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ABsMAcr We propose a physical model for voltage-dependent conductance
changes of excitable cell membranes. It is based on competition of uni- and bivalent
ions for chains of stable sites extending through the membrane. These one-dimen-
sional pathways (pores) have different profiles of chemical potential for the two ionic
species so that bivalent ions can block the passage of univalent ions at large mem-
brane potentials. We treat the special case that each pore is either empty or, because
of electrostatic repulsion, contains no more than one uni- or bivalent ion at a time.
A system of linear differential equations describes the time-dependent probabilities
of the various possible pore states. The states are limited by transition rate constants
involving the profile of the chemical potential, the membrane voltage, the ionic
concentrations in the adjacent baths, and electrostatic interactions between the
ions. The steady-state solutions (Kirchhoff-Hill theorem) yield expressions for the
relationship between the small signal conductance of univalent ions and the con-
centration of these ions in the external bathing medium (a saturation curve) and
for the ionic currents and the steady-state current-voltage curve (N-shaped). From
the latter curve we compute the shift of theshold potential caused by concentration
changes of the external bathing medium. The model yields a number of predictions
which can be tested experimentally.

1. INTRODUCTION

Much has been speculated about the mechanisms which cause the ionic conductances
of biological membranes to change with voltage, a process which is a prerequisite
for electrical excitation (e.g., 1-5). Since the molecular structures which form and
surround the ion-conducting "channels" within the membranes are still unknown,
however, these speculations have not yet led to precise and widely accepted models.

In this situation it may be worthwhile to ask which are the most simple and plau-
sible mechanisms causing voltage-dependent conductance changes of the kind ob-
served with biological membranes. We attempt to describe what we feel is probably
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the simplest mechanism of the kind. It does not require moving parts of the mem-
brane structure, nor diffusional rate constants which depend on voltage in an arbi-
trary way. What is required are merely two ionic species which can compete for
sites within ion-conducting pores, and which have different rate constants of diffu-
sion in at least one section of the pore. These constants depend on the local electric
field in the well-known exponential fashion. We hope that because of its simplicity
our model will be of general interest, even if its construction has been based in part
on data of a rather special nature, i.e., data obtained on excitable membranes of
amphibian epithelia.

2. EXPERIMENTAL FINDINGS

During recent years it was found that plasma membranes of some epithelia are
electrically excitable: while stimulated with a pulse of constant current, they develop
a transient deflection of membrane voltage reminiscent of the action potential and
the hyperpolarizing response of classically excitable membranes (nerve and muscle).
It was realized from the beginning that the "action potential" (spike) of amphibian
bladder and skin epithelia is based on a resistance increase-decrease cycle (6), which
occurs in a membrane close to or identical with the apical (external) surface of the
tissue (6, 7). Soon it was shown that the current-voltage curve of such tissues con-
tained the expected section of negative slope, although this section is separated from
the normal resting potential by 200-300 mv (8-12). This explains why large polariz-
ing inward currents have to flow continuously to make the epithelial response pos-
sible (6).
The resistance increase associated with the rising phase ofthe spike appears to pro-

ceed much faster (when studied under voltage clamp conditions) than the subsequent
decrease (8-10, 13) and, in contrast to the decrease (4, 13, 14), is dependent on the
presence of Na+ (or Li+) in the external medium. The resistance increase can be
made more extensive when the initial membrane resistance is lowered by increasing
the resting state Na+ conductance with vasopressin (8, 9, 13, 15), or less extensive
by decreasing the initial Nae conductance with amiloride (13). Therefore, the re-
sistance increase of the rising phase is very likely a voltage-dependent cutoff of in-
ward Na+ current.

Besides Na+, the presence of external Ca2+ ions is essential (6, 14). It was found
that the threshold voltage which leads into the negative slope section of the current-
voltage curve can be lowered by increasing the Ca2+ concentration of the external
medium (14). Thus it appears that the Nat conductance-voltage curve ofthe excitable
membrane, as in nerve and muscle, is S-shaped and, as in nerve and muscle, can be
shifted along the voltage axis by changing the external Ca2+ concentration (13).
It can be shifted in the opposite direction by an increase in the external Na+ concen-
tration (14), which could be caused by competition of Nae and Ca2+ for sites in the
Na+ path across the membrane.
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When trying to explain the shift of the Nae conductance-voltage curve (g - V
curve) by Ca2+ in nerve, Frankenhaeuser and Hodgkin have considered the possibil-
ity that Ca2+ might be able to enter Nae-specific pores from the outer side of the
membrane but unable to leave them by the inner side (16). During resting condi-
tions, the inner side of the membrane is sufficiently negative with respect to the outer
side to "bind" Ca2+ ions within the Nae pores, thus blocking Na+ flow. Depolariza-
tion would release Ca2+ from the pores, starting an Na+ flow which, once a threshold
value is reached, would cause further depolarization, leading to the rising phase of
the action potential. At high external Ca2+ concentrations a greater initial depolariza-
tion would be necessary to reach the threshold than at low concentrations, explaining
the shift of the g - V curve.

In Frankenhaeuser and Hodgkin's treatment, the only variable connecting de-
polarization and Ca2+ concentration is the electrochemical equilibrium of Ca2+
between the pores and the external medium, which determn es the fraction of Na+
pores blocked. (The case of narrow pores where the fraction of pores occupied by
Na+ can influence the fraction occupied by Ca2+ was not considered by these
authors.) Consequently, there could be no less than a 12.5 mv shift per e-fold change
of the external Ca2+ concentration. Since in nerve a shift of 6-9 mv/e-fold concentra-
tion change was found, Frankenhaeuser and Hodgkin concluded that their hypothe-
sis would not apply to nerve. In frog skin, an equivalent of 18 mv/e-fold change of
the external Ca2+ concentration has been found (14); this suggests that a simple Ca2+
valve model of the type suggested by Frankenhaeuser and Hodgkin seems to be ap-
plicable. The only difference from the situation described above for nerve would be
that in the skin the rising phase of the spike is caused by a successive blockage ofNa
pores by Ca2+, which enters the membrane from the outside while the outside be-
comes more positive.

If Na+ ions pass the membrane through a finite number of pores, all of which can
be blocked by Ca2+ ions, then one might be able to find "blockage" of Na+ flow by
Na+ ions as well (saturation). The phenomenon would require that the entry of
Na+ ions into the pores is not the rate-limiting step for Na+ transport, and would
show up as a saturation of the conductance-concentration curve. This phenomenon
can indeed be demonstrated in frog skin (9, 13); Na+ conductance increases with
the external Na+ concentration as long as concentrations are low, while no further
increase of Na+ conductance with concentration is found when concentrations are
high.

In order to compare the Ca2+ valve model by Frankenhaeuser and Hodgkin quanti-
tatively with our experimental data on shifts of the g - V curves with the external
Ca2+ and Na+ concentrations and saturation of the membrane conductance with in-
creasing Na+ concentration, we need to compute the fraction of pores occupied by
Na+ and by Ca2+ at any membrane voltage and any combination of the external Na+
and Ca2+ concentrations. Knowing these, flows and conductances can be computed as
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functions of membrane voltage. Such calculations will be attempted in the following
sections.

3. CONSTRUCTION OF THE MODEL

3.1 Basic Description

Our model consists of pores which are thought to be one-dimensional paths of stable
ionic sites. The paths may be straight or curved; the sites may be separated by dis-
tances larger or smaller than the diameters of Na+ or Ca2+ ions. Ions can hop from
one site to the next in either direction by overcoming the barrier of chemical poten-
tial which separates the two sites. The pores can be entered by Na+ and Ca2+ ions.
Therefore, they are characterized by two different profiles of chemical potential, one
for Na+ (Fig. 1 a) and one for Ca2+ (Fig. 1 b), and need not have the same number
of sites. One barrier, located near the inner border of the membrane, is extremely
high for Ca2+ ions (Fig. 1 b). (In subsequent calculations, the Ca2+ concentration
beyond this barrier will mostly be taken to be zero.) This assumption of one large
Ca2+ barrier will allow the model membrane to behave like a valve: because of their
twofold electric charge the Ca2+ ions will, particularly at high voltages, be forced
into the pores more strongly than the Na+ ions, block the pores, and suppress Na+
flow. The electric current (Na+ flow) will decrease with increasing voltage in the
blocking region (negative differential resistance).
Our model is mathematically described by a system of linear differential equations

for the time-dependent probabilities of the various possible pore states. If each of the
n - 1 sites in the pores can be empty or occupied by Na+ or Ca2+, a pore can exist in

n-1

FIGURE 1 a Chemical potential of Nat ions (the numbers at the minima and at the barriers
denote the position in the membrane).

2 3 m-l m mil n

1 2 m-i m n-i

FIGURE 1 b Chemical potential of Ca24 ions (blocking barrier at position m).
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3n-1 states. In the system of differential equations, these states are linked by transi-
tion rate constants involving the profile of the chemical potential, the membrane
voltage, the ionic concentrations in the external medium, and electrostatic interac-
tions between the ions. The steady-state solution can be obtained by setting all time
derivatives equal to zero and solving for the steady-state probabilities by matrix in-
version.

In the case of n > 4 or 5 a mathematical analysis of the complete model is not
possible, because of the 3S1 possible states of the pore, and a computer calculation
would require too much time; however, numerical solutions and approximate
analytic results can be obtained for the two limiting cases: (a) pores are empty or
contain no more than one ion at a time; (b) pores are completelv filled or contain no
more than one empty site at a time.
Of these, case a is discussed in this paper. It applies to pores free of fixed charges,

where states with more than one ion per pore are unlikely for instance because of
electrostatic repulsion. To choose an unfavorable situation: if the average distance
between two ions in the membrane is R = 50 A, the energy of electrostatic repulsion
between two ions with valences z1 and z2 is given by

ziz2 e2 zZ2EoE = 4W0** eE
reo

. e .Re

where Eo 4.6 - 10'0Ws and e denotes the mean dielectric constant of the membrane
(being about 3 or 4). The rate constants of transition from single to twofold ionic
occupation will thus contain a factor

y = exp) Z{ kT } t exp I___2 for T = 3000K.

For instance, in the case e = 3 the rate constant k' for transition from a singly oc-
cupied pore to a pore occupied by two univalent ions separated by 50 A would be 28
times as small as the rate constant k for the transition from an empty to a singly oc-
cupied pore ('y = 0.036). If one ion were bivalent, k'/k would even be reduced to
(1/28)2. Multiple ionic occupation would become still less likely if the critical mem-
brane thickness, i.e. the pore length, were significantly smaller than the total mem-
brane thickness of about 80 A.

3.2 Derivation of the General Current-Voltage Relation

Let us denote a state of the membrane pore with Na+ (Ca2+) at site k by Ak (Bk)
and the empty pore by 0. The transition rate constant of Na+ (Ca2+) is denoted by
ak (--) [bk (--)] if the ions pass through barrier k of the chemical potential from left
to right and by ak (*-) [bk (-)] if the direction of passage is from right to left. (The
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numerical order of sites and barriers is from left to right as indicated in Figs. 1 a and
b.)
Our model may now be represented by the basic diagram of Fig. 2 containing all

possible states and all possible transitions between the states. Each line represents
two transition rate constants, one for each direction. From this diagram we can
easily obtain all differential equations for the probabilities P (Ak, t), P (Bk, t),
P (0, t) of the states Ak, Bk, 0; for example,

d P(Ak, t) = ak(--)P(A,ki, t) + aA,+(4-)P(A0,+, t)

- [ai+i(-+) + ak(4-)]P(Ak, t). (1)

The matrix of the rate constants has a very simple structure and thus allows an
analytic solution of the steady-state probabilities (dP[... ]/dt = 0) using the
normalization condition

n-i

X [P(Ak, t) + P(Bk, t)] + P(O, t) = 1. (2)
k-i

Since this method is rather tedious, though not difficult, we prefer to apply the
theorem of Kirchoff (17), rediscovered by Bott and Mayberry (18), King and Alt-
man (19), and Hill (20). According to this theorem, the Nat current per pore is
given by the ratio of the sum of the A (Nat)-flux diagrams to the sum of all partia

*k*

FiGuRE 2 Basic diagram of the model.
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diagrams' of the basic diagram (Fig. 2). For the number of Na+ ions passing through
a part per second we thus obtain

n n n
[f ai* -JIai() (3

n n n-11^
E [ai,ji + E (aik3j + Oikaj)]

where

ai= al(-) . ..ai-I()aj+j() an(--+), (4)

{a,() ... ai_(*-)ai+l( ... ak(-+)ak+l(< an(+-) i < k
atik =

al() **... ak(-*)ak+l(<--) ... aj_(&-)aj+1(-+) ... a.(--) i > k + 1. (5)

jf6ik are calculated in a similar way. In order to evaluate equation 3 as a function of
the external parameters, such as membrane voltage and ionic concentration, we have
to determine the various rate constants. Their voltage dependence can be expressed as

ak(-+) e'X ak (e-) e' eX, bk (-) '-- e2, bk ( ) e-2 (6)

where 0 = eU/ (2nkT).2 Let us assume that all internal Na+ barriers are equal (in
the absence of an external electric field):

ak() = ae, ak(-) = ae- for 2 < k < n-1 (7)

however, before leaving the membrane the Na+ ion may be confronted with a bar-
rier different from those in the interior:

a,(-) = a e , an() = a e+, (8)
K YKI

where K, K' are dimensionless quantities which we expect to be somewhat larger
than unity. Local distortions of the internal electric field due to the presence of the
charged ions may be neglected in equation 6. Suppose that all pores are occupied by
1A partial diagram is obtained from the complete diagram by omitting the minimum possible number
of lines such that no cycle is formed. All lines are then directed towards one single point. The numerical
value of a partial diagram is the product of the corresponding rate constants. The sum of all partial
diagrams is the sum over all ways of forming an undirected partial diagram and over all ways of
directing each undirected partial diagram towards one single point. A single A-flux diagram is obtained
by omitting the minimum possible number of lines such that only the A cycle is retained. All non-
cyclic parts of the diagram are directed towards the cycle. The numerical value is the product of the
difference between the two cyclic directions and the directed noncycic part of the diagram. The sum
of all A-flux diagrams is the sum over all ways of forming such diagrams.
I Only half of the electric potential difference between neighboring sites has to be activated for a
hopping transition over the barrier. e = elementary charge, U = membrane voltage, k = Boltzmann's
constant, T = temperature.
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one univalent ion and that all ions are localized at the same penetration depth
(extreme distortion of the field). Treating the ionic layer as a homogeneous layer of
electric charge, the discontinuity E of the electric field at the layer is obtained as

AE q
so I e

where q = e/F, and e denotes the elementary charge and F the membrane area per
pore. Inserting, for example, a density of 15 pores/square micron and an average di-
electric constant of e = 4, we obtain E = 675 v/cm. Since the average value of e may
well be larger and ions will hardly all be localized in one plane, E will probably be
even smaller than estimated here. The estimated value of 675 v/cm has to be com-
pared with the field generated by the applied voltage, which is ofthe order of 104-10'
v/cm (applied voltage 10-100 mv, membrane thickness 100 A).
The transition rates for entering the membrane are proportional to the ionic con-

centrations of the external medium, but even when the ionic concentration and the
external voltage are disregarded, barriers 1 and n need not be symmetric so that

a,(--) = c laXe, an(<-) = c ax4e-". (9)AIK K

CA, CA are the Na+ concentrations at the left and right of the membrane, and X is a

dimensionless factor. Hence, effective concentrations are defined as

CA =XCA, cA =Xc. (10)

The X factors must be equal on both sides of the membrane since we have to satisfy
the equation

CA CA cXX ~~~~~(11 )
CA CA

which is identical with the condition of microreversibility (i.e., j = 0 if U = 0 and
if CA = cA).

Analogous assumptions are made for the Ca2+ transition rate constants, except
that barrier m is assumed to be extremely high for Ca2+ compared with the other
internal barriers:

bk(-) =beM, bk(-) = be-2+ for 2 < k < n-1, kd m, (12)

bm() = qbe2", bm(i ) = beC2 0 < q < (13)

The expressions for bl(-k), bl(4-), bn(-÷), and b,(+-) are similar to equations 8
and 9.

If we insert the above definitions for the rate constants into equations 3, 4, and 5
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we obtain a rather complicated expression forj after some straightforward but lengthy
calculation. This expression includes the case of Ca2+ overcoming the critical barrier
m at very high voltages. Since we do not want to include this case, we simplify our
equations by performing the limitq -* 0, i.e., by making barrier m completely im-
permeable to Ca2". In this limit we finally obtain

= a 2C sinh (4) + Ac*coth (no) *sinh (4) (14)
Xo(O)[l + Y(O)] + CX1(O) + ACX2(0)'

where

C= (CA+CA), AC= CA-CA, (15)

and

XO (4) = 1 - [K + K - 2 + (K - K') coth (no)] sinh2()
+ [(K + K - 2) coth (nu) + K - K'] cosh (o)>sinh (4), (16)

Xi (k) = n -1 + [(K +K - 2) cosh (o) - (K - K') sinh ()]

* (cosh (4) - coth (no) * sinh (4) ), (17)

X2(4)) = 4{n coth (no) - coth (4) - (K - K')

+ [K + K - 2 + (K - K') coth (no))] sinh (4) *cosh (4)
- [ (K + K - 2) coth (n5) + K - K'] sinh (o)), (18)

Y(o) = [2 sinh (2))J-1. [CB (e(2m-1)20 - e2S)
- C5 (e-(2n-2m+1)20 - e2)] (19)

where CB, C' are the effective Ca2+ concentrations analogous to CA, CA but possibly
containing a different factor.

This result may be simplified even further if the rate constants for Na+ desorption
in the absence of an external field are assumed to be equal on both sides of the mem-
brane and to coincide with the internal Na+ rate constants: K = K' = 1 see equa-
tion 8. In this case we obtain

XO( ) I=1, X1(+) =n-1, l

X2(0)= 2[n coth (no) - coth (W)].f (20)

X2(+) in equation 20 is a very smooth function varying from (n - 1)/2 at = + X
toOat = Oandto- (n - 1)/2 at= -X suchthat

((n-l)CA + oo

CX1(4) + .CX2 (n - I)C = 0

t(n -1)c _O -0 (21)

HEcMmANN Fr M. Current-Voltage Curves of Porous Membranes. I 691



Y(q5), on the other hand, increases very rapidly with increasing 4. As Y(0) is part
of the denominator ofj, in equation 14, this increase is the mathematical reason of
the negative differential resistance for 4 or U values in the blocking region.
Compared with the significant increase of Y(0), the functions Xo (4)), Xi (+),

and X2 (q) vary very slowly even in the general case

XS()K +
0

XO(+) 1+ K + K- 2

lK 00-X (22)

n-1+K'- + 0+OX1(+) (-1) (1+ K + K -2)
n-1+K-1K -o (23)

p2(n -I1 + K' - q5g + oo

X2() (K - K) n-l )= O
2 ~~n

l2(n -1+ K - )0=X(42 ~~~~~~~~~(24)
4. MATHEMATICAL DISCUSSION OF THE MODEL

4.1 The Linear Range of the Current-Voltage Relation

The electric current j vanishes at

in IeAn eUo=-kT ln .* (25)25n- CA CA

In thevvicinity of this point the numerator of equation 14 may be approximated by
its first-order expansion term with respect to U - Uo

i g(= ) (U - UO), (26)

where,the membrane conductance g as a function of 4 is given by

F AC^-aec F(cg,,) = nkT X + )) ' (27)
nkT Xo(o)[l + Y(0)] + CXI(O)+ ACX2(o)
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with

F(x) 1(I2l +x (28)2 x I~+ x'

F(x) tends to 1 as x -- 0 so that F(Ac/2c) may be replaced by 1 for concentration
differences which are not too large.

4.2 Conductance Saturation with Increasing Na+ Concentration

In the following we will discuss the Na+ conductance g, equation 27, as a function
of the effective average Na+ concentration c. Let us assume that 4 is confined to
small values so that Y (4) < 1 (if p -+ 0, Y(4) tends to a finite value of the order of
n multiplied by the effective Ca2+ concentration). Let us further simplify equation 27
by replacing Xo (+) by 1, and X1(+) by n - 1 (see equation 20) and by neglecting
the Na+ concentration difference Ac. (The following discussion also applies without
this simplification, the conclusions being qualitatively the same.)
The Na+ conductance per pore is now given by

ae 29' nk-T I + Y(0) + (n - I)c(29)
Inserting equation 19 and taking the reciprocal of equation 29 we obtain

1~~nkT cf ()+n- Ii+1(9a
g- e LCf(4)+nl+e1 (29aa)

where

f( -exp [(2m - 1)20]- exp (24)
2 sinh (24))

(for c' = 0). Thus, l/g is linearly dependent on 1/c and on CE. The latter depend-
ence becomes more pronounced when 4 is increased. Defining the measured small
signal conductance per unit membrane area as G = Ng, where N is the number of
pores per unit area, we may plot 1/G vs. eB and obtain for different membrane po-
tentials straight lines with different slopes. On the ordinate these lines have a com-
mon intercept

1l\ ~nkT/
F IN n-1+ e)X (29 b)

which varies linearly with 1/e. Plotting this intercept vs. 1/e will yield another
straight line, which intersects the abscissa at 1/c = - (n - 1). Thus, knowing n,
the product N- a can be computed from the slope of the straight line.
With increasing c the conductances g and G will approach plateau values g.
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and G.:

e NaG, = Ng8 = kFTn(n- 1)' (29c)

as indicated in Fig. 3. If n is known from equation 29 b, the measured value of GJ
can be used to check the value of N a computed from equation 29 b.
The rate constant a for Na+ transitions will be given by

a = ao exp (29 d)

where w denotes the energy barrier between adjacent Na sites in the interior of the
pore.

Inserting equation 29 d into equation 29 c yields

In (TG,) = -k + const. (29 e)

This equation may allow the determination of w by measuring G. as a function of
temperature T, provided that temperature-dependent structural changes do not
interfere in the range of temperatures used.

Saturation of g with c (see equation 29) is only possible if (n - 1)c can be in-
creased such that it is of the same order as 1 + Y(4s), i.e., if c > 1/ (n - 1). Since
the thickness of the membrane does not exceed 100 A we expect n - 1 to be not
larger than 30. This means that the actually observed saturation at 20 mM, i.e. a
molar fraction of 4.10 (9, 13), implies an effective Na concentration which
for n = 30 is two orders of magnitude larger than the Na concentration in the
solution. This enhancement of the effective concentration can be explained by an
effective attraction between the pores and the Na+ ions. Possible reasons for such an
attraction are (a) fixed charges along the pores, or (b) high polarizability of the
membrane material.

If, in case a, each pore site is associated with a fixed charge, the most probable
pore state would be complete ionic occupation. This situation is the extreme opposite

9

ae
n(n41)kT

FicuRE 3 Nat conductivity in the linear voltage region as a function ofthe average effective
Na4 concentration a.
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of our model which includes single ionic occupation only (see section 3.1); however,
our model will apply to case a if only one fixed charge is present, provided that this
charge is not localized. Assumption 7 of equal internal Na+ hopping rate constants
(see Fig. la) will be justified only if the charge is almost uniformly distributed along
the pore or even capable of moving within the protein structures forming the pore.

In case b, the polarizability of the membrane proteins forming the pore has to be
so large that the polarization energy of the Na+ ion in the pore exceeds its energy of
solution. A high polarizability of the membrane material means a high dielectric
constant, which in turn considerably reduces the electrostatic repulsion. This would
again lead to multiple ionic occupation and thus go beyond the scope of our model,
unless the electrostatic repulsion between two ions in the same pore is larger than
the effective attraction between the ion and the pore caused by the polarizability of
the membrane material.

In either case, a or b, the observed saturation indicates that the minima of the
chemical potential of the Na+ ions in the pore are lower than their chemical po-
tential in the solution (as indicated in Figs. 1 a and 1 b).

4.3 Nonlinear Range: Valve Effect of Ca2+

From equation 19 we easily obtain

Y(O = 0) = (m - l)CB + (n -m)C'B < 1, (30)

whereas for 4 -

Y(9b) -M Y2CBe4()" >> 1. (31)

Comparison of Equations 30 and 31 shows that Y(4)) increases at values of 4 greater
than a critical value 4. which depends mainly on the magnitude of CB. If the linear
approximation of the numerator of equation 14 is still valid for 4),, we may discuss
the behavior of the Na+ conductance g as a function of 4 by making again use of
equation 29 (neglecting AC and replacing Xo(4)) and X1(+6) by 1 and n - 1, respec-
tively). Confining ourselves to O 2 0 we may then expect g (4)) to change little if
< 0,,

g(4))~go=aeCnkTl +Y(O)+(n-l)c' 0.'O<4)., (32)
and to decrease rapidly as 4 approaches and exceeds 4). Figs. 4 a and 4 b illustrate
these relationships between conductance and voltage and between current and
voltage. Let us more precisely define 4. by g (4,)) = go/2 or

Y(4)) - 2Y(0) = 1 + (n-1 )c. (33)
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If Ca'+ ions are present only on the outer side of the membrane (cI = 0), we obtain
from equation 33 by inserting equations 19 and 30

CB[JfP,) 2(m - 1 I + (n -l), (34)

where

= exp [(2m - 1)24] - exp (2q) (35
2 sinh (2O) (5

Taking the logarithm of equation 34 yields as an approximation for large values of 0

ln cB + 2m - I e. = ln [I + (n - l)c], (36)
n kT

or

eU- _- nkTln-B+ const. (37)2m-1

For small values of 0, corresponding to high values of cE, we have to take account
of the detailed structure off (O). This means a positive deviation of the threshold
voltage U, from relation 37.

if 1 F 1 1 1

0 50 100 150 200 250 300 U
[mv]

FIGURE 4 a Computed curves of Na- flux j per pore as a function of membrane voltage
U for various values of CEB (= external effective Ca24 concentration; internal effective Ca2'
concentration CEB = 0).
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0 50 100 150 200 250 300 U
[mv]

FIGURE 4 b Computed curves of Na+ conductivity g per pore as a function of membrane
voltage U for various values of Z!B(eB = 0)-

The computed curve of eU. as a function of In CB iS shown in Fig. 5. The slope of
the linear part of this curve is kTn/ (2m- 1) and therefore, apart from the factor
kT, depends only on the relative position of the Ca!+ barrier within the membrane
Inserting into equation 37 an experimentally observed value (13, 14) of

kTd(hs) -0.72 (for T = 3000K),

we obtain m/n t 0.7.
As in the treatment by Frankenhaeuser and Hodgkin, we get from equation 37

dU. kT n _kT _
: --=-12.5 my, (38)d(In CB) e 2m-1I 2e

or

I rBJ > 12.5 mv,

since 1 < m < n. The value of rB = -18 mv observed in frog skin experiments
lies within this range and thus allows the application of our model of singly occupied
pores. It should be noted that in all cases where mr/n 0.5, rB will be different when
the electric field is reversed.

In the case of completely occupied pores (each pore site associated with a fixed
charge), Heckmann and Vollmerhause found that the effective equivalence between
voltage and concentration may be shifted in favor of the concentration. In this case,

' Private communication.
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^25 -20 -15 -10 -5 In 0lO

FiouRE 5 Computed curves of U - UO as a function of In UB(U. = threshold voltage;
UO = rest potential). Parameter: external effective Na+ concentration A; internal effective
Nat concentration eAi - 10-' (constant for all curves).

a value of f rB I < 12.5 mv may be observed at least in a limited range of the mem-
brane potential.
From equation 34 we may also obtain 0. as a function of the effective average

Na+ concentration c. For large values of c such that (n - 1) c >> 1 and for large
values of '. we get

eU,. 2 l kTln c + const, (39)

r dU. kT ___d(ln c) e 2m- (39 a)

For small values of c and qb, we expect a positive deviation of eU. from the value
given in equation 39. Fig. 6 shows the computed curve of eU. vs. In cA (CA being
constant) for different Ca2+ concentrations cB.

Let us once more look at equation 34. From equation 35 we derive

lim [f()-2(m-1)]J=-(m--1) < 0. (40)

Since c)-+ o as O -- o, equation 40 imples the existence of a zero 4' = eUl/
(2n kT) > 0 off(+)- 2(m - 1),

f(w)v-, t(mh-e) =o t (i f41

however, the threshold behavior of the conductance g(o) is observed only if the
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FIGURE 6 Computed curves of U.- Uo as a function of In cA for various values of UB(CWA
= 102, CB = 0).

left-hand side of equation 34 is positive and of the order of unity. This means that

Os > X > 0 or eU8> eU1> O

for all values of In CE as indicated in Fig. 5.
Moreover, for values of 4. near 4o, the factor CE in equation 34 must be very

large since f (0) - 2 (m - 1) becomes very small. The experimentally observed
deviation of eU8 from the linear relation 37 between eU. and In Ce therefore implies
that the effective Ca2+ concentration eB is much larger than the Ca2+ concentration
CE in the solution (0.05-50 mm, i.e., a molar fraction of Il-1073) at least for values
of 0 in the threshold region.

Thus, we have an effective attraction not only between the empty pores and the
Na+ ions, as stated in section 4.2, but also between the empty pores and the Ca2+
ions. It seems very likely that the reasons for Ca2+ attraction are the same as for
Na+ attraction.

5. GENERAL DISCUSSION

The basic idea of a Ca2+ valve mechanism was proposed by Frankenhaeuser and
Hodgkin (16). Ca2+ can enter Na+-specific pores from the outer side of the mem-
brane but is unable to leave them by the inner side. When the electric field is in-
creased such that the outer membrane surface becomes more positive in relation to
the inner surface, Ca2+ is retained more firmly in these pores, blocking Na+ flow.
Thus, the electric field can control the Na+ current if Ca2+ is present. With increasing
external Ca2+ concentrations, the voltage range where the Na+ current is effectively
modified is shifted in the direction of depolarization, i.e., less voltage is required.
For its application to the electrical excitation of the surface membrane in frog
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skin epithelium this concept had to be modified and specified. The observed satura-
tion of small signal conductance with increasing external Na+ concentration induced
the idea of a limited number of narrow Na+-specific pores across the membrane
(9, 13, 14, 21). The pores are assumed to be occupied by no more than one Na+ or
Ca2+ ion at a time, i.e., they are relatively empty. Then competition ofNa+ and Ca2+
for empty pores must take place so that the number of pores conducting Na+ is
determined by the number of pores blocked by Ca2+, which in turn is dependent on
the Na+ concentration. Thus, the threshold voltage U. is not only lowered with
increasing external Ca2+ concentration but also raised with increasing external Na+
concentration.
Our calculations led to a number of predictions, indicated below, which can be

checked experimentally. For frog skin epithelium, the first prediction has already been
verified quantitatively, the second one qualitatively.

(a) The threshold voltage U. should decrease with increasing external Ca2+
concentrations CE such that rB = dU,/d InCE . - 12.5 mv at small values of cB,
equation 38.

(b) U. should increase with increasing external Na+ concentrations such that
rA = - rB, equation 39 a.

(c) At a constant membrane voltage, the reciprocal small signal conductance
IIG should be linearly dependent on the external Ca2+ concentration CB. This de-
pendence should become more pronounced when the membrane voltage U is raised,
equation 29 a.

(d) At a constant membrane voltage, IIG should vary linearly with 1/e, equa-
tions 29 a and 29 b.

(e) Since Ca2+ ions retained in the pores by high electric fields are assumed to
block Na+ flow, the resistance increase which occurs when U is suddenly raised
beyond U. should proceed faster than the resistance decrease which occurs when
U is suddenly dropped below U..

It is, of course, an open question, whether and how many of these predictions are
compatible with other models. If one prediction is definitely disproved by experi-
ment, our model cannot be used in its present form. If the predictions are fulfilled
and the model holds, the observed rB values allow the determination of m/n, the
relative position of the high Ca2+ barrier in the pore. For instance, rB = -18 mv
means m/n = 0.7 (equations 38 and 39). Then, according to equation 37, the U.
value obtained for the outward current should be considerably larger than that
obtained for the inward current (Ca2+ and Na+ concentrations being equal on both
sides of the membrane). Using equation 29 b, we can compute n, the number of
sites along a pore, from conductance data. With n and m/n we obtain m, and insert-
ing m into equation 35 yields the functionf(4O). Knowing n, we can also estimate the
product a N from equation 29 a. The product of the internal rate constant for Na+
transition number of pores per square centimeter can also be obtained from equa-
tions 29 b and 29 c. It is not impossible that N can be determined independently by
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experiment, for instance by titration using specific inhibitors like amiloride (13).
This would provide a value for a (if a*N is known). Furthermore, if w, the energy
barrier between adjacent Nat sites in the interior of the pore, can be obtained by
temperature measurement, ao can be computed from equation 29 d.

If conductance saturation (Fig. 3) occurs at moderate external Na+ contentra-
tions, there must be a considerable attraction between pores and Na+ ions. Further-
more, the decrease of rB at large values of cE suggests that there must also be an
attraction between pores and Ca2+ ions. The simultaneous attraction of Na ions
and Ca!+ ions may be ascribed to a single almost uniformly distributed and possibly
mobile negative charge in the "wall" of the pore or to a high polarizability of the
membrane material. Both possibilities would favor pores occupied by more than
one cation if the pore length is 50 A or larger (see section 3.1); however, the critical
pore length or, in more general terms, the critical length of single chains of pore
sites need not necessarily be a large fraction of the total membrane thickness of
about 80 A. The narrow section of the pore might be less than 20 A in length, lead-
ing at both ends into wider sections which communicate with the internal and ex-
ternal aqueous medium. If the ends of the pore are sufficiently wide and filled with
electrolyte, the major part of the membrane voltage would drop across the nar-
row section. If, in addition, the narrow section would extend through a very thin
layer ofthe membrane material, electrostatic repulsion between cations might prevent
multiple ionic occupation. Then attraction between cations and empty pores and
repulsion between cations and occupied pores would be found, and the two assump-
tions of (a) attraction between pores and cations and (b) exclusion of multiple
ionic occupation would not be contradictory.

It should be pointed out that the concept of a pore extending through a thin
critical layer of the membrane does not mean that n, the number of pore sites, must
necessarily be small. If n is found to be large, the sites could be located along an
almost straight line but separated by distances which are smaller than the ionic
diameters. Alternatively, the distances between sites might be larger than the ionic
diameters if the pore has a helical or otherwise curved shape.
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