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AssrRAcr Tension and curvature of the sarcolemmal tube of the frog muscle fiber
were measured at different extensions and were used to calculate the anisotropic
elastic properties of the sarcolemma. A model was derived to obtain the four
parameters of the elasticity matrix of the sarcolemma. Sarcolemmal thickness was
taken as 0.1 jum. Over the range of reversible sarcolemmal tube extension, the
longitudinal elastic modulus EL = 6.3 X 107 dyn/cm2, the circumferential modulus
Ec = 0.88 X 107 dyn/cm2, the longitudinal Poisson's ratio OL = 1.2, and the cir-
cumferential Poisson's ratio oC = 0.18. At tubular rest length EL = 1.2 X 107
dyn/cm2. The sarcolemma is less extensible in the longitudinal direction along the
fiber axis than in the circumferential direction. It can be extended reversibly to
48% of its rest length, equivalent to extending the intact fiber from a sarcomere
length of 3 jAm to about 4.5 jim. The sarcolemma does not contribute to intact
fiber tension at fiber sarcomere lengths <3 jum, and between 3 and 4 jim its con-
tribution is about 20%. It also exerts a pressure on the myoplasm, which can be
calculated by means of the model. The longitudinal elastic modulus of the whole
fiber is 1 X 106 dyn/cm2 at a sarcomere length of 2.33 jim.

INTRODUCTION

The sarcolemma is a four-layered structure on the surface of the striated muscle
fiber and is composed, from inside to outside, of a plasma membrane, a basement
membrane, a collagen layer, and an outer reticular layer, having together a thick-
ness a of about 0.1 ,um (Jones and Barer, 1948; Wang, 1956; Mauro and Adams,
1961; McCollester, 1962) or more (Koketsu et al., 1964). The elastic properties
and contribution of the sarcolemma to whole fiber tension at different extensions
have not been definitely established. The sarcolemma can exert a tensile force equal
to that of the fiber under some conditions (Street and Ramsey, 1965), but appears
not to exert tension at sarcomere lengths S below 3 jim (Podolsky, 1964; Rapoport,
1970, 1972).
At S > 3.2 jim, experiments on stripped single fibers indicate that the sarcolemma
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contributes about 80% of passive fiber tension (Podolsky, 1964). Comparison of
the length-tension curve of the sarcolemmal tube with that of the intact fiber, how-
ever, suggests that the sarcolemma contributes little to passive fiber tension (Casella,
1950). The sarcolemmal tube is formed by damaging a single fiber so as to produce
a sarcolemmal region free of myoplasm, and probably does not contain the intact
plasma membrane (Mauro and Adams, 1961). Results using the elastimeter method
suggest also that the sarcolemmal contribution to fiber tension at S < 3.75 .tm is
probably small (Rapoport, 1970, 1972).
Any theory on myoplasmic elasticity depends on knowing relative myoplasmic

and sarcolemmal contributions to passive fiber tension (e.g., Hill, 1968). It is
difficult to interpret previous experiments on the sarcolemmal tube because either
(a) the reference sarcomere length of the intact fiber to which tubular extension
could be referred was not determined, or (b) length-tension studies on the tube were
probably made after it was deformed irreversibly (see below) (Casella, 1950; Sten-
Knudsen, in Buchthal et al., 1951; Fields, 1970). In the present experiments, these
two factors were taken into account so as to estimate the role of the sarcolemma
in passive muscle tension.
Four elastic coefficients are needed to describe the tubular surface, a longitudinal

and circumferential elastic modulus, and a longitudinal and circumferential Pois-
son's ratio (cf. Love, 1944; Westergaard, 1952). We formulated a model in Appendix
I to calculate these coefficients from the tension, extension, and curvature of the
sarcolemmal tube. An abstract of this work has been published (Rapoport and
FitzHugh, 1971).

LIST OF SYMBOLS

a, b Parameters defined by Eq. A 9.
cij i, j = 1, 2; elastic constants of Eq. A 1 in centimeters per dyne.
ds Distance between two points on sarcolemmal surface; dso equals the initial

separation at sarcolemmal rest length.
e Extension, or (S - So)lSo; (ds - dso)/dso.
e2 (S - 2,um)/2,um.
EL, E, Longitudinal and circumferential elastic moduli in dynes per square centimeter.
E Elastic modulus in dynes per square centimeter (Eq. 6)
F, G Longitudinal and circumferential stresses in dynes per centimeter.
H Horizontal force (tension) on tube or fiber in dynes.
k2n n = 1, 2, ... ; constants of polynomial of Eq. 1.
L One-half length of tube; L = Lo at rest length.
P Pressure exerted by sarcolemma on myoplasm of intact fiber in dynes per

square centimeter.
r Radius of intact fiber in centimeters; r = r2 when S = 2 ,um.
S Sarcomere length of fiber in microns; So equals the initial value; S = S3 at 3 ,um.
x Horizontal distance from center of tube, -L < x < L.
y Radius of sarcolemmal tube in centimeters; y = yo at L = Lo; y = ys at S =

3 Mm.
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6 Sarcolemmal thickness equals 0.1 ,um.
O'L, c, Longitudinal and circumferential Poisson's ratios.

METHODS

A single fiber of the semitendinosus of female Rana pipiens was held, at room temperature
(about 22°C), by its tendinous ends with two forceps, one of which was movable and the
other of which was fixed to a Pickering Core LVDT transducer (model no. 7411, Pickering
and Company, Plainview, N.Y.). The experimental apparatus (Fig. 1) was designed by Mr.
James Bryan. The transducer output was fed to a bridge, whose output was 5.5 mV/dyn and
linear to 200 dyn. The bridge output was analyzed with an averaging digital voltmeter and
could be read, over a 1 min period, to -1.1 mV. The fiber was kept in Ringer's solution,
whose composition is, in milimolars, K+, 2.5; Na+, 120; Cl-, 121; Ca2t, 1.8; (HPO4),
2.15; (H2PO4)-, 0.85.

Regions on the intact fiber were marked initially by dispersing graphite particles in the
bathing solution. The tension-length analysis of the whole fiber was made by stretching it in
quick steps, starting first at a rest length at which the fiber was just horizontal and waiting
5-10 min before making a measurement. Tension was recorded and photographs of the
muscle at high power were compared with photographs of an immersed micrometer scale
in order to calculate fiber radius and sarcomere length S. The radius is not exact because
the fiber is not a perfect cylinder (Blinks, 1965). The muscle was stimulated three times before
and after an analysis, so as to reduce hysteresis effects from stretching (cf. Buchthal et al.,
1951, p. 40).
The sarcolemmal tube was formed at rest length or at about 1.4 times rest length of the

whole fiber by squeezing the fiber with forceps or by raising it out of solution for 1 min.
The fiber first was photographed along its entire length at low power. 1 h after damage,
regions of clot and sarcolemmal tube had stabilized and the damaged fiber was photographed
again along its entire length. Positions of the identified graphite markers and connective
tissue attachments permitted, in some cases, evaluation of the rest length and degree of elonga-
tion of a tube (cf. Casella, 1950).
The damaged muscle was stretched in quick steps and photographs taken and tensions

obtained after 10-15 min. After a quick stretch, tension rose quickly and then decreased

(a) (b)

Screwdrive T

5 Bridge

To

0 0 Bridge
1 1w b ~~~Web(0.lt I n.)-?Forceps - Objective

Solution-
Muscle Slot for

Manipulotor Base
Transducer

FIGURE 1 Muscle-holder and tension-recording device. The single fiber is held by two
forceps in Ringer's solution and can be observed and photographed through the micro-
scope objective. The left holder in a can be moved by a screwdrive to stretch the muscle.
The right is fixed and will bend with tension at the web (b), moving the core of the trans-
ducer, whose output is fed to a bridge and then fed to an averaging digital voltmeter.
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with time, possibly because of relaxation of clotted parts of the fiber as well as of the tubular
sarcolemma. Tension stabilized after 10 min, and the dimensions of tubes photographed 10
and 15 min after a quick stretch did not differ. We did not photograph tubes within 10 min
after a stretch. Any hydrostatic pressure differences after a quick stretch should disappear
within 1 min, since the sarcolemma, even when attached to the fiber, is very permeable to
water (Blinks, 1965).

Length-tension characteristics of individual sarcolemmal tubes were determined by meas-
uring the distance between identified points, the tubular diameter, and curvature. Reversi-
bility of extension was tested by returning the damaged fiber to zero tension after different
extensions.

Analysis of Cutvature

Photomicrographs of a sarcolemmal tube at different extensions (Figs. 6, 7) were enlarged
and the tube was divided into four quadrants (Fig. A 1), y > 0, x > 0; y > 0, x < 0; etc.
The origin (x = y = 0) and x axis were chosen by eye for symmetry, and the coordinates
of the curve in each quadrant were obtained in digital form with a decimal converter model F
(Benson-Lehner Corp., Van Nuys, California). Errors arose in the choice of origin and of
x axis, and because of some asymmetry of the tube. In addition, the ends of the tube may
not be exactly circular (Fields, 1970), as is assumed in the model of Appendix I. The co-
ordinates of the curves in two or four quadrants were pooled as a function of x and were
fit to an even polynomial by least squares on a remote time-sharing IBM digital computer
(Call/360, Service Bureau Corporation, Statpack polynomial regression program). Two
quadrants composing one entire side of the tube were used, rather than four, when the other
side had pieces of carbon particles that obscured its surface outline.
The data were fit by an even polynomial of the form,

y(x) = ko + k2x2 + k4x4 + * * * +k2nx2n, (n =1, 2, ), (1)

where the k2n are constants. It was found that a fourth or sixth degree polynomial usually
gave a satisfactory fit, and higher degrees did not give significantly better fits at the P =
0.05 level (Brownlee, 1960). The k2n were usually positive for fourth or sixth degree fits.

Fig. 2 shows a sixth degree polynomial fit of data from four quadrants (both sides) of a
tubular profile. Deviations from the curve are due to incomplete symmetry of the quadrants
and errors in choices of origin and coordinate axes. The 12th degree polynomial fit was not
significantly better than the 6th, but had variations in the first and second derivatives of y
which prohibited application of the model to the curve (see below).
The polynomial of Eq. 1 was differentiated to give y' and y" as a function of x, which

together with the observed values of yo, y, and H, were inserted into Eq. A 9 to obtain equa-
tions of the type,

yy = Xi(x)a + X2(x)b, (2 a)

or

a = -X ) b + Y(x)y"(x) (2 b)

where a and b are variables and Xl(x) and X2(x) are functions of x, as defined in Eq. A 9
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FIGURE 2 Fit of polynomial equation to data from four quadrants of tube. The y co-

ordinates of each quadrant are plotted as a function of x, and the curves show the least

square fits of a 6th and 12th degree polynomial equation (Eq. 1).
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FIGURE 3 Plots of a against b as given by Eq. 2 b. The numbers associated with the lines

are the values of x(Gm) in Eq. 2 b. The analysis is for the tube of Fig. 2. The sixth degree
polynomial (Eq. 1) gives good focusing if both sides of the tube are analyzed together (four
quadrants), or if either side is analyzed independently. The values of a and b for both sides

are bracketed by the values obtained from either side.
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The variable a was plotted as a linear function of b for different values of x in 5-10 Am steps
between ±L. If a and b satisfy Eqs. 2 for each x, linear plots of b against a should overlap
or focus at this point of agreement, from whence the parameters c21 and c22 can be obtained.

Fig. 3 shows plots of a against b for a sixth degree polynomial fit to four quadrants
and to each of the two sides of the sarcolemmal outline of the fiber in Fig. 2. The region
of overlap or focusing, in which a and b satisfy Eqs. 2 for all x, was apparent in all condi-
tions. The values of a and b were 4.8 X 104 cm-2 and 3.6 X 10-2 for the first side and
2.4 X 104 cm-2 and 1.7 X 10-2 for the second side. They bracket the values from the
four-quadrant fit, 3.3 X 104 cm-2 and 2.5 X 10-2 for a and b, respectively. In view of the
large variance among tubes of the parameters calculated from a and b (Table I), the error
in choosing one side or the other or all four quadrants together is unimportant for the
general results.

RESULTS

Intact Fiber

The length-tension curves of 10 of 13 intact fibers and of their 13 respective sarco-
lemmal tubes were determined. Fiber extension e at sarcomere length S is defined
by the following equation, where So is fiber sarcomere length at rest

_S - so3e-SO (3)

If SO = 2 ,um, then e = e2; if SO = 3 ,um, e = e3.
The length-tension curve of an intact fiber is shown in Fig. 4. The elastic modulus

of the fiber can be obtained by fitting the following equation to the data (cf. Sten-
Knudsen, 1953),

H1irr2 = .f {exp (A[e2 - B]) - I} dyn/cm2. (4)

A, fo, and B are constants, and H is the horizontal force on the fiber. r2 is fiber
radius at S = 2 MAm, calculated by the following equation at constant fiber volume
(Huxley, 1953),

r2 = r V/So/2 ,um, (5)

where r is fiber radius at So. wrr2 was chosen as the reference cross section because
the minimal sarcomere length at which passive tension can be exerted is 2 Mum (Hux-
ey, 1964).

Figure 5 is a plot of In (H/7rr') against e2 for lumped observations, together with
the least squares curve obtained by Eq. 4. The curve has the following constants:
A = 4.04, B = 0.166, andfo = 9.8 X 104 dyn/cm2.
The elastic modulus at different extensions of the intact fiber is defined by the
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FIGURE 4 Tension-length curve of single fiber and of sarcolemmal tube formed from that
fiber. The points can be fit roughly by the same curve. S. L., sarcomere length.

following equation (Condon and Odishaw, 1958; Sten-Knudsen, 1953):

E = d(stress) = d(H/7rr2)dyn/CM2. (6)
d(strain) de2

Differentiating Eq. 4 with respect to e2 and using the definition of Eq. 6 gives,
E = fo exp (A[e2-B]). (7)

By Eq. 4, e2 = B at fiber rest length, and from the value of B found above, the
mean So = 2.33 ,um, in agreement with the value of 2.45 ,um found by Edman
(1966). The elastic modulus of the fiber at rest length is fo, or 1 X 105 dyn/cm2,
agreeing with the value found by the elastimeter method (Rapoport, 1972), but
less than reported by Sten-Knudsen (1953) and Buchthal et al. (1951). These latter
authors used rest tensions H > 0 and therefore started out at rest sarcomere lengths
>2.3 um (see Discussion).

Sarcolemmal Tube

Figs. 6 and 7 are photographs of sarcolemmal tubes at different longitudinal ex-
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FIGURE S Lumped data on whole fibers in tension-length relation. r2 is the calculated
radius of the fiber at S = 2 lim, assuming constant volume with extension. H is the longi-
tudinal force in dynes. The data are fit by least squares to Eq. 4.

tensions e, defined by the equation,

ds- dso (8)
dso

dso is the distance along the x axis between two identifiable points at tube rest length
(when the damaged fiber lies just horizontal), and ds the distance after a stretch
(Fig. A 1). Not enough points could be identified to form a grid on the tubular
surface so as to show a consistent relation between ds and the position x along the
tubular axis. Because of this experimental limitation, we took e as the mean ex-
tension between pairs of identified marks along the axis and could not use Eq. A 10
to calculate a,. EL was approximated by letting C12G = O, thereby neglecting cir-
cumferential elasticity in the equation. From the stress-strain (length-tension) ob-
servation on a sarcolemmal tube, EL = HI(27ryobe) (Cf. Eq. 6). Sarcolemmal thick-
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FIGURE 6 Sarcolemmal tube at different extensions. The numbers in parentheses are
paired values of extension e and tension H. The figure shows reversible extension to e =
0.33, although radius yo has decreased (compare Figs. 6 a, f, h). A singular solution for o-
and EC could be found for each of the extensions in the figure by the method of Fig. 3.
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FIGURE 7 Sarcolemmal tube at different extensions. The numbers in parentheses are
paired values of extension e and tension H. The figure shows that the tube is stretched ir-
reversibly at Fig. 7 f. A singular solution for E, and a, could be obtained only for the tubes
in Figs. 7 b-d by the method of Fig. 3.
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ness a was taken as 0.1 ,um. H is the horizontal force on the tube, and yo the radius
at end of tube.
Table I illustrates observations and calculations at different extensions of the

tube of fiber no. 8. At e = 0.56, yo is markedly reduced, probably because the soft
clot masses holding open the tubular ends are squeezed by circumferential, purse-
string tension (Figs. 6, 7). The median values of the calculated parameters are listed
in the table without being corrected for changes of yo, since it is not clear how EC,
SL, or a, would change. EL in Table I can be normalized to yo = 61 Am at e = 0
by multiplying it by yo (at e)/61 ,um.

Results on 13 tubes and fibers are summarized in Table II. Mean fiber sarcomere
length before tubular formation is 2.45 ,um. Fibers 1-4 and 11-13 were stretched to
between 20 and 40% when the tubes were formed, and the others were kept at rest
length. Tubes 1-5 and 9-10 were formed by squeezing, the others by withdrawal
from Ringer's solution.
At its rest length at e = 0, the sarcolemmal tube is wider by 18 % and longer by

26 %, as compared with the corresponding region between two identified marks on
the intact fiber. The 26% extension is somewhat smaller than the 46 % initial ex-
tension found by Casella (1950), and does not depend on the fiber extension at
which the tube was formed nor on the method of formation.

In Table II, tubular elastic parameters are calculated for extensions at which a
unique a and b are found for the entire length of the tube by the method of Fig. 3.
The maximal mean extension e(max), at and below which unique a's and b's are
found, is less than 0.42, corresponding to a mean horizontal tension H(max) = 8.2
dyn. Furthermore, e(max) does not differ (P < 0.05) from the upper limit of
reversible extension e(rev), which is the extension beyond which the tube does not

TABLE I

ANALYSIS OF SARCOLEMMAL TUBE OF FIBER NO. 8

e H Yo EL EC EL/EC Or L ELYO/61 ¢C

dynz JIm dyni/cm2 X 107 dyn/Cm2 X 107

0 0 61.0
0.122 0.4 56.6 0.92 0.45 2.1 0.53 0.86 0.26
0.28 2.0 51.6 2.20 0.25 8.8 0.85 1.88 0.10
0.39 3.6 43.7 3.35 0.88 3.8 0.40 2.42 0.10
0.56 11.8 14.3 23.5 1.02 23.0 0.63 5.53 0.03

2.78* 0.67* 6.3* 0.58* 2.15* 0.10*

SO = 2.59,um. Extension (e) was determined for different tensions (H), and yo, the end tubular
diameter, was measured. The longitudinal and circumferential elastic moduli were calcu-
lated at different extensions as EL = H/(27ryobe) and EC = ayoH/27rO. The Poisson's ratios
were calculated as 0L = bEL/E,, and -,, = OTLEc/EL = b. ELYo/61 ,um represents the longitudinal
elastic modulus normalized to the sarcolemma radius of 61 Aim at e = 0.
* Median.
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TABLE II

ANALYSIS OF SARCOLEMMAL TUBES

Initial Initial
Fiber widen- exten- yFibr

So ingofsin- e(rev) H(max) e(max) yo at EL E, EL/EC rL O'no. ing of sion of e= 0
tube tube

j.m Fractional dyn Am dyn/cm2 X 107
chantge

1 2.48 0.35 - _ 2.8 0.27 46.3 1.91 0.27 4.5 1.2 0.26
2 2.30 0.43 - 8.4 0.42 47.0 6.31 0.45 11.1 1.5 0.20
3 2.24 0.37 0.80 9.8 0.21 54.0 15.5 1.09 15.1 2.3 0.18
4 2.32 -0.23 0.18 0.15 1.2 0.05 30.2 16.4 0.16 108.0 3.5 0.04
5 2.36 -0.09 0.26 0.44 24.2 0.30 32.7 39.3 1.30 36.5 1.2 0.03
6 2.36 0.39 0.44 4.0 0.50 56.0 2.46 0.88 2.8 0.73 0.31
7 2.33 -0.23 0.45 0.47 3.8 0.34 25.2 6.70 0.53 26.0 0.92 0.06
8 2.59 0.43 0.10 0.65 11.8 0.56 61.0 2.78 0.67 6.3 0.58 0.10
9 2.23 0.20 0.25 0.38 2.8 0.33 53.0 2.15 0.22 8.2 0.99 0.12
10 2.24 0.15 0 0.70 9.6 0.46 39.0 9.04 1.30 8.2 1.5 0.15
11 2.49 0.12 0.05 0.64 8.1 0.63 58.9 2.91 1.05 2.9 0.70 0.27
12 2.30 0.18 0.14 0.58 10.4 0.63 55.0 4.24 2.26 2.0 0.74 0.36
13 2.27 0.30 0.34 0.37 9.4 0.32 48.0 8.56 1.27 j 6.8 1.4 0.18

Mean 2.35 0.18 0.26 0.48 8.2 0.42 46.6 6.31* 0.88* 8.2* 1.2* 0.18*
4SE|+0.03 |4±0.07 ±0.07 +0.06 +1.6 ±+0.04 ±+2l3.2

The rest sarcomere length of the intact fiber SO is given in the second column. The third column shows
the initial widening of the tube as the fractional increase of yo with reference to the radius r of the intact
fiber at SO. The fourth column has initial elongation of a tubular region at tubular rest length as compared
with its rest length in the intact fiber. The fifth column gives the maximum extension from which the tube
returned to its original rest length, e(rev), in those tubes in which reversibility was studied. The sixth and
seventh columns have the paired maximal tensions H(max) and extensions e(max) at or below which singu-
lar values of E, and or could be obtained by the model. yo (eighth column) is the radius of the sarcolemmal
tube at e = 0. EL (ninth column) is the median longitudinal elastic modulus for a tube, calculated as EL =

H/(2iryo6e), where yo is the end radius at e. EC (10th column) is the median circumferential elastic modulus
for a tube, calculated as EC- ayoH/2rb at different extensions. EL/Ec is the median value of the ratio of
the moduli, and UL and o- are the median longitudinal and circumferential Poisson's ratios. Medians were
chosen to reduce the effect of extreme values on estimates. In the table, the median value for EC does not
necessarily correspond to that of EL or of EL/E,. For this reason, EL, EC, and EL/EC may not agree exactly.
* Median.

return to rest length after tension is released. Equivalence of e(max) and e(rev)
shows that the model of Appendix I can be used to find elastic parameters of the
tube only for reversible tubular extensions.

Table II shows that the median value of EL, uncorrected for changes in yo, is
6.3 X I07 dyn/cm2 for mean extensions up to e(max) = 0.42. The 95 NO confidence
interval for EL is 2.9-15.5 X 107 dyn/cm2. EL, if normalized to yo at e = 0 as in
Table I, is 4.9 X 107 dyn/ cm2.
EL at e = 0 was estimated by extrapolating the following equation, which repre-
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sents the tubular length-tension relation (cf. Eq. 4),

H = [exp (A'e) - 1] dyn. (9)

Fig. 8 is an example of a least squares fit to the logarithmic expression of Eq. 9
that gives the constants A' and fo. The longitudinal elastic modulus at tubular
rest length (e = 0) equals foI/27ryob (cf. Eq. 6), and was calculated from the best
fit constants for the individual tubes where yo equals the tubular radius at e = 0.
The median of EL at e = 0 is 1.2 X 107 dyn/cm2 (95 % confidence interval is 0.5-
7.0 X 107 dyn/cm2), smaller than the 6.3 X 107 dyn/cm2 which is found for the
entire region of reversible stretch. The difference is due to the arbitrary extrapolation
and to an increase of EL with extension (Table I, see Discussion).

Circumferential Elastic Modulus E, and Poisson's Ratios 0L and a-,

The model of Appendix I was used to calculate these quantities (Tables I and II).
From the definitions of Eqs. A 2 and A 9, it can be shown that E, = ayOH/2irb,

10

I

Fiber no. 8

v.,

0 0.2 04 06 08 1.0
e

FIGURE 8 Least square fit of Eq. 9 to length-tension observations on sarcolemma of fiber 8.
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aL = bEL/EC and a, = TLEC/EL = b. a. was not calculated from Eq. A 10 because
of the experimental limitation discussed above. In Table II, the median of Ec =
0.88 X 107 dyn/Cm2 (95 % confidence interval is from 0.3 to 1.3 X 107) and of
EL/EC = 8.2 (95 % confidence interval is from 2.9 to 26.0). Thus, the sarcolemma in
the region of reversible extension is anisotropic, being less extensible in the longi-
tudinal than in the circumferential direction. The median of aL iS 1.2 (95 % con-
fidence interval is 0.7-1.5), and of u. = 0.18 (95% confidence interval is 0.06-0.36).

Relation of Elastic Properties of Sarcolemmal Tube to Its Properties in the
Intact Fiber

The length-tension curve of an individual sarcolemmal tube may fall on, below,
or above the corresponding fiber curve when not corrected for rest-length exten-
sion. Both curves may overlap, as in Fig. 4 (cf. Ramsey and Street, 1940), but if
the tube is first stretched irreversibly to e = 0.8, its curve will fall below that of
the fiber (see Sten-Knudsen, in Buchthal et al., 1951, p. 111). As the limit of re-
versible stretch is approached, the sarcolemmal tube becomes less extensible and
EL increases (Table I). The length-tension curve is hyperbolic.
The combined length-tension relation for the sarcolemmal tubes of Table II is

shown in Fig. 9 as a function of sarcomere length, which was calculated for each
tube by noting the rest sarcomere length of the intact fiber and the initial extension
of the tube at e = 0. The figure shows that the rest length of the tube is equivalent
to a fiber sarcomere length of about 3 ,um, in agreement with observations by Po-
dolsky (1964) and Rapoport (1972). When compared with the combined length-
tension curve of intact fibers, it would appear that the sarcolemma contributes to
fiber tension to a small degree only when S > 3 ,um.

It should be recognized, however, that the length-tension relation for the sarco-
lemma around the relatively incompressible fiber myoplasm will differ from the
relation for the empty tube. In Appendix II, we use the two-dimensional stress-
strain matrix of Appendix I to derive the length-tension contribution of the sarco-
lemma to intact fiber tension from estimated elastic moduli and Poisson's ratios
of the tube. The sarcolemmal radius in the fiber does not change along the longi-
tudinal axis (y the same for all x), and can be calculated from the constant volume
constraint on the fiber at different extensions. Fig. 9 gives one sarcolemmal length-
tension (H) curve calculated with use of Eqs. A 19 and A 21 and with values of
elastic parameters taken from Table II: EL = 6.31 X 107 dyn/Cm2, EC = 0.88 X
107 dyn/cm2, aL = 1.2, a, = 0.18, a = 0.1 MAm, and F was taken as zero at S = 3
,um in the intact fiber, when radius Y3 = 40 ,um.

In Eq. A 19, the term EL6/(l - aLcrC) is the main scaling factor for calculating
F and H; as the product aLac -* 1, H -O o. The other term in Eq. A 19 depends
on initial circumferential stress G,, which is unknown. For G3 = 0, Fig. 9 shows
that the calculated sarcolemmal contribution to intact fiber tension is about 20%
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FIGURE 9 Calculated sarcolemmal contribution to whole fiber tension at different sarco-
mere lengths. The mean curve for the intact fiber was drawn by eye from observations, given
as means ±tSE. The curve for the sarcolemmal tube was taken from the median values of
length-tension observations of individual tubes, corrected for initial extension and fiber
sarcomere length. The curve for the sarcolemma as part of the intact fiber was calculated
by Eqs. A 19 andA 21 for G3 = 0, using median values for elastic parameters from Table II.
It was assumed that F = 0 at S = 3 jm, y3 = 40 ,m, and a = 0.1 ,um.

for S between 3 and 4.5 Mm. It is less if G, > 0. Similarly, for these extensions the
pressure exerted by the sarcolemma on the myoplasm can be estimated with Eqs.
A 20 and A 23 under the same initial conditions used to calculate H in Fig. 9. P <
7 X 103 dyn/cm2 if G3 = 0, and P < 1.9 X 104 dyn/cm2 if G, = 20 dyn/cm.

DISCUSSION

There are two ways to interpret length-tension observations on the sarcolemmal
tube (Casella, 1950). The first is that the empty tube, when elongated, does not
differ elastically from the sarcolemma in the intact fiber. If this were so, these ex-
periments show that the sarcolemma does not contribute to whole fiber tension at
S < 3 ,m, and at S > 3 Am may contribute about 20%. The lack of a sarcolemmal
contribution below 3 Mm agrees with observations made with other methods (Rapo-
port, 1972; Podolsky, 1964). Between 3 and 4 Mm, Rapoport (1972) estimated the
contribution to be about 10% and Podolsky (1964) suggested it was about 80%.
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Another interpretation of the results is that the longer rest length of the sarco-
lemmal tube, as compared with its length in the intact fiber, indicates an irreversible
change of sarcolemmal structure. The tubular sarcolemma does not have an intact
plasma membrane (Mauro and Adams, 1961), but the plasma membrane would
be expected to contribute little to sarcolemmal tension (Hober, 1945). If the sarco-
lemma changed structure, reconstruction of sarcolemmal curves as a function of
sarcomere length (Fig. 9) is not justified.

Stripping the sarcolemma from a fiber in oil may extend the fiber to S = 4.5
JAm (Podolsky, 1964). Since this is the estimated limit of reversible tubular exten-
sion, and may require a tubular tension of 50 dyn (Fig. 9), it is possible that the
sarcolemma is deformed when the tube is being formed. This possibility is not dealt
with by our experiments, but the agreement of tube rest length with rest length by
other estimates suggests that the sarcolemmal tube is not drastically changed when
formed.

In these experiments, we specify the reference sarcomere length of the intact fiber,
the rest-length extension of the sarcolemma, and the region of reversible extension.
These three factors should be considered if tubular results are to be related to intact
fiber physiology. Comparison with data when extension is not referred to sarcomere
length of the fiber is difficult because the definition of rest length varies (Deleze,
1961; Sten-Knudsen, 1953; Buchthal et al., 1951), and studies at extensions e >>
0.48 apply to irreversibly deformed tubes (cf. Sten-Knudsen, in Buchthal et al.,
1951, p. 111). Fields (1970) worked at tensions > 1000 dyn/cm, while dividing
the values of H in Table II or Fig. 9 by sarcolemmal circumference shows that
1000 dyn/cm would produce irreversible deformation. In addition, Fields did not
refer sarcolemmal extensions to a reference sarcomere length. For these reasons,
it is difficult to agree with his conclusion that the sarcolemma limits fiber length
between 70 and 140% of fiber rest length (Fields and Faber, 1970).

According to the model of Appendix I, the tubular sarcolemma is characterized
by four elastic coefficients, the circumferential and longitudinal elastic moduli, and
Poisson's ratios. The model leads to equations which can be used to obtain these
coefficients from the horizontal tension on the tubular ends and the curvature and
diameter of the tube.
The data are not good enough to show if ds is related to x for the tube, so that

only three coefficients could be calculated initially, EL, EC, and C-L. a was obtained
from them because of the reciprocity relation of Eq. A 2 d. Had Eq. A 10 been ame-
nable experimentally, it could have been used to check the value of ¢c.
The elastic coefficients vary from preparation to preparation, perhaps because

of differing quantities of connective tissue or differing degrees of irreversible de-
formation. Even with this variability, in some cases it appears that EL and EC in-
crease with extension (Table I). This is expected for EL from the hyperbolic nature
of the length-tension curve of the sarcolemma (Figs. 4, 9). The assumption that
the tube is linearly elastic is not entirely correct, which suggests that the parameters
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calculated by means of the model should be considered as approximations. Also,
they apply only to the region of reversible tubular extension.
For reversible extensions the sarcolemma is anisotropic, being less extensible in

the longitudinal direction (EL >> EC). This conclusion extends Fields's (1970)
demonstration of anisotropy at high tensions and irreversible extensions to low
tensions and reversible extensions. The longitudinal modulus EL for S between
3 and 4 Am is 6.3 X 107 dyn/cm2, close to but somewhat higher than the 5 X 106
dyn/cm2 found by the elastimeter method (Rapoport, 1972). EL calculated by
extrapolation to e = 0 is 1.2 X 107 dyn/cm2, and not significantly different from
the elastimeter value.

Sarcolemmal extension to S = 4 ,um does not represent intrinsic extension of
collagen fibers which compose a large part of the sarcolemma, since the elastic
modulus of collagen is about 1010 dyn/cm2 (Harkness, 1968). The comparatively
low sarcolemmal modulus may be due to elastic fibers, to a thick polysaccharide-
protein basement membrane (cf. Mauro and Adams, 1961; Carton et al., 1962;
Abood et al., 1966), or to progressive recruitment of slack collagen fibers, which
are oriented mainly longitudinally in the sarcolemma (Boyde and Williams, 1968).
If the sarcolemmal tube has a knit-stocking array (cf. Mulling and Guntheroth, 1965),
it could be extended longitudinally and would contract circumferentially with a
low longitudinal elastic modulus EL before collagen is stretched. In addition, aL
may be large for a loose fiber network, depending on the orientation of the knit-
stocking array with respect to the direction of extension.

Poisson's ratio for natural rubber and gelatin is 0.5 and represents extension at
constant volume (Condon and Odishaw, 1958). Since L ~- 1 for the sarcolemma,
much of the circumferential shrinkage with tubular extension can be ascribed to
lateral contraction as represented by Poisson's ratio. We plan to compare area
measurements of the tube with those of a model tube with known elastic parameters.

APPENDIX I

STRESS-STRAIN PROPERTIES OF THE ELASTIC CYLINDER

RICHARD FITZHUGH and STANLEY I. RAPOPORT

From the Laboratory of Biophysics, National Institute of Neurological Diseases and Stroke,
National Inistitutes of Health, and the Laboratory of Neurophysiology, National Institute
of Mental Health, Bethesda, Maryland 20014

Fig. A 1 represents the stretched and nonstretched sarcolemmnal tube. In Fig. A 1 a, the non-
stretched tube is a cylinder with radius yo and length 2L0. When a horizontal force H dynes
is applied to one end, the radius decreases from yo to ym at x = 0 and the tube elongates
(Fig. A 1 b). We write the relation between strain and stress as,

strain vector = elasticity matrix X stress vector
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x- x

-Lo ° Lo -L ° L
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Yo;dJjjjC Ydl j Fyd# e F Fy + d (Fy)] do
dds-

G ds

(c) (d)
FIGURE A 1 Model of sarcolemmal tube in unstretched and stretched states. (a) Tube is
cylindrical and unstretched, with radius yo and length 2Lo. (b) Tube is stretched to 2L, radius
at end remains yo and decreases to ym at x = 0. (c) A small region on the unstretched surface
with sides yo do and dso is on left, which become ydo and ds in stretched state. (d) The
circumferential forces on the small stretched region are Gds and the longitudinal forces
tangential to the surface in the x direction are Fydq and IFy + d(Fy)] d4+.

or

ds-dso r
dso cll c12 F

y - x, (Al

Yo C21 C22

where (ds - dso)/dso is the longitudinal extension and (y -yo)/yo is the circumferential
extension. In Fig. A 1, dso and yo dqb are unstretched differential lengths. In Fig. A 2, F is
the longitudinal stress, G the circumferential stress (in units of dynes per centimeter), and
they are shown vectorially in Fig. A 1 d. It is assumed that there is no pressure gradient
across the membrane. The ci, are constants in centimeters per dyne. They can be converted
to elastic moduli (dynes per square centimeter) where 5 is the sarcolemmal thickness, EL
and EC are the longitudinal and circumferential moduli of elasticity, respectively, and 0L
and ac are the longitudinal and circumferential Poisson's ratios, respectively. cl and c22
are defined by the following identities,

Cii= 1EL6,

C22= l/Es. (A2a)

The longitudinal Poisson's ratio is the ratio of circumferential contraction to longitudinal
extension, and the circumferential ratio is the ratio of longitudinal extension to circum-
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[Fy + d(Fy)]dl.5/ - - ~~~~do/2

d,p G ds d G ds

Fydo Fyd4osin6
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ds
dy

dx

(c)

FIGURE A 2 Analysis of stress and curvature of model of sarcolemmal tube. (a) Part of
longitudinal cross section of the tube. The longitudinal forces shown in Fig. A 1 d are
given here, and the relation of Fyd-/ to the horizontal and vertical forces is shown as a
function of the angle 0 between the horizontal force and the tangential surface in the x
direction. (b) A circumferential cross section of the tube at its surface. The circumferential
forces are Gds. do is shown in Fig. A 1 b. (c) The right-triangular relation between dx, dy,
and ds.

ferential contraction, defined by (Love, 1944, p. 106; Westergaard, 1952),

Y =- O ds- dso for G = 0 F 0 0,
Yo dso G

ds-dso -o2 YO for F=O,G d0. (A2b)
dso Yo

Insertion of Eqs. A 2 a and b into Eq. A 1 gives the following identities for the cross coeffi-
cients of Eq. A 1,

C12 = - IEc6s

C21 = -L/EV . (A 2 c)

The cij satisfy the following equality (Love, 1944, p. 107):

C12= C21 (A2d)
From Eq. A 1, we have

(y-yo)/yo = c2lF + c22G. (A 3)
The geometric relations of Fig. A 2 are used for the following derivations. In Fig. A 2 a,

the horizontal stress for length yd4b is (H/27ry)(yd45) = (H/27r) d+5. The longitudinal stress
tangential to the surface and to the left is Fyd.. From the diagram

H do/27r = Fyd4 cosO. (A 4)
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Dividing by d4 and rearranging,

F = (H sec 0)/27ry. (A 5)

The circumferential stress (Fig. A 2 b) is Gds, tangential to the surface. The net vertical
force due to G is downward and is 2Gds sin (d45/2), where the factor 2 means that stresses
Gds on the left and right have been taken into account. For d45/2 - 0, sin (d4/2) c d4/2.
The net upward force is obtained from Fig. A 1 a by subtraction, and is d(Fy sin 0) d+. For
vertical force balance,

d(Fy sin 0) = Gds. (Ah6)
From Eq. A 5,

Fy sinO = Hy'/2r, (A 7)

since y' = dy/dx = tan 0. We note that

ds/dx = sec = (1 + y'2)1/2 (A 8 a)

Substitute from Eqs. A 7 and A 8 a into Eq. A 6 to get the expression,

Hy"_f)12Hy = G(1 + yt212 (A 8b )27r

Eliminate F, G and sec 0 from Eqs. A 3, A 5, A 8 a, and b to obtain

yy -ay(y - yo)(l + y'2)1/2 - b(I + y'2) = 0,
where

a = 27/(cnyoH) > 0,

b =-c21/c22 > O. (A9)

If y, y, and y" are determined from the data as a function of x, a and b can be found graphi-
cally (see Methods).

Eq. A 1 gives,

(ds - dso)/dso = cjjF + cuG. (A 10)

F and G are obtained from Eqs. A 5, A 8 a, and b and substituting into Eq. A 10 gives

(ds - dso)/dso = clHH(1 + Y'2)1+2 Hy" (A l)
2i7ry + cu 2ir(l + y/2)112

Rearrangement gives,

yy 2r(ds-dso)"dso y(l + y'2)112 + Cll (1 + y'2) = 0. (A 12)
cH Cun

If (ds - dso) /dso is known as a function of x, then this equation may be solved for cii and
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Ci2. In practice, it was difficult to make this evaluation, so that Eq. A 12 could not be used.
Instead, Eq. A 10 was solved for cil by letting F = H, G = 0 (see text). Eq. A 9 was used
to solve for c22 and c2l. c12 was calculated from the reciprocity relation of Eq. A 2 d.

APPENDIX II

LENGTH-TENSION PROPERTIES OF THE SARCOLEMMA IN THE INTACT FIBER

STANLEY I. RAPOPORT and RICHARD FITZHUGH

We assume that the sarcolemma has the same elastic coefficients in the intact fiber as in the
tubular preparation and that it is linearly elastic. Its stress-strain relation is given by Eq. A 1,
in which ds and dso are replaced by S and SO, because the sarcolemma is cylindrical (y the
same for all x) and S is the length of a uniformly stretched section of fiber. Let F = 0 at
S = 3 Mm for the sarcolemma in the intact fiber; this approximately agrees with tubular
observations. Let y3 equal the sarcolemmal radius at S = 3 ,um, and let yo be the radius
of the sarcolemma alone (myoplasmic contents removed) for the condition G = F = 0.
IfG at 3 Mum does not equal zero in the intact fiber, then by Eq. A 1,

Y3-Yo c22G3, (A13)
Yo

G3 equals the circumferential stress at S = Sa = 3 um. Since the intact fiber stretches at
constant volume it imposes a constraint on the sarcolemma (Huxley, 1953; Shear, 1969).
The sarcolemmal radius y at a sarcomere length S is given in terms of S3,

y=Y3aV57. (A14)
We define extension from a rest length of 3 um as es,

ea = (S - S3)/Ss. (A 15)

Inserting Eqs. A 14 and A 13 into A 1 and rearranging gives:

(v'S-7)(c22Gs + 1)- 1 = c2lF + c22G. (A 16)

SO b - 1.5SO -

Y3 1 F
0

GrG33G
3

(a) (b)

FIGURE A 3 Extension of fiber and sarcolemma at constant fiber volume. The fiber is
stretched from a rest sarcomere length of SO, at which H = F = 0 (a) to a length of 1.5So
(b). Because fiber volume is constant with stretch, the radius of the stretched fiber is y3/V1.5.
The circumferential stress G3 exerts a pressure Ps = G3/ya at rest and a pressure
P = G VT/ys when the fiber is extended (see Eq. A 22). The horizontal force H operates
to extend the fiber. For the purposes of calculation (see text), it is assumed that rest sarco-
mere length So = 3 ,um.
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At S = 3 gm and F = 0, from Eq. A 1 we have

(S3 -SO)SO = c12G3. (A 17)

Substituting Eq. A 17 into A 1, for any sarcomere length S we have,

S (c12G3 + 1) - 1 - cl1F + c12G.
93-

(A 18)

Eqs. A 16 and A 18 are simultaneous in F and G. Using the definitions of Eqs. A 2, A 14,
and A 15, we have,

F 1~EL3 [(1
I - 0-C O-LL

G =
1 - UCOL

+ e3) ( E
G

+E, (5

[OL [(1 + e3) (-a, G3 +

1) - 1

G3 + I
+ ac

E

I/ + e3

1) - I]

+

-1\ + e3

- I)dyn/cm, (A 19)

I dyn/cm. (A 20)

These equations give F and G as a function of extension e3 when the four constants of the
elasticity matrix are known. One important restriction on Eq. A 20 is that G must be > 0.
For instance, if o-, = 0 and G3 = 0, the value of G will become negative, since y is reduced
with extension by the constant volume constraint (Eq. A 14). The requirement that G > 0
implies that the sarcolemma will not contract below its rest circumference but will only
fold up.

The horizontal force on the sarcolemma is H = 2TryF (Eq. A 5). This definition and Eqs.
A 14 and A 15 give:

H = 2iry3FF dyn.
1- ~+ ~e3

(A21)

The pressure P due to the circumferential tension of the sarcolemma is given by the Laplace
equation for a cylinder (Condon and Odishaw, 1958; Rapoport, 1972),

P = G/y dyn/cm2, (A 22)

where y is the cylindrical radius. Eqs. A 20, A 14, and A 15 give P as a function of extension:

p = i/I + e3G dyn/cm2.
Y.3

(A 23)

Since G3 > 0, P > 0.
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