig. 20.
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Also, we use Q = 0.0627, a = e 60, a = -0.32, and -y = 0.14. Q was chosen to give
P2 = 0.50 (center of transition) at x = -2.15. A negative a causes the transition to
occur at larger x for x positive than for x negative. Incidentally, a negative value of
a implies that the net (algebraic) charge on I is greater than that on II.

Fig. 21 shows the theoretical J(x) for aB/aA = 1.00 (M+ = Mt) and aB/lA =
0.0227 (M+ << Mt). Theoretical P2 (x) curves are included in the figure to show the
conformational change.

4. QUASI-EQUILIBRIUM APPROXIMATION

We are, of course, already using the Bragg-Williams approximation (1) in our treat-
ment of interactions between neighboring units. In this approximation the units
may be considered "independent" despite the interactions. In this paper we take the
Bragg-Williams approximation for granted, and are not referring to it, below, in our
discussion of a quite different approximation.
The diagram method (7) of determining steady-state properties of a system of

independent units is the method of choice when the diagram is not too complicated.
Explicit analytical expressions for the p's and J may be derived, for example. If the
diagram is quite complicated and a computer is available, the steady-state linear
equations in the p's may be solved directly for each parameter set (see section 5). If
the diagram is extremely complicated, a numerical Monte Carlo solution may be used
(12).
In two-conformation models of intermediate complexity, where the one-conforma-

tion case is feasible but the two-conformation case is difficult, a quasi-equilibrium
approximation may be useful. This approximation is suggested by the exact results
of the preceding section.
The approximation consists of using equation 20 for J and an expression for P2/P1

which is based on the following analogy with the equilibrium situation. In the g.p.f.
for an open system at equilibrium, the separate terms are proportional to the proba-
bility of observing the system in the corresponding states. Thus, in section 3,

P2 =v7 ( I + q2 XB e-$ (22 )
P; 77' (1 + q2 XB e 21z)

The factor 1/r' (equation III- 11) is equal to the probability ratio of conformations
(p2/p ) with no ligand (M+) bound; the two factors in parentheses provide a cor-
rection for the influence ofbound ligand. In the steady-state approximation, we shall
still use the equilibrium expression t/nq' (which is correct at steady state in the model
of section 3) for the ratio of "empty" conformation probabilities, but we need a
generalization ofthe bound ligand effect. The parentheses themselves, in equation 22,
are g.p.f.'s for binding. But "binding" g.p.f.'s are not defined at steady state. How-
ever, at equilibrium, a binding g.p.f. is equal to the reciprocal of the probability
P" (0) that the system is empty (i.e., that there is no binding) (13, 14). Since P(0) is

BIOPHYSICAL JOURNAL VOLUME 11 1971698



FiouRE 22 Two models used in study of quasi-equilibrium approximation.

a well defined quantity at steady state, as well as at equilibrium, we use 1/P (0) to
construct the desired correction for ligand binding. That is we use, at steady state,

P2 -7 PI(0) 23
Pi17" P:11(0) (3

where PI (0) is the one-conformation (I) steady-state probability that there is no
binding, etc. The combination of equations 20 and 23 allows, then, the approximate
calculation of steady-state properties of a two-conformation model from q/l7' and
exact steady-state one-conformation properties [J1, J2, PI(O), P11(0)]. The one-con-
formation properties may be found either from the diagram method or by direct
numerical solution of the steady-state linear equations.
The approximation is exact in the special case of section 3. Thus, from equation 1,

PJ (0) = Pi = S1s(l + r)/>E1. (24)

Hence equations 19 and 23 are identical in this case.
It should be emphasized that the "approximation" is really an approximation only

under conditions such that both conformations are present in significant amounts
(i.e., in the region of the conformational change). Otherwise, the approximation
automatically gives the correct properties of the one conformation which virtually
dominates. Actually, the latter situation prevails over most of the range in x in the
two-conformation examples in this paper.
As a check, we have made a partial analytical study of the two models shown in

Fig. 22 and have verified that equations 20 and 23 are not exact in these cases. Inci-
dentally, Fig. 22 a has 16 flux diagrams (7) and 95 directional diagrams associated
with it; Fig. 22 b has 50 flux diagrams and 450 directional diagrams. The diagram
method is impractically complicated, or nearly so, in the latter case.

Also, in a numerical example (with aA = aB), related to Figs. 19 and 21, we com-
pared exact results on Fig. 22 b (from the steady-state linear equations) with the ap-
proximation. The approximation was very effective: J/Ma and P2 were in error by
at most 0.001 (usually by much less than this, especially in the case of P2).

5. TWO-SITE, TWO-CONFORMATION MODEL

Here we extend section 2 B to a two-conformation model. We first present the neces-
sary generalities, then an illustration.

HIL AND CHEN Models ofSteady-State Transport across Membranes. IV 699
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FiouRE 23 States and rate constants for a two-site, two-conformation membrane unit.
See also equations 25-28.

Fig. 23 (see also Figs. 7 and 8) shows the diagram and rate constants, where

2 1
i= BS2 "

#A'= I5ArsAi, Bi = ArBiSBiX K4 = KAiSAi/SBiX KBi = KBiSBi/SAi,
SA = eYAixl2, s.i = eVBixI2 r = e x (i = 1, 2). (25)

These are the same rate constants, for each conformation, as in equations 4. Detailed
balance, at equilibrium, requires that

IAlKBJ = #B1KAl,X A2KB2 = PB2KA2,

71PA1?7A = 71IA217A X11B1?1B = 71 PB2'1BX

#A#B11AB = -q,6'1 B2#'AB (26)
At equilibrium, aBe- = aA,, as usual.
To proceed further, we need additional kinetic assumptions. For simplicity and

in the absence of information to the contrary, we continue to assign to the transi-
tion state properties which are intermediate between those of reactant and product.
Examples of this have already appeared in equations 4 and 25, and in Fig. 20. Other
examples, which we employ here as well, were introduced in equations 11-13 and
II-14. In addition, we assume that the transition state has a polarizability and ef-
fective net charge intermediate between the values for conformations I and II. We
then have

v1 = ti (0)aP2eC8z/2e1x2/2

?I = Qu (O)aPlexIe2elxh 2, (27

BIOPHYSICAL JOURNAL VOLUME 11 1971700



where q (0), which we use as the reference rate constant (2), is the value of 'o when
w =0 and x= 0. Also,

I: 1/2 5

77A 7 77 V-A2)

Q)B2JSB1
77B -77 - -,

13B2) SB2

It{A2012SA2
\A3A1 SAl

I
-0

/I BB.2\112 SB2
77B = 1 J

~18B1 SEl

AlAPB1/2 SAl SBl
f7AB = 77

I_I_A2_ SA2 SB277AB= 17 #Al #SAIB2SB1/2
flAB = lX1

\$SAl(B1,/ SA1 SB1
(28)

These relations are consistent with equations 26. In the illustration (below), to re-
duce the number of parameters, we restrict ourselves to the special case

(i = 1, 2), (29)
as in Figs. 9-14.
We have already illustrated the one-site model in Fig. 21. We repeat this process

here, using the two-site model. We employ the steady-state linear equations rather
than the diagram method (see section 4). We make the following choice of param-
eters:

I: aA/01 = 5, K1/lf = 5, label 40;

II: aA/#2 = 1, K2/B2 = 5, label40. (30)

FIGURE 24 Illustration of model in Fig. 23. Compare Fig. 21.

HILL AND CHEN Medels of Steady-State Transport across Membranes. IV
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We express rate constants and J/M in units of v1 (0), and arbitrarily take (compare
part II) /31 = 4q (0). That is,

#I = 4, aA =20, /2 = 20, K1 = 20, K2 =lOO

Also, we choose (see the end of section 3)

a = -0.30, y = 0.15, a = el ,50 Q = 0.0248.

Equations 25, 27, and 28 then complete the assignment of rate constants required in
Fig. 23. Fig. 24 (which is analogous to Fig. 21) shows the calculated flux curves for
caB/aA = 1.00 and 0.0227. P2 curves are also included in the figure.

6. MULTISITE, ONE-CONFORMATION MODELS

We first consider various cases of the model shown in Fig. 25. There are M inde-
pendent channels of this sort in the membrane. The adsorption and desorption con-
stants (for sites 0 and n) are aA, aB, and /3A = /B = /. The K'S (Fig. 25) are rate
constants for a jump between adjacent sites (the only kind of jump allowed). Ions
in a channel do not interact with each other (except through the "exclusion prin-
ciple": at most one ion per site).

A. Almost Empty Channel

In this case aA/1 and aB//3 are small so that the sites are almost always empty.
Hence we can ignore the restriction that an ion cannot move into a site already oc-
cupied. LetpN << 1 be the steady-state probability that the Nth site is occupied. Then

B (outside)

0

n n-l .* N - 0

"A zce/2n

F 2 ls ints t d C pF.X/2n

FIGURE 25 Multisite ionic transport model. Compare Fig. 7.
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the steady-state linear equations are

O = (aA - 3po) + (KBI1 - KApO)

O = (KApo - KBP1) + (1CBP2 - KAPI) (31)

etc. The steady-state flux is

J/M = aA - #PO = KAPO - KBP1 = * (32)

If we use the method of Parlin and Eyring (15), we can combine equations 32 to
eliminate the p's and find

J aEA -aB (3
M= ex + I +[[(ee -)/(KAA-K)](B33)

When n is large, KA - KB = ic/xn. Then

J = KX(aA e - aB) (n large). (34)
M ,rn(e - 1)

This is the Goldman equation, 11, with permeability coefficient P = K/f3n. When
x = 0, equation 33 becomes

J/M = K(aA - aB)/(2K +Pn) (x = O). (35)

This agrees with equation 9 of Hill and Kedem (16), if, in that equation, we let
aA/IP and aB/, approach zero. Note that our n + 1 corresponds to their n.

Since the Goldman equation, 34, is of particular interest, we introduce another ap-
proach which is appropriate when n is large. The general (difference) equation ofthe
set 31 can be rewritten as a differential equation in p (N):

x a9p __O = - nON +ON (nlarge). (36)

The solution is

p (N) = cjex'NIn + c2. (37)

Because n is large, sites 0 and n will almost be in equilibrium with baths A and B,
respectively, so that the boundary conditions are

p(O) = aA/l# and p(n) = aB/I (38)

except for negligible terms. Then, from equations 37 and 38,

P(N) = (aB - a A)eNfl + aAe-
z

B (39)p(N) Xf.~eX 1)
(9

HILL AND CHEN Models of Steady-State Transport across Membranes. IV 703



To find the flux we use the second of equations 32:

K= Ap(O) - KBP(l) = (KA - KB)P(O) - (40)

which leads again to equation 34. Note that, from the first of equations 32,

p(O) = "A (41)

Hence the small terms dropped in equation 38 are i J/Mj5. These terms are smaller
than the dominant terms by a factor of order K/n. Special cases of equations 34 and
39 are:

x = 0: equation 35; p(N) = "A + (B- aA)(N/n) (42)
13

p(N) dN = n(aA + aB)/21, (43)

aA = aB M = (KX) (Ot); p(N) = aD, (44)

aAe = aB: J = 0; p(N) = (aA/l)exN/" (45)

B. Almost Full Channel

In this case aA,/( and aB/l are large. If we replace ions by "holes," this problem is
essentially identical with the above. Let PN << 1 be the steady-state probability that
the Nth site is empty. Then

0 = (aApO - (3) + (KBPo - KAPI)

0 = (KAP - KBPo) + (KBP - KAP2) (46)

etc. When n is large,

°-ndN+dN2' (47)
nOcN ON2

p'(N) [(aA - aB)e + aiB eZ - aAI (:48)

=(N (.48
J x(x(aAe' aB) 49

M aA acBn(eX-)

Equation 49 is the flux in ions, not holes; it also has the form of a "Goldman equa-
tion." Equations 48 and 49 are identical with equations 39 and 34, respectively, if,
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in the latter equations, we replace caA/IP, aB/#, and N by /aB X, /aA , and n - N,
respectively.

C. Channel with Arbitrary Density

In this more general problem, "interference" between neighboring occupied sites
has to be considered. The appropriate generalization of equations 31 and 46 is

O = [A (I - Po) - 3po] + [,KBP(l - Po) -KAPO(I pl)]

o = [KApo(l - pi) - KBPI(l - Po)] + [KBp2(l - pl) - KAPI(l - P2)1, (50)

etc. The flux J for x = 0 but arbitrary n is given by equation 9 of reference 16. We
have not found a solution for arbitrary x and n.
The problem is not difficult when n is large (though numerical calculations are

usually awkward). The differential equation is

O I- -(12p) dP + aN*(Sl
n OIN OIN2

This can be written

A [FN n(PX _ 2)1 0°
or

dp _ x(p _ p2) = Ci (52)

A second integration (with integration constant c2) is then easy but the result, except
in special cases, is a transcendental expression for N(p). The boundary conditions,
used to evaluate cl and c2, are

p(O) = p(n) = a +.(53)
aA+ CiB~(X +

Using the method of equation 40, we find the flux to be

J/M = -IKCC. (54)

In the special case x = 0, we have

ap =o, p(N) =13(a, a(A)(Nfl) + a+ (5

J K13(CIA - (Xa)
M KlaA13(aAB+13) (56)M n(au + s)(B +s c16.

Equation 56 is a special case of equation 9, reference 16.
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When aA = aB, the differential equation is satisfied by

p a + A =constant. (57)a+1
Then

J/M = -KCJ = (KX/n)p(I - p) = Ka3x/fn(a + 3)2. (58)

Note that J is linear in x.
In the general case (n large), a possibly useful interpolation formula for the flux is

J _ K13x(aAe -aB)
M n(aA + 8)(aB +#8(ex -1)_

This is correct in the limiting cases x = 0, aA = aB, aA/13 and aB/l3 large, and aA/l3
and aB/13 small. This is also a "Goldman" equation.

D. At Most One Ion per Channel

This is a case in which, for some reason (e.g., ionic repulsion), a channel can ac-
commodate only one ion at a time. The flux, when x = 0, is given by equation 17 of
reference 16.
A solution for arbitrary x and n is not difficult. The steady-state linear equations

are

0 = (aAp - #Po) + (KBpI - KApO),

O = (KApo - KBP1) + (KBp2 - KAP), (60)

etc., where po = 1 - po -p - * -pn (probability channel is empty). The dia-
gram method (7) is useful in this case. After considerable algebra, we find

J
=

(aAex -aB) pO(x)(aAe - aB) 61
M ex + I+ [l(ex - )/(KA - KB)I (

where

= (aj + aB) (KB + e)
KB - KA B - KA/

f3caA[nKAe' - (n + 1)KBe + KB] F aB[nKB - (n + 1)KA + KAex] (62
(KB K)2 (KB - KA )2

The Parlin-Eyring method (15) readily gives the second form of equation 61 (com-
pare equation 33) but this method does not provide p0 (x). When n is large,

J KX (aAe - aB)
M n2[aA(xex+ 1- ex) -aB(l + x - ex)] (63)
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This does not have the form of a "Goldman equation." Note that A is absent. Two
special cases of equation 63 are:

x = 0: J/M = 2K (aA - aB)/n (aA + tB), (64)

aA = aB: J/M = (Kx/n) (l/n); p (N) = 1/n; p0 = 3/na. (65)

E. Arbitrary f(N); Almost Empty Channel

We have restricted ourselves so far in this section to the linear electrostatic potential
shown in Fig. 25. We now extend this work somewhat. We consider an arbitrary
variation in potential as in Fig. 26.
The top curve in the figure shows the variation ofthe electrostatic potential through

the membrane, starting from zero outside (B) and ending at ^t' (or x = 04/kT) in-
side (A). This electrostatic potential curve is assumed to be unperturbed by M+ ions
in the channel. The binding potential is U as in Fig. 25. There are n + 1 equivalent
binding sites in a channel, and we take n to be a large number (here and in section
6 F). The electrostatic potential at site N is 4Cf(N, x), which defines f(N, x). Above,
we examined the special case f(N, x) = 1 - (N/n) (Fig. 25), which leads to the
Goldman equation. This not only assumes a "constant field" (linear electrostatic
potential), but also does not allow for Donnan effects at the edges of the membrane.

Incidentally, it is easy to treat a generalized U in Fig. 26 such that sites 0 and n are
different from the rest (e.g., 0 and n are protein sites; 1, 2, ** ,n - 1 are lipid sites).
When -=0, the adsorption and desorption rate constants (for sites 0 and n) are

aA, aB, and (3A = ,a = l. We assume that the "jump" constants (Fig. 26) are

KAN = Kexp [f(N + I) f(N)]x}2

0 NX)
B(outside) A(inside)

U

n n-l N .. I O
..ijtKAN

KBN'

FiGuRE 26 Multisite ionic transport model. Arbitrary variation of electrostatic potential.
Line labeled (25) as in Fig. 25.
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and

KBN = icexp {[f(N) -f(N - 1)]x} (66)

Let PN<< I be the steady-state probability that the Nth site is occupied. Then the
steady-state linear equations are

O (a - /3po) + (Kylpl - KAOpO),

O = (KAopo - KB1pl) + (KMp2 - KA1Ai), (67)

etc. The steady-state flux (A - B) is

J/M = aA - iPo = KAOPo - KB1P1 = *.- (68)

The primes indicate that these rate constants are x-dependent in accordance with

aA aA (1-f OXz andB (69:)
Po = ,=e)and P=aB=B f(69)

where fN f(N, x). It is not necessary explicitly to "split" the (thermodynamic) x

factors between aA (or aB) and ft.
With n large, we can treat N as a continuous variable. We then find from equations

66 and 67 that p (N, x) satisfies the differential equation

__+ x dOf d + px a-N = (70)
ON2 aNcN' ON2

where f(N, x) is considered to be a known function. Equation 36 is a special case

[f = 1 - (N/n)]. Equations 69 provide the boundary conditions [p(O, x) and
p (n, x)]. A first integration of equation 70 gives

ap Of - (71)
OIN + Px ON

=

1.'
Then

p(N, x) = e-f(N) [C2 + Ci N exf(NPx) dN]jj (72)

where, using equation 69,

Cl aB aAe and c2=-e. (73)
1 ezfdN
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The flux follows from equation 68:

I -K Op Oif K,(aA e' - aB)
M KjN -KPX N =KCI nK (74)

eZf dN
As a check, we have also derived equation 74 by the Parlin-Eyring (15) method (n
large). Equations 70 and 74 are of the Nernst-Planck type.
Equation 74 is a generalization of the Goldman equation. Clearly, J is not usually

a linear function ofx when aA = a, (i.e.,M = Mt). In fact, even with an arbitrary
constant field, J(x) is not linear (when a,A = a,). For suppose

f(O, x) = 1 + a(x), f(n, x) = b(x),

f(N, x) = ( + a)- ( + a-b) (N/n). (75)

Above, in this section, we took a = b = 0. Then, from equation 74,

J = cKx(l+a-b)(aAez-aB) (76)
M ftn[e(l+)x- ebz]

This is not linear in X(aA = a,) even when a = b (except a = b = 0) or a -b.
It would, of course, be approximately linear if a (x) and b (x) are always small
compared to x.
The function p (N, x) in equation 72 is generally not simple. Exceptions (in ad-

dition to cases above) are: (a) equilibrium (c1 = 0); and (b) aA = a, , linearf, and
a = b, in which case p (N, x) = (a/))e' (independent of N).

F. Arbitrary f(N); Channel with Arbitrary Density

This problem is not difficult in principle, with n large and f(N, x) arbitrary, but
numerical calculations are a bit involved. We merely write down the general equa-
tions here. Proceeding as in section 6 C, we find the differential equation

OpN+ x Of ap (1 -2p) + p(l-p)x d f= O, (77

which is a generalization of equations 51 and 70. A first integration gives

dN + x df p(1- p) = cl. (78)

This is a so-called Riccati equation. The flux is again found to be J/M = - KC.
The boundary conditions are

Po =- : and pn= 1 (79)
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Finally, we note that, in all of these cases (n large), p (N, x) does not depend on K,
and that J is simply proportional to K.
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