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ABSTRACr One of the most generally applicable algorithms for the derivation of
steady-state rate equations for complex enzyme reaction mechanisms is that of
King and Altman. Several modifications of this algorithm have been suggested;
however, each requires the generation of numerous valid and invalid patterns and
the subsequent elimination of those that are invalid. A method is presented, em-
ploying topological theory of linear graphs, for the systematic generation of only
those patterns which are valid. This method is readily adaptable to use on a digital
computer. An independent method for the calculation of the number of valid
patterns is also presented. This calculation can be used to substantiate the accuracy
of the patterns obtained. This calculation is also adaptable to computerization.
Examples are included to demonstrate both the generation of patterns and the cal-
culation of their number for specific enzyme mechanisms.

INTRODUCTION

In order to use effectively steady-state kinetic techniques to study enzyme mecha-
nisms, it is necessary to have available a method for testing the agreement between
the initial velocities predicted by a proposed reaction mechanism and those ob-
tained experimentally. More precisely, the steady-state kinetic approach can only
be used to eliminate those mechanisms that are inconsistent with experimentally
measured parameters. It is thus necessary that a sufficiently general set of reaction
mechanisms be considered if maximum benefit is to be gained from this technique.
The major deterrent to the consideration of general two- and three-substrate reac-
tion mechanisms has been the forbiddingly tedious nature of the derivation of rate
equations therefrom. This difficulty, however, in no way invalidates the possibility
that such mechanisms do exist.
King and Altman (1) have made a major contribution to the simplification of the

derivation of rate equations. Their schematic method has greatly simplified the
solution of the set of simultaneous equations describing steady-state concentrations
of enzyme intermediates. To apply their method it is necessary to draw a series of
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patterns, each containing one less intermediate than is present for the entire mecha-
nism. For random mechanisms closed loops are obtained which are invalid and
must be deleted. This procedure becomes more difficult as mechanisms become
more complex. They have further provided a formula for the calculation of the
total number of patterns that can be generated for any mechanism. This calculation,
however, includes patterns containing closed loops which must subsequently be
discarded. These inherent difficulties in the application of the King-Altman ap-
proach have stimulated the development of other methods for the derivation of
steady-state rate equations for enzymic mechanisms.

Fisher and Hoagland (2) have applied a fractional velocity concept to the or-
dered sequence approach of Hearon et al. (3) and obtained a systematic method
for the derivation of rate equations for many two-substrate reaction mechanisms.
Volkenstein and Goldstein (4) have used an approach involving signal flow graphs
of electrical networks by applying Mason's rule. These methods, however, are
difficult to program for a digital computer and computerization is highly desirable
in dealing with the complex system of algebraic equations inherent in steady-state
rate equations.
Fromm (5) has applied a modification of the theory of signal graphs to the

King-Altman schematic method in an attempt to make these derivations more
systematic. This method nevertheless requires the examination of patterns to
eliminate those that are invalid because they contain closed loops or redundant
terms. Fisher and Schulz (6) have computerized the method of King and Altman
through the incorporation of a connection matrix; however, their method generates
all patterns, including those containing loops, which must be eliminated by a time-
consuming testing procedure. In addition, the only method available for testing
the accuracy of their computer-derived equations is hand calculation, since it has
not been proven that their method will generate all of the necessary valid patterns.
A method is reported here which will systematically generate only the necessary
valid patterns, and an independent means is provided for calculating the number of
these valid patterns.

RESULTS AND DISCUSSION

Systematic Generation of King-Altman Patterns

Several investigators (4, 5) have pointed out the applicability of the theory of graphs
to the solution of enzyme kinetic problems. Such approaches have taken into ac-
count the similarity between electrical networks and complex enzymatic mecha-
nisms. The various postulated enzyme species are treated as nodes and the reactions
incorporating substrates or products giving rise to these enzyme species are treated
as branches. The intent is invariably to obtain an algorithm which will allow a
rapid calculation of the steady-state concentration of enzyme species present and
thereby obtain an expression for the rate of product accumulation.
Maxwell and Cline (7) have provided proof of a method for the generation of

C. F. LAM AND D. G. PRIEST Generation of Valid King-Altman Patterns ')AG



trees from linear graphs which is adaptable to the treatment of complex enzymatic
reaction mechanisms. The technique they have used incorporates the principles of
Wang algebra (8), whereby the sum or product of two or more identical constants
is equal to zero, or

n

cc=0,forn>1, (1)
i-i

n

Hc =0, for n> 1. (2)
i-i

Application of this method to the systematic generation of King-Altman type pat-
terns can be obtained through the use of the following stepwise procedure. (a)
Describe the mechanism as a set of branches (reactions) that connect nodes (en-
zyme forms). (b) Inscribe circles about any n - 1 nodes, where n is the total num-
ber of nodes. (c) List separately the branches cut by the n - 1 circles. (d) Using
the principles of Wang algebra stated above, multiply "alphanumerically" the
listing obtained in step (c) above.1

Application of the procedure outlined above is facilitated by consideration of a
specific enzyme mechanism. The random substrate addition, ordered product release
mechanism shown in Fig. 1 has been selected for this purpose because it has been
considered by others (2, 9), thus allowing direct comparison. Fig. 1 A shows all of
the enzyme species, substrates, products, and rate constants necessary to describe
the mechanism. Fig. 1 B is a graphic representation of this mechanism in which the
numbered nodes represent enzyme forms and the numbered branches individual re-
actions. Dashed circles have been inscribed around n - 1 nodes. The result is inde-
pendent of the node which is ignored. Branches 1, 2, and 6 are cut by the circle
around node 1. Branches I and 4 are cut at node 3 and so on. The listings for each
of the four nodes are shown below, with the product of their alphanumeric mul-
tiplication employing the Wang algebra principles.

1345 1346 1235

(1,2,6) (1,4) (3,4,5) (5 6) = 1236 2345 2346
1245 1246 1256
2456 1356 3456

It should be noted that no invalid or redundant terms have been generated. This

IThe alphanumeric multiplication of integers (or any other symbols) is here defined to be a listing
rather than a numerical value, e.g. the alphanumeric multiplication of 2 and 4 is equal to 24 rather
than 8.

It is important to note that application of the Wang algebra principles should be made at all steps
in the multiplication process. For example, the alphanumeric multiplication of (C1, C2) (C1, C2, C,)
yields C1 C1 + C1 C2 + C1 Ca + C2 C1 + C2 C2 + C2 Cs. The terms C1 C1 and C2 C2 are discarded
on the basis of the product principle of Wang algebra (equation 2) and the terms C1 C2 + C2 C1 are
discarded on the addition principle (equation 1). In practice the above operations can be performed
simultaneously.
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FIGuRE 1 A, random substrate addition-ordered product release enzyme mechanism.
B, linear graph representation of mechanism A.

procedure does not require reference to any pattern after the original listing obtained
in step c above. The results are identical with those of other workers.

Calculation of Number of Valid Patterns

An independent method for the calculation of the correct number of valid patterns
substantiates their accuracy. The method described here again follows the theory of
linear graphs. Matrix A, which we will call a cut matrix, is described by using the
n - 1 nodes of a mechanism as the row numbers and the directed branches as
column numbers. The determinant of the product of A and A transpose yields the
correct number of valid patterns for any mechanism (8).

Number of valid patterns = IA A' (3)

where

a,, a12 a13 ... aln

a2l

A= a3li

Lam, a,,n,,
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all a21 as, ... a.,

Laln amn j

a,= 1 if branch j enters node i,
--1 if branch j leaves node i,

- 0 otherwise,
and

m = total number of nodes,
n = total number of branches.

The use of this formula may be demonstrated by reference to Fig. 2. The mechanism
is the same as that shown in Fig. 1 except direction has been assigned to the branches
in this graphic representation. Any other assignment of direction could have been
selected for any or all of the branches; however, a direction is necessary to set up
the desired matrix. Circles are inscribed around any n - 1 nodes cutting the branches
shown. The cut matrix for the graph in Fig. 2 is shown below.

Node
number

1 --
2 O

A = +3 +1
4 j

Branch number
1 2 3 4 5 6

-l 0 0 0 +11
+1 -1 0 0 01
O o -1 0 0
O +1 +1 -I oJ

FIGURE 2 Directed linear graph representation of random mechanism of Fig. 1.
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FiGuRE 3 A, general two-substrate-two-product enzyme mechanism. B, graphic repre-
sentation of A.

The determinant of the product of this matrix times its transpose, A A' = 12,
may be solved either by hand or by computer. As more complex mechanisms are
considered, computer methods become more desirable. A program2 has been written
to form the cut matrix and calculate the number of valid patterns for any mechanism
using equation 3.

Treatment of a General Two-Substrate-Two-Product Mechanism

Wong and Hanes (9) among others have pointed out the desirability of considering
general mechanisms and reducing them systematically for particular systems. Several
general two-substrate-two-product mechanisms have been proposed. One of those
suggested by Fisher et al. (J. R. Fisher, D. G. Priest, and J. S. Barton, unpublished
results) lends itself well to the demonstration of the versatility of the method pre-
sented in this report. Their first-level, two-substrate-two-product mechanism has
been reproduced in Fig. 3 A and the graphic representation in Fig. 3 B. All of the
valid King-Altman patterns for this general mechanism have been obtained using
the methods described in the previous sections by means of a digital computer.2 The
288 valid patterns have been identified in the Appendix. Equation 3 independently
predicts an identical number of patterns, thus enhancing the validity of those shown.
It is of interest that equation 1 of King and Altman (1) gives rise to 792 total pat-
terns. Thus a large number of patterns, 504, would have to be examined and elimi-
nated by previous methods.

2 The computer programs used in this paper to obtain patterns and number of patterns will be made
available by the authors upon request.
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The complete rate equation can be obtained from these patterns using existing
methods (6, 10). Note that direction must be assigned to the patterns for each of the
eight individual enzyme species. A total of 2304 (8 X 288) terms is obtained for this
mechanism.
The method described here may be applied not only to this general multi-substrate

mechanism but also to new general mechanisms as they arise, modifier or allosteric
mechanisms, and isotope exchange studies.

SUMMARY

A method has been described and demonstrated that facilitates the rapid identifica-
tion of King-Altman patterns directly and systematically without the necessity of
testing numerous diagrams for their validity. An equation has also been reported
which will independently predict the required number of patterns necessary to obtain
a valid rate equation for any mechanism that can be described by a linear graph.
These methods have been used, by hand and on a digital computer, to determine
both the number of patterns and the patterns yielded by a general two-substrate-
two-product enzyme reaction mechanism.
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