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AsRAcr The characteristics and behavior of the torus (annulus) surrounding
planar lipid bilayer membranes formed across a cylindrical aperture are analyzed
using equations for the shape and volume of the annulus derived by the methods
of variational calculus. The analysis leads to the following results: (a) Design
criteria for the aperture can be established. (b) The transition region between thin
film and thick annulus can be defined quantitatively and its effect on the measure-
ment of specific capacitance determined. (c) At fixed annulus volume the diameter
of the thin membrane is a function of the thin film-annulus contact angle. This
suggests a new method for examining changes in free energy of the thin film, and
explains why the area of thin film increases reversibly when potentials are present
across the film. (d) In the absence of buoyant forces, the equations for the shape
and volume of the annulus consist of incomplete elliptic integrals of the first and
second kinds; however, the shape of the annulus in the transition region can be
described with good accuracy by an approximate equation of greater simplicity.

INTRODUCTION

Thin lipid films approximately 50 A thick can be formed by spreading a solution of
phospholipid dissolved in an alkane solvent across an aperture immersed in an
aqueous phase (see reviews by Tien and Diana, 1968; Henn and Thompson, 1969;
Goldup et al., 1970). These films, first described by Mueller et al. (1963), are equi-
librium structures that consist of a planar lipid bilayer membrane surrounded by a
thick annulus of parent lipid solution called the Plateau-Gibbs border (Tien, 1968).
Since the annulus, or torus, has an average thickness much greater than that of
the bilayer, it is universally assumed that the electrical and permeability char-
acteristics of the system are determined by the bilayer portion of the film. As a
result of this assumption, which is usually valid, the annulus has received little
attention. Tien (1968) has described the effects of the Plateau-Gibbs border on the
formation of bilayer films but has only partially analyzed the equilibrium which
exists between bilayer and annulus.
The purpose of this paper is to examine in detail the characteristics of the annulus.
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It will be shown that the behavior and properties of the total film system can be
significantly affected by these characteristics. For example, the view is widely held
(Goldup et al., 1970) that the dimensions of the aperture and septum for supporting
the films are largely unimportant as long as the aperture is not "too large." The
analysis presented here shows that in fact these dimensions can be critical.

Wobschall (1971) has shown that the dynamic characteristics of lipid bilayer
membranes depend in part upon the annulus. There are, in addition, several other
observations which indicate that the properties of the annulus are important. The
size of the bilayer region depends in part upon the diameter of the aperture and the
volume of lipid solution applied. The thin film area decreases as volume increases
(Vreeman, 1966). If an electric field is placed across the membrane, the area re-
versibly increases (Babakov et al., 1966). C. Huang and T. E. Thompson (personal
communication) have observed that stable films for certain types of lipid solution
can be obtained only for special configurations of the aperture. These observations
appear to be related to the behavior of the annulus. They could be readily examined
if analytical expressions for the shape and volume of the annulus were available.
Wobschall (1971) calculated the equilibrium annulus shape approximately by finding
arcs of circles which intersect the aperture and film at the proper points and angles.
In the present paper exact equations are derived using the methods of variational
calculus and assuming the absence of buoyant forces. The equations are used to
discuss the phenomena mentioned above.
The complete equation for the contour of the annulus consists of incomplete

elliptic integrals of the first and second kinds. For the transition region between
thin membrane and thick annulus, however, an approximate solution of greater
simplicity can be derived. This equation should be useful for estimating with good
precision the effect of the transition region on permeability phenomena usually
attributed solely to the bilayer region.

THEORY

The Equation for the Annulus

The surface free energy FA of an annulus of volume V must be a minimum at
equilibrium. If S represents the surface area of the annulus and Y,A the interfacial
tension at the annulus-water interface, then

FA =YAWS. (1)

Since fAW may be considered to be constant, the requirement that FA be minimum
is achieved by requiring S to be a minimum. The problem is thus an isoperimetric
one: find the equation of the surface of minimum area enclosing the volume V.
In addition to this requirement certain boundary conditions must be satisfied. At
equilibrium the contact angles between thin film and annulus and between annulus
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and aperture must remain constant for a given lipid solution, aperture material,
aqueous phase, and temperature.
The following assumptions are made:
(a) The film is formed across an aperture which is a right circular cylinder of

radius R and height T such that T >> R.
(b) A fixed volume V of parent lipid solution is applied to the aperture. With

great precision it can be assumed that the volume of the thin film is negligible com-
pared with that of the annulus. Therefore, take the volume of the annulus as V.

(c) Buoyancy effects are neglected. This is unrealistic, of course, since the density
of the lipid solution is smaller than that of water; however, the gross behavior of
the system should be unaffected. This assumption means that the annulus will
have cylindrical symmetry and may thus be treated as a figure of revolution.

(d) The interfacial tensions yp of the thin film and YAW of the annulus are taken
as constant which is true at equilibrium in the absence of temperature or electrolyte
variations.

Let the thin membrane be circular with radius ro. The cross-section of the mem-
brane will then appear as in Fig. 1 where the Z axis coincides with the center line
of the aperture. Also shown in Fig. 1 are the contact angles a and 3 which are re-
lated to the interfacial tensions (Davies and Rideal, 1963). At the junction of thin
film and annulus -yp = 2YAW cos a while at the junction of the annulus and support
7SW = ASe + YW cosOS where YA8 = annulus-support interfacial tension.
The following dimensionless coordinates are introduced for mathematical con-

venience:

Z =Randp-j (2)

The problem of finding the shape of the annulus may now be correctly and
completely stated. Determine the function 2(p) which causes the surface area S
enclosing the fixed volume V to be at a minimum subject to the boundary condi-
tions:

2(po) = 0, (3)

dZ =tana,
dp pp 4

dZ = cotf3 (5)
dp p-,i

where po = ro/R. Because the annulus is a figure of revolution, the following ex-
pressions represent its surface area and volume:

S = 4 [(1)]dp dp (6)
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FIGURE 1 Cross-sectional view of lipid bilayer membrane. The coordinate system and
important parameters are shown. The dashed lines represent the boundary of the aperture.
The Z coordinate coincides with the center line (CL) of the aperture. To simplify the equa-
tions, the coordinate system is transformed to a dimensionless form such that 2 = Z/R
and p = r/R. a and j3 are the thin film to annulus and annulus to aperture contact angles
respectively. The drawing represents the computer evaluation of equation 18 for ro = 0.5 mm,
R = 1 mm, a = 240, and 3 = 50°. The absence of buoyant forces is assumed so that the
membrane-annulus system has cylindrical symmetry. Equation 18 gives the shape in the
first quadrant only.

V =47rR8 Zpdp = constant, 7

where 2(p) represents the equation for the shape in the first quadrant.
The necessary condition which 2(p) must satisfy in order for S to be a minimum

is the Euler equation (Courant and Hilbert, 1953):

cf _ d (af 0

where

f-p[1+(dp2apii (9)
and 2a is a constant to be determined.

Equations 8 and 9 yield
( dZ\N

d I)21d
2 2ap (10)dpj + (gd "5=2p

Equation 10 is easily integrated to yield a first-order differential equation for 2:

d2 ap2+b
dp -- (ap2 + b)2]1/2(
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where b is the constant of integration. Both a and b may be evaluated at this point
using the boundary conditions 4 and 5:

a = cos P-P sin a 12)

aosi - poCOS 13

P° sin(
a- s (13')

It is useful to note that a + b = cos (3. 2(p) may now be written from equation
11 as

,Z(P) = poi (at2 + b) dt 1
o [t2 - (aE2 + b)2]112 (14)

This integral is of the elliptic type and may be integrated with the help of tables
(Bird and Friedman, 1954). It is convertible to a standard form by setting the radi-
cand in equation 14 equal to (B2 p)( 2 - A2). This procedure converts equation
14 to

Z() L0eB2 AB) dt
p [(B2 - t2)Q2 - A2)]112 (15)

where

A2 - (- 2ab) - (1 - 4ab)1(2A 17~22 (16)

2 2b2
B ~ 17)

The zi appears in front of the AB since AB = ib/al and b/a may be positive or
negative depending upon the value of po for particular a and (3. It is expected that
for most physically significant problems that sin a . cos ,B and the solutions in
this paper will assume that this condition holds. In this case a must always be posi-
tive while b will be negative when po > sin a/cos ( and positive when po < sin a/cos
3. The sign in front ofAB is thus chosen to be the same as that of b.
The integration of equation 17 yields the following expression for 2(p) in the

first quadrant:

2(p) = C- [BE(o, k) i AF(y, k)J,

with

Cl = BE(yo, k) 4 AF(yo, k), (18)
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where the sign corresponds to that of b. E, F, (p ro , and k are defined as follows:

F({ k)= dO _ incomplete elliptic integral (19)
J0 (1 -k2 sin2 0)1/2 of the first kind,

E(.p, k) = I (I-k2 sin2 0)1/2 d = incomplete elliptic integral
Jo ~~~~~ofthe second kind, (0

2 B2 _ A2
k = 2

=sin-' g

1g[ 2_ 1/2

PO0 = sin B2 A2l (21)

Examination of equations 16 and 17 reveals that when a = 0 or b = 0, A and B
are undefined. a becomes zero when po = (cos j/sin a) and b becomes zero when
Po = (sin a/cos ,). Equation 18 is undefined when po assumes these values. There
are still solutions to the problem, however, as can be seen from equation 11 by
setting a or b equal to zero. For these cases the integration is straightforward and
the solutions are:

a=0:2(p)=bln [p + (p2- _b2)12]-b In [po + (Po-b2)12, (22)

Afl,7(~~Fl 21/2 [1 121b = °: 2(P) = [ -PO] -[a-p2 p (2
v.~~\P;LiPoJ -~~d (23)

Approximate Solution

The portion of the annulus that is likely to have the greatest effect on physical
measurements of lipid bilayer membranes is that near pO , i.e., the thinner segment
of the annulus. An approximate solution in this region can be obtained from equa-
tion 11. Using equations 12 and 13 and allowing p po and,3 0, equation 11
becomes

d2 ap + b 1
dp 'cosa cosCa p (24)

This is easily integrated to give for p '-' pO and ,B 0:

2(p) 1 p+a lnp-D, (25)2 cos a Cos a
where

D 1 a b2bln
2 cos a Cos a
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The Volume of the Annulus

The volume of the annulus for a given a, jS, and po can be found by integrating
equation 7 after substituting equation 18. The integration is laborious but straight-
forward with the help of Bird and Friedman (1954). The result is

V
4wR3 = M[E(po, k) - E(pi, k)] + N[F(,po, k) - F(i , k)]

BYk2 [sin (po cos po(I -k2 Sin2 'oo)1I2 _ sin pi cos (i (I - k2 sin2 'PI)1121
where

M = 6 (2k 1_ B6k sin2 °PI B2

N = ± 2 (1-k2 sin'¾oi) + 6-k2)B326
(26)

and the sign is chosen as that of b.

DISCUSSION

Graphs of 2(p) representing the intersection of the annulus with the 2-p plane in
the first quadrant are shown in Figs. 2-5. In each case two of the parameters a, 3,

0.7

/g= 0.6

13= 1l

0.0 0.1 0.5 0.6 0.7 0.8 0.9 1.0

FiGuRE 2 Shape of annulus in first quadrant with a as a parameter (see Fig. 1). The curves

represent the computer evaluation of equation 18 with po = 0.6 and = 1°. Z = ZIR and
p = r/R where R is the radius of the aperture. Notice that as a increases 2(1) increases.
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FIGURE 3 Shape of the annulus in the first quadrant with Po as a parameter (see Fig. 1).
The curves represent the computer evaluation of equation 18 with a = 20 and ,9 = 1°. Z =
Z/R and p = r/R where R is the aperture radius. Notice that as po decreases 2(1) increases.
This means that as annulus volume increases, Po will decrease. The shape of the curves is
largely determined by the contact angles a and ,B.

and po are fixed while the third is allowed to take on a range of values. The graphs
were obtained from equation 18 with the aid of a Burroughs Corp. (Detroit, Mich.)
B5500 Computer. The library for this machine conveniently contained a program
for evaluating elliptic integrals based on equations and algorithms developed by
Hofsommer and Van De Riet (1963).
The graphs show that a and ,B determine the shape of the annulus while volume

of applied lipid determines po . In most cases a will probably be 200 or less. Haydon
and Taylor (1968) find a = 1°53' for glyceryl monooleate in decane while Pagano
(1968) determined that a 200 for spherical films of lecithin in chloroform-metha-
nol-tetradecane. A value of 800 was reported by Moran and Ilani (1970) for lecithin
and cholesterol in methyl oleate but this is probably an exceptional case. The values
,B might obtain are not known but they are expected to be reasonably small since
lipid solutions usually "wet" the plastic surface of the aperture well.

Fig. 3 illustrates a practical problem encountered in the design of apertures for
lipid bilayer membrane experiments. It shows that if the geometry of the annulus
described by equation 18 is to be maintained for some range of po's that there is
a minimum septum thickness determined by the smallest po to be used. For example,
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A0
FIGURE 4 Shape of the annulus in the first quadrant with B as a parameter (see Fig. 1).
The curves represent the computer evaluation of equation 18 with po = 0.6 and a = 20.
2 = Z/1R and p = r/R where R is the aperture radius. Notice that as j8 increases, Z(1) de-
creases.
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FiGuRE 5 Shape of the annulus in the first quadrant with a as a parameter (see Fig. 1).
This set of curves is similar to Fig. 2 except that = 500 rather than 10 and po = 0.5. Note
that for a + , = 900 the curve degenerates into a straight line.

if the minimum membrane po was to be 0.4 for a = 20 and i P= 10, then the mini-
mum septum thickness would have to be about 2R 2(l) A.4R. If a thinner par-
tition was used the lipid solution would need to pass over the edge of the aperture
in order for f3 to have the correct value. This would lead to (a) drainage of the
annulus until a suitable po was reached, (b) "bending" of the annulus around the
edge of the aperture if the lipid solution were very viscous, or (c) an instability in
the system which would cause breakage of the film. All three of these phenomena
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FIouRE 6 Aspect ratio as a function of a with ,B as a parameter. Aspect ratio is defined
from equation 18 as 2(1) with po = 0.5 which is the ratio of minimum septum thickness
to aperture diameter for a membrane whose diameter equals 0.5 times the aperture di-
ameter. The figure shows that the aspect ratio increases with a but decreases with increasing
B3. For practical purposes, an aperture with an aspect ratio of 1 should allow stable mem-
branes to be formed from most lipid solutions.

have been observed in this laboratory and elsewhere. Drainage and instability
problems can be circumvented by using a long cylindrical aperture, an aperture
with an appropriate edge geometry, or by using a very thin septum so that in effect
the wall of the aperture would be rotated through an angle of 900 in order to satisfy
,B. In this latter case, however, drainage would probably still present some problems.
These findings suggest that it will be difficult to form films of large diameter unless
the septum is sufficiently thick. As long as the septum thickness to aperture di-
ameter ratio is kept constant for a given a, ,3, and pO, it should be possible to form
planar films of large area (disregarding buoyancy effects).

Design criteria for cylindrical apertures can be specified by the aspect ratio for
the aperture-membrane system. The aspect ratio is defined here arbitrarily as the
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ratio of minimum septum thickness to aperture diameter for po = 0.5. Since 2(1)
= (Y minimum thickness/R) for a given pO, the aspect ratio is given by 2(1) for
Po = 0.5. Fig. 6 shows the aspect ratio plotted as a function of a with (3 as a parame-
ter. The aspect ratio increases with increasing a but decreases for increasing (.
It can be seen that if an aperture has an aspect ratio of about 1, then almost any
film would be stable as far as the annulus is concerned. The 500 and 750 curves are
truncated in this figure because of the requirement placed on equation 18 that
sin a < cos (3. For the po given, this condition is violated when a + a > 90°. Fig.
5 demonstrates that when a + 3 = 900 the curve of the annulus degenerates into a
straight line. It should be emphasized, however, that the condition sin a < cos (3
was set in order to simplify the equations. For a given pO, a, and (3 a solution still
exists for sin a > cos ( if po is in an allowable range and the sign of AB is properly
chosen in equation 15.
The region of the annulus near the thin film is of considerable interest because

of the contribution it might make to physical measurements on the membrane
system. Fig. 7 shows the contour of the annulus in the transition region near po
for a = 20 and (3 = 00. Marked on the figure is the point at which 7 would equal
5000 A for R = 0.1 cm. This point will arbitrarily be referred to as the transition
region termination for two reasons: (a) At this point the annulus will be about 200
times thicker than the thin film and beyond this point the annulus should have a
negligible effect on the electrical and permeability characteristics of the total system.
(b) Since the annulus will be about two wavelengths of light thick at this point,
beyond it the system will no longer be optically black. Note that in Fig. 7 for R =
0.1 cm and a = 20 the transition region is about 10,u wide which under most cir-
cumstances will be the maximum expected since as a increases the transition width
will decrease.
Also illustrated by Fig. 7 is the comparison of the approximate solution of equa-

tion 25 with the exact solution. Values of 2(p) calculated from equation 25 are
shown by the cross marks (+). The two solutions agree to within 3% over the
range shown. If a and (3 are both small as in this example, the approximation will
be off by over 50% when p = 1; however, for small a (,--,2°) and large #(375o)
the two solutions can agree to within 0.3 % over the entire range po < p < 1.
The effect of the transition region on measurements of bilayer specific capacitance

are of particular interest in this laboratory. The precise determination of specific
capacitance depends upon how accurately total membrane capacitance and
membrane area can be determined. The transition region affects both of these
determinations. The area determination is affected because of the difficulty of visually
determining the beginning of the thin film. The uncertainty can be assumed to
be roughly equal to the width Ar of the transition region. Apertures for bilayer
work typically have a diameter of 0.2 cm. In this case from Fig. 7 Ar will be about
10-8 cm and roughly independent of ro. The ratio of the transition area AA to the
thin film area A = irrO2 will be approximately (2Ar/ro). If ro= 0.01 cm then AA/A =
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FIoURE 7 Shape of the annulus in the region near Po = 0.6 for a = 20 and j3 = 0. The
curve represents the computer evaluation of equation 18. The cross marks (+) indicate
values of Z obtained using the approximate solution of equation 25. The two solutions
agree to within 3% over the range of p shown. Also shown on the figure is the extent of
the transition region for R = 0.1 cm. The Z axis is magnified X 20 with respect to the
p axis for clarity.

0.2 while if ro = 0.09 cm AA/A = 0.022. Thus, the accuracy is best for large po.
Most investigators use light reflected from the bilayer at an acute angle to measure
the membrane ro with a microscope reticle in order to calculate A. The accuracy of
this method may be limited to about 2% disregarding reticle inaccuracies and non-
uniform membrane boundaries. The accuracy can probably be improved using
the principles developed by White (1970) or Haydon and Taylor (1968).

Let AC be the capacitance of the transition region and C the capacitance of the
thin film. An expression for AC/C can be obtained by assuming the capacitance of
a subregion dp of the transition region Ap is given by dC = (irReeopdp)/Z(p) where
e is the dielectric coefficient and eo = 8.85 X 10-12 farads/m. 2(p) may be taken
as linear in the transition region. By integrating from po to po + Ap and neglecting
second-order term,

AC7 - p
- (27)

where a is the thin film thickness and t is the transition termination thickness. Since
B/t = 5 X 10- and Ap is approximately constant and equal to 0.01 for a = 20,
AC/C is found to be 5 X 10-3 if po = 0.1. As po approaches 1, AC/C will approach
5 X 105. Under the worse conditions then the measurement of C will be off by
0.5 % while for large po the error will approach 0.005 %. For larger a the error will
be smaller so these values may be taken as upper limits.
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FiomUR 8 Annulus volume as a function membrane radius. Volume is scaled by 4irR3
and membrane radius ro is scaled by R where R is the aperture radius. The curves represent
the computer evaluation of equation 26 with P = 10. Membrane radius will decrease as the
annulus volume decreases. Ifa increases, as it does when an electric field is placed across the
membrane, membrane radius will increase if the annulus volume remains constant.

The behavior of the annulus volume at constant ,B as po and a are changed is
shown in Fig. 8 which represents the evaluation of equation 26 on the computer.
As po is increased from 0.1 to 0.95, V/47rR3 decreases by almost three powers of 10.
For fixed j3 and po, volume increases with increasing a. Suppose a fixed volume of
lipid were applied to the aperture. Then if a were to change the figure shows that
po would also change. This explains why the radius of thin film increases in the
presence of an applied electric field. It has been shown elsewhere (White, 1970)
that when a potential is present across a lipid bilayer membrane the free energy
decreases. Such a decrease will lead to an increase in a and therefore an increase
in po. The changes in po accompanying changes in a may be useful for measuring
changes in a, i.e., changes in free energy of the thin film. This phenomenon may
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also be a partial explanation for the breakage of films in the presence of large
voltages (--.'100 mv or greater). For films with contact angles of the appropriate
size the change in a accompanying the potential might cause the thickness of the
annulus at p = 1 to exceed the aspect ratio for the system and therefore lead to an
instability. The contact angle for lecithin in chloroform-methanol-tetradecane is
about 200. If a 100 mv potential were applied the free energy could decrease by as
much as a factor of 4 which means a would increase to about 40°. If, were small,
Fig. 6 demonstrates that the aspect ratio would need to increase from 0.73 to 0.95
it the geometry were to be maintained. If a were closer to 20 the effect would not
be nearly as large.

Professor T. E. Thompson provided much encouragement and many stimulating discussions for
which I am grateful.
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