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ABSTRACr The magnitude of passive diffusional solute transfer through artificial
membranes is usually considered to be independent of the direction of the concen-
tration gradient driving force. It can be shown, however, that a composite mem-
brane, having as one component a membrane with a chemical reaction-facilitated
diffusion transport mechanism, can result in an asymmetrical flux. An asymmetric
flux caused by this type of structural heterogeneity may be one mechanism con-
tributing to the asymmetric properties of biological membranes. Similar vectorial
fluxes can be generated in interfacial solute transfer through membranes if hydro-
dynamic boundary layers occur at the membrane interface and reversible chemical
reactions with the permeant species are involved in either phase.

INTRODUCTION

There have been many reports in the biological literature which have experimentally
indicated the existence of passive asymmetric transport phenomena. Asymmetric
properties were evidenced by the preferential transport of some species through the
membrane in one direction over the opposite direction even at the same concentra-
tion gradients of the permeant.
The passive asymmetric flux behavior that we are focusing our attention on here

is to be distinguished from "active transport" asymmetric fluxes, where accumulation
or concentration of permeants occurs, but coupled to some energetic metabolic
reaction and accompanied by a continual consumption of substrate(s). In active
transport a net unidirectional flux of a permeant is produced even if the concentra-
tion of this solute is initially the same on both sides of the membrane, whereas in
passive transport, the condition of equal concentrations or chemical potentials across
the membrane is the final equilibrium state, after which no further net transport
occurs. The term "passive" as used here is not meant to imply simple Fickean
diffusion, but rather to include carrier-mediated transport mechanisms.

Experimental conditions for testing for the existence of passive asymmetric
transport in biological systems often cannot be achieved because of the character of
the particular system. For example, in a very thorough study of facilitated transport

BIOPHYSICAL JOURNAL VOLUME 1 1 1971924



in erythrocytes, Miller (1) states that the direct uptake of sugars into sugar-free cells
could not be accurately measured, and therefore he resorted to tracer techniques to
estimate these rates.

In spite of this problem, purely passive asymmetric transport behavior has been
experimentally demonstrated. Examples are the studies reported by Narahara and
Ozand (2) for animal tissues (3-methyl-glucose penetration in frog muscle) and
Winkler and Wilson (3) for microbial cells (,3-galactoside transport in mutants of
Escherichia coli). These authors analyzed their data in terms of carrier transport
theory, and found Vmax and Km were different for influx and efflux experiments.

It should be remarked that Rosenberg and Wilbrandt (4), in their classical paper
on facilitated transport, indicated that a "kinetical asymmetry" could be responsible
for such behavior. They went as far as to say that a difference in influx and efflux
rates with the same concentration gradients was evidence for the existence of chem-
ical reactions in the film.' They suggested that a kinetical asymmetry could be the
result of different kinetic constants of the carrier-substrate reaction between both
sides of the membrane. Although there is precedent for reaction rate constants to
change with temperature, ionic strength, and dielectric properties of the solvent
there is no direct evidence that such inhomogeneities actually occur in membranes.
An equally acceptable hypothesis presented herein, and perhaps more attractive,
does not require a variability in reaction rates within a membrane, but rather is
based more on structural anisotropic membrane properties.

STRUCTURAL ANISOTROPY

Several mechanisms based on anisotropic diffusion pathways will be presented in
this paper which can be responsible for passive asymmetric transport. That these
mechanisms might also be operative in active transport cannot be established at
present and is outside the scope of this communication; but Winkler and Wilson's
(3) work showed that the same transport system seemed to be responsible for both
active and passive ,B-galactoside penetration, and Schultz (5) has implicated a similar
relationship between active and passive transport of sodium and alanine across the
brush border of the intestine. By analogy one can expect that if the anisotropic
membrane properties postulated here are experimentally confirmed for passive
transport, then they may also play a role in active transport. (See Note Added in
Proof.)

Hartley (6) has pointed out that if the diffusion coefficient of a species is not either
independent of its concentration or position in a membrane then it is to be expected
that the steady-state flux of this species across a membrane will be asymmetric. An
experimental verification of this phenomenon was given by Rogers et al. (7, 8) and

'This statement cannot be generally correct, in view of the results of Rogers et al. (7) where asym-
metric fluxes were demonstrated for simple plastic films.
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Stannett (9), who showed that the required dependence of diffusivity on concentra-
tion and position could be achieved by placing two plastic membranes in series, at
least one of which has the property that the permeability is nonlinear with respect
to concentration gradient, or by creating structural anisotropy in a single membrane
by chemical or physical means.

Direct evidence for flux asymmetry across a biological membrane has been pro-
vided in a recent study by De Bruyne and Van Steveninck (10) on the influx and
efflux of dimethyl sulfoxide in yeast under a variety of conditions. They have un-
equivocally demonstrated that for this substance efflux from the cells is greater than
influx. The exact mechanism responsible for the flux asymmetry is not known, and
although the kinetics of dimethyl sulfoxide transport is reported as apparently first
order, an unequal final distribution of solute between the cell and medium throws
some doubt on the presumption that only simple diffusion and no carrier mecha-
nisms are involved.
A somewhat more general mathematical statement than Hartley's for asymmetry

of penetration is given by the condition that if Peff is not expressible asf,(x) -f,(S),
where Peff is the effective permeability of a permeant, x is position in the membrane,
and S is permeant concentration in the membrane, then asymmetry of transport is
to be expected. We have specified Peff rather than the diffusivity D because for
many biological membranes a true diffusion coefficient for the permeant in the
membrane may not be applicable, as the transport may involve reaction and carrier
intermediates. Also, the fraction of membrane area available for transport and the
tortuosity of the penetration pathway is usually unknown. There may be situations
where penetrant permeability is a joint function of position and concentration, i.e.
Peff = f(x, S) $ f.(x)f8(S), and yet symmetric transport prevails. For example, if
the membrane is not homogeneous with respect to the relationship between concen-
tration and permeability, but a geometrical plane of symmetry in the membrane
exists, then transport will be symmetrical. As shown below, symmetric transport
occurs when the boundary concentrations are such that the integral membrane
permeability coefficient is the same, independent of the direction of the concentration
driving force.

CONDITION FOR STRUCTURAL ASYMMETRIC TRANSPORT

It has not been previously recognized that if the permeant species can react reversibly
with a mobile membrane component (carrier transport) then conditions promoting
structural as opposed to kinetical asymmetric transport can be established. Consider
the typical transport flux vs. concentration driving force curve often obtained in
biological systems, as depicted in curve A of Fig. 1.
Here we see that the flux through the membrane is not linearly related to the

concentration driving force, so that the effective permeability of the solute in the
membrane can be considered to be a function of its concentration. In itself, a non-
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FIGURE 1 Pattern of facilitated flux across membranes with carrier-type mechanisms which
show saturation behavior. Permeant concentration is zero on one side of the membrane.
,y = ratio of diffusion flux to maximum flux obtainable. a = ratio of actual concentration
gradient to the gradient which produces one-half of maximum flux.
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FIGURE 2 Membrane structural features that can lead to asymmetrical transport. (a) Com-
posite membrane, no reaction in layers A and C, and permeability unequal. Reaction-
modulated transport in layer B. (b) Membrane consists only of layer B in which carrier
transport can occur. Layers A and C are liquid film resistances.

linear relation between flux and concentration driving force does not lead to asym-
metrical mass transport; however, if the diffusion pathway includes another trans-
port resistance in addition to the nonlinear, chemical reaction-modulated step, then
a condition can be established where the effective permeability is a joint nonseparable
function of position and concentration, a feature which leads to asymmetric mass
transport.
Examples of just such membrane structural arrangements are shown in Fig. 2.

Fig. 2 a shows a composite membrane consisting of a central core layer in which
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reversible transport reactions occur and surface layers where simple Fickean diffu-
sion occurs. If the permeability of the outside layers A and C are unequal, then this
is the simplest situation leading to asymmetrical transport. The hydrodynamic
boundary layers adjacent to the membrane in Fig. 2 b can have simple diffusion
behavior similar to the outside membrane layers in Fig. 2 a and thus display asym-
metric transport. On the other hand, if reversible reactions with the permeant take
place in the fluid films A and C, and no reaction occurs in the central layer B, asym-
metric transport is again possible. The properties of these structural features that
can lead to asymmetric transport are delineated in the development below.

Denoting the permeability of linear diffusion layers A and C by PA (cm/sec) and
Pc, and assuming PA > Pc, the forward steady-state flux Jf (moles/cm2-sec)
through these linear diffusion resistances is given by

Jf = PA(S1 - S2) = PC(S8 - S4), (1)

where Si (moles/cm3) is the concentration of permeant at position i.
For the nonlinear, central layer where P.ff is the effective permeability of the

reaction layer2
8

f= -J Peff dS. (2)
2

For simplicity, in this development the distribution coefficients of permeant in
layers A, B, and C relative to the solvent phase have been assumed to be equal.
Substituting equation 1 into the limits of equation 2 gives

14+Jf/PC
if= - Peff dS. (3)

1-Jf/PA

Now if the concentration gradient of permeant is reversed, the flux obtained will
be given by

Jr = PA(Sl' S2') = PC(S3t - S4%), (4)
J!8a

Jr = - Peff dS, (5)

where the primes indicate new interfacial compositions. The reversal of concentra-
tion gradient can be expressed as

s1t= S4 and S4'= SI, (6)

'If the effective permeability of the central membrane layer is a single-valued function of the local
activity or concentration so that if expressions of the type P*ff = f(S) can be written. This will only
be true for a few special cases where the chemical reaction is fast enough to be considered to be at
equilibrium and also the diffusivities of the free carrier and carrier-permeant complex are equal
(Bassett and Schultz, 11; Wyman, 12).
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so that the limits in equation 5 can be changed by use of equations 4 and 6 to give

Sl+J.r/Pc
Jr = -J PeffdS. (7)

s4-Jr/PA

If the magnitudes of forward and reverse fluxes are to be equal, i.e. Jf = - Jr ,
then the values of the integrals in equations 3 and 7 must be the same, i.e.

s4+J/PC pS4+J/PA
J Peff dS Peff dS, (8)

1-JI/PA -J/pc

or the following equation must be satisfied:

rS4+j/PC SI-J/PA

'+J/A Peff dS = PeffdS. (9S4+J/PA X-.r/pc

The areas equivalent to the integrals in equation 9 are shown graphically in Fig. 3.
In general these integrals will not be equal unless the function P8ff has the same
value at the interfacial solute concentrations, in the region of integral limits, or if
Peff is a constant independent of the permeant concentration. Therefore, if P8ff is a
function of S in the central layer B as originally supposed, and PA d PC, then the
forward and reverse fluxes must,, be unequal. A composite membrane, consisting
only of two membrane layers like A and B, will always show asymmetric flux
properties over some range of substrate concentration.
The general features of the composite membrane shown in Fig. 2 a, insofar as

diffusion is concerned, are shared by the single membrane and hydrodynamic bound-
ary layers depicted in Fig. 2 b. Here, diffusion through the boundary layers A and C

CONDITION FOR SYMMETRIC TRANSPORT
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FioURE 3 Integral conditions that must be satisfied if the fluxes in each direction across a
composite are to be equal. In general the shaded areas will not be equal and therefore the
flux will be asymmetric.
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is linearly related to the concentration gradient from the bulk of the liquid to the
membrane interface. Diffusion fluxes through the boundary layers are usually de-
scribed in terms of mass transfer coefficients, which in turn are a function of flow
rates in the region of membrane surface. Thus the apparent permeability of the
boundary layers can be altered and controlled by changes in flow rate in the region of
the membrane surface and simultaneously affect the asymmetric diffusion properties
of the membrane.

ANALYTICAL CALCULATION OF ASYMMETRIC TRANSPORT

A general equation which predicts the ratio of forward to reverse flux for a com-
posite membrane system cannot be written because diffusion fluxes through a film
with simultaneous chemical reactions cannot generally be expressed in explicit
algebraic forms (1 1, 12); however, some estimate of the magnitude of flux asymmetry
that may be developed can be obtained by numerical examples.

Consider a membrane structure consisting of only two layers with the properties
of sublayers A and B mentioned above.

If the carrier transport system in the reaction-modulated transport membrane is
described by simple symmetric LeFevre enyzme-type kinetics, then for layer B,

Jf =V[K S2 Km-+S31 (10)

In terms of this model, the effective permeability of the facilitated transport layer
can be expressed as

V

Km( + ) (11)

Also, the flux through the linear transport resistance, layer A, is given by

Jf = PA(Sl - S2). (12)

since the flux through both membranes must be equal in the steady state, the re-
sultant flux through the membrane composite as a function of the external concentra-
tion gradient can be derived by equating equations 10 and 12, solving for S2, and
substituting this value back into either equation.

V(S1 - Jf/PA) _ V3 13
Km+ (Si - Jf/PA) Km + S3(

Now consider the situation when the concentration gradient across the composite
membrane is reversed, then the following equations are obtained:

Jr = V(K + - +S2) = PA(S2 - S3), (14)
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and similar reworking of these equations yields

JT= V Q4Km+ S Km+ Jr/PA+S3) ( 15)

The subscriptf denotes that the linear layer is on the side of the membrane sandwich
that is exposed to the high substrate concentration, and the subscript r is for the
opposite situation.
The effect of membrane properties and concentration gradients on the asymmetry

of transport can be seen more directly if the flux equations are expressed in terms of
normalized or nondimensional variables. A reference flux, concentration, and perme-
ability are required to rewrite the equations in normalized form. A convenient set of
reference quantities for these variables is as follows:

(a) Reference flux: maximum flux across the carrier transport layer, i.e., V for
the model represented by equation 10.

(b) Reference concentration: substrate concentration at which flux across the
carrier transport layer is one-half the maximum flux, i.e., Km.

(c) Reference permeability: apparent permeability of carrier transport layer
(flux/concentration gradient) when the flux across this layer is one-half its maximal
value, i.e., (V/2)/Km.
To normalize equations 13 and 15 for the conditions of maximum flux, let S3 = 0

and substitute the following dimensionless parameters:
(a) Dimensionless concentration = solute concentration/reference concentration:

a = Sl/Km.

(b) Dimensionless permeability of linear membrane = permeability/reference
permeability:

= PA/(V/2Km).
(c) Dimensionless flux through composite membrane = actual flux/reference

flux:

e= J/V.
When these new variables are substituted into equations 13 and 15, normalized

flux equations are obtained (see Appendix).

a 2y1f+2 (16)

The quotient ,/ry, is a measure of the flux asymmetry since it gives the maximum
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ratio of the "forward" to "reverse" fluxes for the same driving force. The termi-
nology "forward" and "reverse" fluxes used here is not meant to imply a direct
relation to "influx" and "efflux" for in vivo systems; i.e., the linear diffusion re-
sistance is not necessarily on the external surface of the membrane composite. The
flux asymmetry is given by

f2 \F 2V2 8a11I2l
+ a + 1)-+L+ a + 1) - (1 + a)

(,r + c+ +
2
+ [-+ t+1W) + 8a(1+)]

The ratio of the maximum forward to reverse fluxes (,y/f'y) is shown in Fig. 4 as a
function of the dimensionless concentration gradient a, with the permeability f3 of the
linear layer as a parameter. Over the range of variables portrayed, the asymmetry of
the membrane composite increases with higher concentration gradients and lower
permeability of the linear layer. At low concentration gradients flux asymmetry is
minimal over wide ranges of P3. This behavior is because of the fact that, when
exposed to low concentration gradients, the flux characteristics of the reaction-
modulated layer approaches linearity.
The dimensionless flux through the composite membrane, in the forward and

reverse directions, for three values of the permeability of the linear membrane layer,
is plotted as a function of the concentration gradient in Fig. 5. The appearance of
this graph is similar to those often measured in biological transport studies when the
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FIGURE 4 Asymmetric flux calculated for a two-membrane system, one membrane with
enzyme-type transport characteristics (curve A, Fig. 1), and the other obeying linear trans-
port. ,8 is the permeability of the finear transport layer divided by the effective permeability
of the carrier transport layer when the concentration gradient ax = 1.
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FIGURE 5 The forward (yf) and reverse (Yr) fluxes through a composite reaction-modulated
membrane as a function of the direction and magnitude of the applied concentration gradient
a. Parameter ,3 is the dimensionless permeability of the linear (nonreactive) layer. Note
that for low values of a, the forward flux (yf) is linear with increasing concentration but
the reverse flux (,Yr) shows saturation characteristics.

concentration of permeant is kept at 0 on one side of the membrane. The composite
membrane still shows saturation characteristics with respect to substrate concen-
tration as does a single membrane with carrier-facilitated diffusion.
The format of this graph, to illustrate structural asymmetry, is similar to the

format used by Rosenberg and Wilbrandt (4) to show kinetical asymmetry (repro-
duced here as Fig. 6). The striking similarity of predicted transport behavior for
these very different mechanisms indicates that experimental methods to distinguish
between these two mechanisms for biological membranes will need to be extremely
precise.

If a Lineweaver-Burk-type plot is made for the calculated transport rates across
the composite film ((3 = 0.1) some nonlinearity is apparent near the origin in Fig. 7
(solid lines). This deviation from linearity might be used as a diagnostic characteristic
to infer whether a natural membrane can be modeled as a composite structure, but
the accuracy and reproducibility of experimental transport rates are usually not good
enough to determine these curves accurately. Based on this plot (dashed lines)
estimates of the carrier model constants are V = 1 and Km = 1 la for the forward
transport process, and V = 0.20 and Km = 3a for the reverse transport process.
These apparent facilitation kinetic constants are to be contrasted with the assumed
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FIGUIRE 6 Kinetical asymmetry of the nonenzymatic carrier transport reproduced from
Rosenberg and Wilbrandt (4). Ordinate: rate of transport. Abscissa: concentration dif-
ference across membrane. Parameter a is velocity constant for the reaction of solute with
free carrier on one side of the membrane. In plotting this figure the same velocity constant
on the other side of the membrane was assumed to have a value of 1.0. (Fig. 5 of Rosen-
berg, T., and W. Wilbrandt. 1955. Exp. Cell Res. 9:49. Copyright held by Academic Press,
Inc., New York.)

values of V = 1 and Km = la used earlier as model constants in these example cal-
culations to characterize the carrier-modulated transport layer.
The need for a diagnostic theoretical and experimental approach to distinguish

between the kinetic and structural models for asymmetric transport seems evident.
Processing experimental data either as displayed in Figs. 5 and 6 or as in Fig. 7
would not seem sensitive enough to infer which model was more appropriate for a
particular experimental circumstance. Another approach is to develop a method for
plotting experimental data so as to be able to differentiate easily between kinetic and
structural models. Although there is no generally accepted model for the kinetics of
membrane transport, the kinetic equations given by Regen and Morgan (13) cover
many of the mechanisms that have been advanced for carrier transport and will be
used here to contrast with the composite membrane model. These equations can be
manipulated (see Appendix) to arrive at a format in which the experimental data
should plot as a straight line if the kinetical model is applicable, i.e.

S J- 1)I A - BJ-for 1 7f -1I AK.m-BKmrryf 7 (1
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FiGuRE 7 Dimensionless flux through composite membrane in the direction from linear

to nonlinear layer as a function of concentration gradient (left-hand scale). Lineweaver-Burk

plot of transport rate (right-hand scale); solid line, theoretical curve; dashed line, hypo-
thetical experimental results.

where Jf and J, are the maximum values of the forward and reverse unidirectional
fluxes at the same value of concentration gradient, i.e., with the permeant concen-
tration equal to zero on one side of the membrane.
The constants A and B which can be obtained from the slope and intercept of the

line, are related to the kinetic constants by

A = 1/Ks;, B = 1/Ks.

for Regen and Morgan's model, and

A =
I
-ad] B=K[+ bD½]

for Rosenberg and Wilbrandt's model of kinetical asymmetry.
Many of the carrier transport models, such as proposed by Rosenberg and

Wilbrandt (4) and Levine and Stein (14), are but special cases of Regen and
Morgan's formulations. If membrane transport for a particular system is describable
by any of these kinetic models then a plot of the forward and reverse fluxes should
also appear as straight lines with the coordinates shown.

If asymmetry in diffusive flux is a result of structural anisotropy, however, then
when the data is plotted using the same coordinate systems as indicated in Fig. 8, a

straight line will not usually result. Hypothetical calculated data for asymmetric
transport fluxes shown in Fig. 5 for structural asymmetry give very nonlinear curves
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FIGuRE 8 A method of plotting data on fluxes through membranes to distinguish between
kinetic and structural models for asymmetric transport. The kinetic model equations can be
put into the form

1(J 1)=A-B(9J).

Data following this model would follow a straight line on the coordinates shown here. If
flux data on a particular membrane do not plot as a straight line on these coordinates, then
it is unlikely that the kinetic model is a valid description of that membrane transport system.
FIGURE 9 A plot, according to the coordinates of Fig. 8, of the flux through a hypothetical
membrane in which there is both structural asymmetry and carrier transport. The curve
given here is equivalent to the curves labeled = 0.1 in Figs. 4 and 5, and shows extreme
nonlinearity when plotted according to these coordinates.

when plotted according to the coordinates indicated by equation 18 (Fig. 9). If
membrane flux data do not plot linearly on these coordinates, then this evidence
implies that other than purely kinetical explanations for the transport process need
to be invoked. Unfortunately, the type of plot illustrated by Fig. 8 is not useful for
the determination of the model constants for structural asymmetric transport, and
other approaches would be required to completely characterize membrane prop-
erties.

GRAPHICAL CALCULATION OF ASYMMETRICAL
TRANSPORT

If the carrier transport system in the composite membrane has the kinetic charac-
teristics of the hemoglobin saturation curve in Fig. 1 (curve B), then similar asym-
metric flux characteristics as a function of the dimensionless concentration gradient
ca and permeability of the linear layer ,B are predicted (Fig. 10). The fluxes for these
illustrations were calculated by the graphical methods given in the Appendix. The
maximum asymmetric flux ratio obtained is greatest with sigmoid type saturation
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FIGURE 10 Asymmetric flux calculated for a two-membrane system, one membrane with
hemoglobin-type transport characteristics (curve B, Fig. 1), and the other obeying linear
transport.
FIGURE 11 Asymmetric flux produced by two nonlinear transport layers in series.

kinetics as illustrated by the hemoglobin system. This case is also interesting because
the direction of asymmetry changes over a range of concentration gradients. At low
concentrations the flux is higher when the carrier layer is exposed to zero permeant
concentration, whereas at high concentration gradients the flux is higher when the
carrier layer is on the side with no permeant. There is a particular concentration
gradient (a - 3) where no asymmetry is developed.

Direct evidence for an asymmetric flux in this type of system has been given by
Scholander (15). He found that the ratio of oxygen to nitrogen transport, through a
membrane composite consisting of a hemoglobin layer and a water layer, was a
function of the direction of the applied concentration gradient. In this case, nitrogen
does not react with the hemoglobin carrier and therefore is not subject to an asym-
metric flux, whereas oxygen does react and is transported asymmetrically.
Of course if both membrane layers have nonlinear flux characteristics (for a

hypothetical example see Fig. 11), then the composite will usually also have asym-
metric transport behavior. These transport rates cannot be nondimensionalized in
the same fashion as the previous examples, but the ratio of forward to reverse fluxes
as a function ofconcentration gradient can be very substantial as seen by the dotted
curve in Fig. 11.

DISCUSSION

Whether the mechanism of asymmetric transport as a result of membranes with
composite structures and nonlinear carrier-mediated transport characteristics can
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contribute to the explanation of asymmetric biological transport phenomena as sugar
transport in bacteria (2), sugar transport in muscles (3), dimethyl sulfoxide transport
in yeast (10), and unequal sugar fluxes into and out of erythrocytes (1) will have to
await further experimentation designed to test this composite membrane theory; but
there can be no doubt that the asymmetric transport behavior of nonlinear com-
posite layers will have some influence on transport in biological systems, and there-
fore experiments should be designed to estimate the role of these factors in the
membrane transport properties.

There are a few observations with biological membranes which might be better
understood in terms of the composite membrane model described here. For instance
several workers have noted that permeation rates are saturable in one direction of
transport but are first order in the opposite direction (e.g., Koch [16]). The latter
process is often termed a "leak." Curves in Fig. 5 show that in the range of concen-
tration up to 420a, that the reverse transport rate yr appears to saturate while the
forward rate appears to follow linear kinetics.

Also, while many simultaneous facilitated transport processes in the same mem-
brane appear to be very specific for individual solutes, agents as hormones, e.g.
insulin and vasopressin (17), seem to affect several solute transport rates simultane-
ously. This could be rationalized by postulating that the hormone changed the
permeability of a "linear" layer which all solutes must penetrate rather than inter-
acting with each of the specific carrier transporters. Hays and Franki (18) have
demonstrated just such an effect in the action of vasopressin on the rate of water
diffusion through toad bladder membranes. Both the epithelial and supporting
layers of the bladder wall contribute to the diffusion resistance of water, but in
changing water transport rates, vasopressin is thought to act primarily on the
epithelial layer. Their "dual-barrier" hypothesis can be viewed as an example of a
structural anisotropic membrane proposed in this paper.

In addition, Hays and Franki give data showing that stirring the solutions adjacent
to the membrane in in vitro experiments could dramatically affect transport rates.
This is evidence for the hydrodynamic boundary layers as depicted in Fig. 2 b, and
leads to the possibility that asymmetrical transport rates may be demonstrated in
in vitro studies with carrier transport membranes but caused by an artifact of
unequal boundary layer resistances.

This work was supported by the National Institutes of Health, grant number GM-15152, and a Re-
search Career Development Award (No. lK04GM08271-01) from the institute of General Medical
Sciences.
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Note Added in Proof. F. Sauer (Max Planck Institut fur Biophysik) has proved by irre-
versible thermodynamics that a necessay condition for active asymmetric transport across mem-
branes is a membrane structure which can produce passive asymmetric transport. (Symposium on
Passive Permeability of Cell Membranes, Rotterdam, July 20, 1971).
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APPENDIX

Normalization of Membrane Transport Equations

The forward flux equation for the maximum transport rate across a carrier membrane com-
posite is (from equation 13 and S3 = 0)

if- V(S1 - Jf/PA) (Al1)
Km + (Sl JfI/PA)

This equation can be rearranged to

rSi if V
f K V PK(_VA 2)

Km[+s V PAKm
and making the substitutions a = Sl/Km, (3 = 2KmPA/V, and f = Jf/V, one obtains

Tf [ -
-yf

('.A3]
[I + _

- __

Similarly, to find the normalized equation for the maximum reverse flux, (from equation 15,
S3 = 0)

r= V(Km + S Km + Jr/PA) (A4)
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which can be rearranged to

SI Jr
Jr K,,_ _ V j (A 5)

v Si ~KmPA Jrj
and, making the substitutions indicated above, one obtains

tr = 1+a -(1/2)+Yr (A6)

Diagnostic Graphical Method for Asymmetric Transport due to Kinetical Asymmetry

Regen and Morgan gave the following model for carrier transport:

k2

Si Sos

-4

and derived the following equation for unidirectional fluxes.
Flux from right to left (efflux):

[Si]Fs
V.-= r1 (.[.1 _1 = f ( A 75

Flux from left to right:

I* Lail + kLail - L&3o] JlvlSr
Bs 1 + [So]/Rs

[So]Fs
v = S] ([SO] - [SiDMso

Bs 1 + [Si]/Rs

-_ r
(A 8)

where 5,, and Si refer to substrate concentrations outside the membrane, and the other sym-
bols are related to the kinetic constants. (See reference 18 for exact relationships, kinetic
constants, and model constants.)
The maximum unidirectional fluxes are obtained by setting S,, and Si to zero in equations

A 7 and A 8 respectively.

SO Fs SO Fs
if = SAF8S9F

+so +ms1 )
I +So/Kso (A9)

Si Fs Si Fs
Jr = _S

I + Si + Ms I + Sil/Ks8, (A 10)
B+s
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and the ratio of maximum forward to maximum reverse flux is

SoFs
Jf = 1 + So/Ks. A 1I
Jr Si Fs

1 + Si/Ks1
at the same concentration gradient, i.e., Si = So = S1 (defined in text), this ratio of fluxes
becomes

Jf _ 1 + (S1/Ks1) (A 12)
Jr I + (Sl/Kso)

Now this equation can be rearranged.

-+-
if Si +S

Jr Jr Ks,, KSz

Collecting terms in Si:

Jr Ksr Jr Kso
Dividing by SI:

(, 1 J KS= A - BJ. (A 13)

The form given in equation A 13 shows that if transport data on fluxes Jf and Jr at various
substrate levels (S) are plotted as (I /S)[(Jf/Jr) - 1] vs. Jf/J, , then a straight line should
result of the form given in Fig. 8.

Rosenberg and Wilbrandt's (4) kinetical asymmetry model is a special case of that shown
above, but with the restriction that k2 = k-2 = k4 = k-4 = D', where D' is the diffusivity
of the carrier in the membrane. A linearization equivalent to equation A 13 would also be
obtained from their equations.

Graphical Evaluation Diffusion Fluxes. When fluxes through the individual ele-
ments comprising the composite membrane cannot be expressed in an analytical form, one
can use graphical techniques to evaluate the net steady flux through the membrane. Let the
maximum flux vs. concentration relationship for each ofthe membrane sections be represented
by JA(S) and JB(S), where JA(S) is defined as the flux that would pass through membrane
A if the concentration of permeant was zero on one side and S on the other. Two example
flux vs. concentration curves are shown in Fig. A 1. If for an arbitrary concentration gradient
(S' - S0) the flux through each of the membrane sections can be represented by

JA = jA(S ) -jA(S.) (A 14)

JB = IB(S ) -1B(S ) (A 15)
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ii)
Uf)
-(/,

S- S -'-

FiGuRE A 1 FIGURE A 2
FIGURE A 1 Graphical method for obtaining net flux through a membrane which is com-
posed of two sections with different solute transport characteristics. Hypothetical flux
characteristics of individual membrane sections A and B, as a function of solute concentra-
tion difference S. (Solute concentration is S on one side and zero on the other side of the
membrane.)
FIGURE A 2 Graphical method for obtaining net flux through a membrane which is com-
posed of two sections with different solute transport characteristics. Membrane flux function
(iA + jB) as related to solute concentration.

_ _I jA(S)+j(S)/ I I j(S)+j (S)

V) vC) mfm

-+

WS) US)~~~~~)I

j (Sd)+j(S3 --7- jS1)+j53)
A B i(S)s3)

A B S)B

JBFLUX

NET
JAFLUX

Si S2 S3 Si S2 S3
S S

FIGURE A 3 FIGURE A 4

FIGURE A 3 Graphical method for obtaining net flux through a membrane which is com-
posed of two sections with different solute transport characteristics. Graphical determination
of net flux = JB; when the A section of a composite membrane is exposed to solute con-
centration S, and the B section of a membrane is exposed to solute concentration S3 . S2 is
the calculated concentration of solute at the interface of membrane sections A and B.
FIGURE A 4 Graphical method for obtaining net flux through a membrane which is com-
posed of two sections with different solute transport characteristics. Graphical determination
of net flux = JA, when the B section of a composite membrane is exposed to solute con-
centration S,, and the A section of a membrane is exposed to solute concentration S3 .
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(See previous footnote concerning this assumption.) Then the net flux can be estimated by
the following graphical technique, which is somewhat more general than the method given
by Rogers et al. (7). As mentioned in the text, the steady-state flux through each section must
be equal, so that

JA = JB (A 16)

Also, from the above assumption and using the symbols of the text

JA = iA(S2) -jA(SO), (A 17)

JB = iB(S3) -IB(S2), (A 18)

where S1, S2, and S3 are the permeant concentrations at the left face, interface, and right face
of the composite membrane.
We then have, equating equations A 17 and A 18

jA(S2) - jA(SO) = IB(SO) - jB(S2), (A 19)

or, rearranging,

jA(SI) + IB(SS) = jA(S2) + IB(S2) (A 20)

The right-hand side of this equation involves only a single concentration and can be repre-
sented graphically by the sum of functions jA and jB, Fig. A 2. The curves in Fig. A 2 can
be used to solve for the flux through the composite membrane. First equation A 20 is solved
graphically to find the interfacial concentration S2. Lines or straight edges are put on the
figure to find the values ofjA(S1) and jB(S3) (see Fig. A 3). Then the sum jA(S1) + jB(S3) is
plotted at position S = SI . This line is projected over to the (A + jB) curve, and the point
of intersection gives the value of S2. Now the net flux, JA = JB, is found by evaluating
the difference jA(S2) -jA(S1) on the jA curve, or jB(Ss) - jB(S2) as shown in Fig. A 3.

If the membrane is reversed with respect to the concentration gradient, i.e. membrane A
faces S8 and membrane B faces S1, then the sumjA(S3) + jB(S1) is plotted at S = SI . Then,
as before, this sum is projected to thejA + iB curve to find S2 (see Fig. A 4), and the net
flux, JB = jB(S2) - jB (Si) = JA, is found from the jB curve.
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