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ABSRAcr Although a variety of types of spike interval histograms have been
reported, little attention has been given to the spike interval distribution as a neural
code and to how different distributions are transmitted through neural networks.
In this paper we present experimental results showing spike interval histograms
recorded from retinal ganglion cells of the cat. These results exhibit a clear correla-
tion between spike interval distribution and stimulus condition at the retinal gan-
glion cell level. The averaged mean rates of the cells studied were nearly the same
in light as in darkness whereas the spike interval histograms were much more regu-
lar in light than in darkness. We present theoretical models which illustrate how
such a distribution coding at the retinal level could be "interpreted" or recorded
at some higher level of the nervous system such as the lateral geniculate nucleus.
Interpretation is an essential requirement of a neural code which has often been
overlooked in modeling studies. Analytical expressions are derived describing the
role of distribution coding in determining the transfer characteristics of a simple
interaction model and of a lateral inhibition network. Our work suggests that dis-
tribution coding might be interpreted by simply interconnected neural networks
such as relay cell networks, in general, and the primary thalamic sensory nuclei in
particular.

INTRODUCTION

The detection and recording of neuronal spike trains by both intra- and extracellular
microelectrode techniques has become an important branch of neurophysiological
investigation. Although these methods have been used extensively for 20 years, the
interpretation of spike trains as carriers of information is not at all clear. Even in
the same organism many different types of spike trains can be found: very random
or very regular, high mean rate or low mean rate, constant in time or time varying.
It is apparent that as with the electrophysiological recording of gross potentials
such as the electroencephalogram (EEG) or the electroretinogram (ERG), the in-
terpretation of neuronal "signals" is a task not easily amenable to the classical
methods of communication theory.
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Both sensory perception and motor commands are represented internally in the
nervous system of living creatures in the form of neural codes. Such codes are the
vehicles for the processing of information and determine what we know as behavior.
It is now recognized that both graded (continuous) activity and spike (all-or-none)
activity are important to neural coding mechanisms. Perkel and Bullock (1968)
described a large number of neural coding possibilities. They concluded that many
different types of codes are present in the nervous system of different creatures and
that many codes may be active simultaneously in a single neural system.

In this paper we discuss the role of regularity or randomness in the temporal
firing pattern of retinal ganglion cells as an information coding parameter in the
visual system. In order to quantitatively examine the regularity of firing of these
cells, we computed the interspike interval histograms under uniform illumination
and under uniform darkness. If we represent a spike train mathematically as a
stochastic point process, then the interval histogram may be considered as the
statistical estimator of the probability density function of interspike intervals. A
regular process has a sharply peaked probability density function, while a random
process has a nearly exponential probability density function. Our experimental
results suggest that some retinal ganglion cells fire much more regularly in the light
than in the dark, while the mean rates remain relatively constant. We refer to the
different interval distributions in the light and in the dark as distribution coding.

Perkel and Bullock (1968) suggest four formal properties for a neural code: (a) the
referent, (b) the transformation process, (c) the transmission process, and (d) the
interpretation process. In the visual system, the pattern of light stimulation incident
on the retina is the referent for retinal coding. The transformation, or encoding
process, occurs in the retina itself. The retina is a complex receptor assembly with
horizontal and vertical interconnections by means of the horizontal, bipolar,
amacrine, and ganglion cells. The physical referent is transformed into an internal
representation in the nervous system, in this case, a representation in the firing
patterns of retinal ganglion cells. The transmission process carries the coded informa-
tion toward the brain along the optic nerve and tract. Our experimental results sug-
gest that the coherence of regular distributions may be maintained in transversing
the optic nerve.
The neural code which has been transmitted must be interpreted at the next level.

In more general terms, it must somehow alter the activity of the next level of neural
structure. Perkel and Bullock (1968) speak of the "recoding" of information at the
next level. In the visual system, the first recoding takes place at several diencephalic
and mesencephalic nuclei. Prominent among these is the lateral geniculate nucleus,
the primary thalamic sensory nucleus of the visual system, which serves as an
interface between information from the retina and information going to the primary
visual cortex. The primary thalamic sensory nuclei are structurally and functionally
quite similar in the visual, auditory, and somatosensory systems. They prepare
sensory information for the well-defined cortical displays outlined by Hubel and
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Wiesel (1963) in the visual system, by Whitfield and Evans (1965) in the auditory
system, and by Werner and Whitsel (1968) in the somatosensory system.

In this paper we pursue mechanisms for the "interpretation" of retinal distribu-
tion coding by examining models for the simple interaction of excitatory and in-
hibitory spike trains. In order for distribution coding to be interpreted or recoded,
it must affect the activity of the network to which it is transmitted. The analysis of
simple interaction models and the lateral inhibition network model in particular
shows that this is indeed possible. The mean rate outputs of these network models
depend explicitly on both the input mean rates and the input distributions. This
result implies that distribution coding could be "recoded" in a network involving
simple interactions of incoming spike trains. The theoretical analysis suggests that
the distribution coding which we observe in the output of retinal ganglion cells
might have functional importance for a relatively simply interconnected structure
such as the lateral geniculate nucleus.

METHODS
Cats, weighing 2-5 kg, were used for this investigation. They were initially anesthetized with
5, 5-diallylbarbituric acid (Dial), 40 mg/kg, for experiments on the retina and with sodium
pentobarbitone (Sagatal [May & Baker Ltd., Dagenham, England]), 40 mg/kg, fortheex-
periments on the lateral geniculate nucleus, injected intraperitoneally together with atropine
sulfate, 1 mg/cat. After the operation, anaesthesia was maintained by means of a continuous
intravenous infusion of sodium pentobarbitone at the rate of 5 mg/h. Initial paralysis of the
the cat was accomplished by intravenous injection of 80 mg gallamine triethiodide (Flaxedil,
May & Baker). Complete paralysis was essential in order to maintain the eyes in a fixed
position. The intravenous infusion fluid contained, apart from anesthetic, also Flaxedil
delivered at the rate of 28 mg/h. The amount of infusion fluid was 6.5 ml/h.
The cats were artificially ventilated by means of a respiration pump. Stroke volume

was set at approximately 20 ml/kg body weight. The respiratory rate was 20/min. The tem-
perature of the cat was maintained by means of an electric heating blanket wrapped around
the cat's chest and belly. A thermistor connected to the electric blanket power supply circuit
enabled the cat's temperature to be maintained at 38°C automatically. The cat's trunk was
supported by a trough and the head was rigidly fixed in a Horsley-Clarke type stereotaxic
apparatus specially constructed so as not to obstruct the visual field.
The pupils were fully dilated with 1% atropine sulfate and 2.5% phenylephrine (Neo-

Synephrine, Winthrop Laboratories, New York). Phenylephrine obviates the need for me-
chanical retraction of the nictitating membrane and eyelids. A range of plastic contact lenses
having inner radii of curvature 8.0, 8.5, and 9.0 mm with three optical powers (in diopters)
(O D, + 1 D, +2 D) for each radius of curvature were used.

In order to record the activity of single retinal ganglion cells in conditions as close to
normal as possible, a special micromanipulator was used (Kozak and Stephens, 1961). The
general principles of recording are similar to those of Talbot and Kuffler (1952) and Brown
and Wiesel (1958). The cat's eye remained unopened, with its dioptric organs intact. The
cornea was protected by a plastic contact lens. A small opening was made in the sclera just
behind the cilliary body. The micromanipulator tube containing a microelectrode was in-
serted through this opening into the vitreous body of the eye.

For the lateral geniculate experiments, a hole usually 12 x 10 mm was drilled in the skull
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above the lateral geniculate nucleus. A bone wax prosthesis was used to prevent pulsation
of the brain and leakage of cerebrospinal fluid (Bishop et al., 1962), enabling a stable record-
ing from single lateral geniculate nucleus cells. Tungsten microelectrodes (Hubel, 1957)
passed easily through the wax and their electrical properties remained good after the passage.

RESULTS

Using the methods described above, tungsten wire microelectrodes (Hubel, 1957)
were inserted into the unopened cat's eye. Before detecting a single ganglion cell,
mass activity was recorded in the dark which could be abolished by illumination of
the retina. Due to the complete paralysis of the extraocular muscles achieved by a
constant infusion of Flaxedil solution and due to the rigid construction of the
micromanipulator assembly, it was possible to record from single units for many
hours. The unit spikes were recorded extracellularly judging from their diphasic
shape and amplitude of a few millivolts.

It is possible that the mass dark activity which is suppressed by the light, originates from
the smallest retinal ganglion cells. These small cells are particularly densely agglomerated in
the region of area centralis (Ganser, 1882; Chievitz, 1889; Zurn, 1902) of the cat's retina.
They seem to be segregated in the upper portion of the optic tract (Bishop et al., 1953; Bishop
and Clare, 1955; Lennox, 1958). On the other hand, we know that the macular bundle of
fibers constitutes the afferent pathway of the reflex pupillary constriction to light (Hess and
Groethuysen, 1929). We can assume, then, that the unresolved mass activity is mainly the
activity of the small cells and fibers and that it is influenced by light in a different manner
than the activity of single large ganglion cells. Thus, the population of single units investi-
gated in our present study is likely to be mainly the large cell population and we shall discuss
the distribution of intervals between spikes recorded from these single retinal units.

In the present study we were interested in a quantitative analysis of the spike
activity of single retinal ganglion cells in the steady state of darkness and moderate
illumination (1-7 cd/m2). The continually maintained activity of these cells could
easily be altered by a sudden change in the level of general illumination or by an
object moved across their receptive field. The spike potentials recorded from a retinal
neuron by a microelectrode were first amplified and then fed into a Schmitt trigger
circuit which generated a brief standard pulse for each spike potential. The standard
pulses were recorded on a magnetic tape and after each experiment they were fed
into an electronic analyzer (RCL 256 channel scaler [Radiation Counter Lab-
oratories Inc., Skokie, Ill.]; Levick, 1962), which was used for analysis of the
distribution of spike intervals in the steady state of light and darkness. The spike
mean rate was continuously recorded during the experiment, and histograms were
computed only for cases where the mean rate was constant.

When recording with a microelectrode extracellularly from the nervous tissue we can
usually pick up high amplitude spike discharges from a single unit close to the microelec-
trode tip and, simultaneously, lower amplitude spikes from more remote units. For the
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analysis of single unit activity it is important that only the large amplitude spikes are per-
mitted to generate standard pulses and the small ones are prevented from doing so. More-
over, we must make sure that every large spike generates a pulse. The fulfillment of these
two conditions is essential for the train of standard pulses to correspond exactly to the train
of spike potentials of a single neuron. In order to secure a reliable triggering, the unit spike
potential was continuously monitored on a cathode ray oscilloscope screen in the synchro-
scopic way. The spike potential itself, after a suitable amplification with a short (about 10
ms) decay time constant, was used to trigger the oscilloscope time base, so that every spike
potential, small or large, could be seen on the screen. Simultaneously, the standard pulses
from the Schmitt trigger were displayed on the second oscilloscope beam. The standard
pulse-triggering level was adjusted so that the pulse appeared every time, and only when, the
large spike potential occurred. The triggering level was watched continuously during the
recording lasting many hours and as soon as the recording conditions changed, the level was
readjusted. We found that for a reliable triggering the record must be free of mains frequency
pickup, the large spike amplitude must exceed at least twice the amplitude of the next smaller
spike and that the spike amplitude must exceed at least three times the background noise
level. When these requirements were not fulfilled, the triggering became unreliable and the
record was discarded. In the case of a reliable triggering, the standard pulses were fed into
a mean rate device which recorded the mean frequency of standard pulses with the integra-
tion time constant of 0.5 s on a continuously moving paper tape. The interval analysis was
made only during such periods of the cell activity when the mean rate of spike discharges
remained constant or varied only slightly. This condition is essential, because the interval
histograms are meaningful only during the steady state of cell activity (Rodieck et al., 1962).

Fig. 1 a shows typical interval histograms of spike trains from two ganglion cells
in the dark. On the left-hand graph the most common (modal) interval length was
8 ms. The shorter and longer intervals were less common. The distribution of
intervals longer than 8 ms was particularly interesting in that the tail of the interval
histogram was to a good approximation exponential. A straight line could be easily
fitted to the envelope of the histogram plotted on semilogarithmic paper. Small up
and down deviations are statistically not significant. Their amplitudes are relatively
greater for lower count numbers conforming with the law of great numbers, the
deviation being equal to the square root of the number of counts.
Another example of an interval histogram of dark firing of a retinal ganglion cell

is shown on the right in Fig. 1 a. Here, the modal interval has the length of about
32 ms. The dead time equals about 4 ms and the distribution of intervals shorter
than 32 ms follows a curved line on the semilogarithmic plot. The statistically
significant deficit of the shortest intervals visible on both graphs suggests that the
common cause is a dead time associated with the refractory period after every im-
pulse in the ganglion cell. The shapes of interval histograms of other ganglion cells
in darkness were usually intermediate between the extreme cases shown in Fig. 1 a.
Fig. 1 b shows typical interval histograms of spike trains of retinal ganglion cells in
the light. They show the characteristic multimodal distributions discussed by Kozak
et al. (1962, 1968) and Bishop et al. (1964). The characteristic feature of the ganglion
cell interval distribution in light is its regularity, expressed by the presence of highly
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FiGuRE 1 Spike interval histograms recorded from cat retinal ganglioni cells. The spike
interval histogram plots the number of times which an interval is observed vs. the length
of that interval and, therefore, serves as a statistical estimator of the probability distribu-
tion of intervals. a shows histograms recorded from retinal ganglion cells in steady darkness
In the left-hand figure the most common (modal) interval length is 8 ms. The form of the
distribution is approximately exponential. The modal interval length of the distribution
on the right is about 32 ms. b shows histograms recorded in steady illumination (1-7 cd/m2).
The distributions observed in the light are extremely regular or multimodal. The presence
of multiple peaks in the interval histograms can be explained by a mechanism of random
deletion from a regular train of impulses. Vertical scales are logarithmic.
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preferred ranges of intervals. Within a preferred range of intervals, i.e. within one

peak of the histogram, the standard deviation is very small and the distribution
resembles a gaussian one. The presence of multiple peaks in the interval histograms
in light can be explained by a process of random deletions from a regular train of
impulses. Such a model does not, however, produce the first group of shortest inter-
vals. It seems reasonable that the peak of shortest intervals (about 3 ms), corresponds
to a multiple (burst) firing of the unit, and not to the main train, which is repre-

sented by the second peak of the histogram occurring around 20 ms.
Fig. 2 summarizes the properties of the distributions for histograms recorded in

the light and in the dark from retinal ganglion cells. This summary emphasizes the
result that more regular, multimodal distributions are associated with illumination,
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FIGURE 2 Summary of the properties of spike activity of the retinal ganglion cells studied
Upper left: preferred intervals in the spike trains of different cells in light and in darkness.
The occurrence of the first peak, second peak, etc. is marked with roman numerals. Every
dot corresponds to a peak, or mode, in the interval histogram. Two graphs on the right: the
number of peaks of interval histograms vs. the mean rate of spike firing. The black dots with
an arrow indicate that there were probably more peaks, though they were not recorded for
technical reasons. The dotted line is drawn to fit the black dots. There is a reciprocal rela-
tionship between the mean rate and the number of peaks in the light. The corresponding
dark activity shows no such correlation. Two graphs on the lower left: distribution of the
mean rates of spike firing of different cells in light and darkness. Note the clustering of rates
in the light and the broad distribution of rates in the dark. The arrows indicate the average
mean rates for the two conditions. The average mean rate in the light is only slightly higher
than in the dark.
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while more random exponential distributions are associated with dark activity.
There is a distinct inverse correlation between the number of peaks of the distribu-
tion in the light and the mean rate. The decrease of the mean rate of the cell firing is
associated with an increase in the number of groups of intervals (in the number of
modes). The longer the intervals, the smaller their numbers and the lower the peaks
of groups. We took 15 as an arbitrary number of intervals of the same length as a
criterion for the existence of a peak, and plotted in Fig. 2 (upper right) the number
of recorded peaks on the histogram vs. the mean rate of the spike discharges. The
black dots with arrows indicate that there were probably more peaks though they
were not recorded because of technical reasons. The dotted line is drawn to fit the
black dots. We can see that there is a reciprocal relationship between the mean rate
and the number of peaks of the histogram. The corresponding graph for dark ac-
tivity (Fig. 2, lower right) shows no correlation between the number of peaks and
the mean rate. (It is possible that where several peaks were observed in the dark case
we were recording from an off-center ganglion cell, that is, one which responds
normally to darkness. If this were true, then the fact that, as a rule, we observed
more regular and multimodal distributions in response to light suggests that the
majority of the cells which were studied were of the on-center type.)

Fig. 2 (lower left) shows the distribution of mean rates of spike activity in light
and darkness. The distribution of mean rates in darkness seems to be monomodal
with the mode around 37 ms. The mean rates in light seem to be grouped into four
groups, around the values of 10, 32, 62, and 92 ms. In Fig. 2 (upper left) the position
of peaks of the interval histograms in light and darkness is displayed. The length of
intervals is plotted on the abscissa. The designation of a given peak as a first one,
second and so on, is marked with roman figures. Above the oblique line the position
of peaks in light is shown, and below in darkness. We can notice that the first peak
in all units both in light and in darkness is around 3 ms. The second peak in darkness
is around 23 ms, the third one about 50 ms, but the third peak is very variable and
occurs rarely.
We could not find any significant differences between the mean rates of spike firing

of the single retinal ganglion cells in light and in darkness (Fig. 2, lower left).
Similarly, Kuffler et al. (1957) have found that the mean rate of spike firing tends
to be similar during light and dark periods provided that sufficiently long periods of
time are allowed for adaptation. Arduini and Pinneo (1962) summarize this state of
affairs by saying that no clear pattern of discharge can be detected in a given unit
during either dark or light adaptation. It is likely that the single unit recording,
especially with metal microelectrodes, does not give a fair sample of all units present
in the retina and the optic nerve. Possibly the microelectrode will pick up the large
ganglion cells and the large optic axons rather than the small ones (Rushton, 1949;
Wiesel, 1960). On the other hand, the recording of unresolved mass activity from the
optic fiber layer of the retina or from the surface of the optic chiasma (Arduini and
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Pinneo, 1962; Bornschein, 1958; Lennox, 1958) is likely to be influenced by the
activity of the far more numerous small fibers.

Fig. 3 shows interval histograms of spike trains recorded from an optic tract axon
in light (A) and in darkness (B). The tip of the recording microelectrode was situated
at the posterolateral border of the lateral geniculate nucleus. The character of the
distributions illustrate much the same pattern as recorded at the retinal ganglion cell
level, multimodal in the light, and nearly random in the dark. This result shows that
the marked coherence of the distributions which were recorded at the retinal ganglion
cell level is maintained in traversing the optic axon to the lateral geniculate nucleus,
rather than becoming dispersed.

The presence of a high peak of preferred intervals close to 20 ms in light (A) arouses
natural suspicions, because the mains frequency was 50 Hz which corresponds to a cycle
length of 20 ms. It would be sufficient that the power supply of our light source was not
properly filtered, in order to produce a 50 or 100 Hz ripple in our light. The mains frequency
could affect our recording and analysis in many ways, such as oscillations of the level of
triggering of the standard pulses and so on. In order to check the hypothesis of a mains in-
terference, we applied our electronic analyzer to find any possible correlation between the
mains frequency and the occurrence of the standard pulses triggered by the neuron's spike
potentials. We set the analyzer for the poststimulus time (P.S.T.) mode, so that the analyzer
was reset (recycled) by the mains frequency. Such analyses invariably indicated that there
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FIGURE 3 Spike interval histograms (15,000 spikes) of spike activity recorded from an

optic axon. The site of recording was at the posterolateral border of the lateral geniculate
nucleus. (A) Interval histogram of spike train in light. The multimodal character of the
distribution is clearly seen. (B) Interval histogram of spike train in the dark. The distribution
approaches a random, or exponential, type. A and B show that the character of the interval
distributions observed at the retinal ganglion cell level is preserved in traversing the optic
axons. In particular, A shows that the discrete nature of the multimodal distribution is not
dispersed significantly.
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was no correlation between the mains frequency and the frequency of the standard pulses
generated by the optic axon in light.

THEORY

Distribution Coding

A single nerve spike is a complex wave form which is initiated at the nerve cell body
and which propagates in an all-or-none fashion along the axon of that cell and
terminates at a synapse either with another nerve cell or with an effector muscle. A
series of such nerve spikes are shown in Fig. 4 a. There is considerable neurophysio-
logical evidence to suggest that the information in the spike train is embodied in the
time of occurrence of each spike rather than in any properties of the spike wave form.
Making this assumption we can abstract the relevant properties of the spike train
shown in Fig. 4 a by considering it mathematically as a point process as shown in
Fig. 4 b. The spike train is represented as a series of events in time. In view of the
random properties of spike trains we will consider, in general, the neuronal spike
train as a stochastic point process.

Perkel et al. (1967 a, b), among others, have considered in some detail the prop-
erties of stochastic point processes relevant to neural coding. The most commonly
used neural coding parameter is the mean rate of the process expressed in spikes per
second. The mean rate has been used extensively to interpret neurophysiological
experiments. Other parameters which have been studied are the serial correlation,
the autocorrelation or expectation density, and the probability distribution of inter-
spike intervals (Cox and Lewis, 1966). The use of the spike interval histogram as a
statistical estimator of the probability density function of interspike intervals was
introduced by Gerstein and Kiang (1960).
Our experimental results have shown that the distribution function for interspike

intervals depends on illumination. In fact, as the level of illumination is increased the

TIME
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I l l l l I| TIME

FIGuRE 4 (a) Series of nerve spikes. (b) Mathematical representation of the spike train
as a stochastic point process, where t, indicates the time of occurrence of a spike. The in-
formation transmitted by a spike train is thought to be contained in the time of occurrence
of a spike rather than in any properties of the complex wave form.
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distribution becomes more regular. The theoretical models which are developed in
this section will show how inhibitory and excitatory inputs with random or regular
distribution interact in single cells and in lateral inhibition networks. We will
characterize the regular process with a gamma distribution which is monomodal.
These results can be extended in straight-forward manner to handle multimodal
regular distributions. While our experimental results indicate that for the cases re-
ported the regularity of the distribution depended on the level of illumination, we
have no reason to believe that all cells will behave in this way and would expect the
distributions of others to depend on other parameters of the visual stimulus.

Fig. 5 illustrates the use of the probability density function to describe two
stochastic point processes considered as mathematical representations of spike
trains. The probability density function (pdf) of interspike intervals plots the
probability per unit time of an interval occurring vs. the length of that interval. The
events of the process in Fig. 5 a occur quite randomly in time, approaching a
Poisson process. The pdf of that process is nearly exponential. The events of the
process in Fig. 5 b occur quite regularly, all intervals being nearly equal, and the
pdf is sharply peaked around the mean interval. The vertical scales are linear.

These distributions are similar to those recorded from retinal ganglion cells as
shown in Fig. 1, with logarithmic vertical scales. As we have described, the distribu-
tion of such retinal ganglion cell spike firing changes from exponential (Fig. 1 a, left
side) to regular (Fig. 1 b) as the intensity of uniform illumination of the visual field
is increased.

If we propose to consider this quality of randomness or regularity as a specific
coding property of the spike train, then it is convenient to describe the pdf's of the

ol
I I I I I I I It
0

I II I I I I I I~

Interval Length

Interval Length

FIGURE 5 The probability density functions of interspike intervals corresponding to (a)
a random process and (b) a narrow gaussian, i.e. fairly regular, process. Vertical scales are
linear.
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processes functionally as gamma distributions of the form:

n n-1 -ST

g(r; n,) r(n__ T>O,I.L>0,fnl>O,*P(n)
0 T<O , (1)

where r(n) is the gamma function defined by

r(n) = I rn-le-dr, (2)

and if n is an integer:

r(n) = (n - 1)! (3)

Some typical gamma distributions are plotted in Fig. 6. The mean of the gamma
distribution is

= n/.Ll, (4)
the variance is

v = n/M2, (5)

and the mean rate of the process is

m= l/Tr =,/n spikes/s. (6)

n=3

1.2

0.8

n=3

0.4 n=3

0 2.0 4.0 6.0

FIGURE 6 Some examples of gamma distributions.
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The gamma distribution is a useful representation of regularity or randomness of
the process since for n = 1:

g(T; 1, IA) = IAe', (7)

the exponential pdf corresponding to a Poisson process of events, a completely
random process. As n -> o at a given mean rate, the gamma distribution approaches
a gaussian distribution corresponding to a very regular process. Thus, using the
gamma distribution as a model for the pdf of neuronal spike trains, we can char-
acterize a given process by two parameters, m, the mean rate parameter, and n, the
distribution parameter. The representation in the nervous system of information in
terms of mean rate m, we will refer to as mean rate coding, and the representation in
terms of distribution n, we will refer to as distribution coding.

It should be emphasized that the choice of the gamma distribution to characterize
distribution coding (Kuffler et al., 1957) is somewhat arbitrary and not based
directly on elucidation of the physiological mechanisms generating spike trains or on
optimized curve fitting of recorded histograms. We justify the use of the gamma
distribution in a modeling context by noting that variation of a single parameter n
describes, at least approximately, a complete range of random to regular processes.
Other modes of representation of distribution coding, for example, the expansion of
the distribution in terms of gaussian distributions, are certainly of interest, though
they will not be discussed here.

Models of Spike Train Interactions

In this section we will review the mathematical description of models of superposition
of spike trains, models of inhibitory interaction, or deletion of spike trains, and
some modifications of the deletion processes which make them physiologically more
reasonable. The goal of the calculations which we will discuss is to determine the
output probability density function p(r) generated by the interaction of two or more
primary input processes. Such models are directly relevant to our discussion of
distribution coding in the nervous system since they consider specifically the prob-
ability density functions of input and output processes.
The spike trains recorded by Fatt and Katz (1952) were among the earliest electro-

physiological experiments to be subjected to careful statistical analysis. In two
papers, Cox and Smith (1953, 1954) treated the spontaneous activity at many nerve
endings on one muscle fiber as a superposition process. The problem was to infer
the spontaneous activity at individual endings from spike activity in the muscle fiber.
Cox and Smith computed the variance-time curve for the data and compared the
result with models for the superposition of various renewal processes considered as
independent, identically distributed random variables. (A renewal process is char-
acterized by a series of events in which the times between events are independently
and identically distributed.) The interval distribution of the resulting process is
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known to approach exponential for a sufficient number of sources, and the variance-
time curve can be invoked to distinguish the component processes.
A more recent group of experiments has suggested the incorporation of impulse

deletion to account for observed interval distribution curves. Poggio and Viernstein
(1964) measured impulse trains in a thalamic somatic sensory neuron of unanes-
thetized monkeys. They observed spike interval histograms which were characterized
by being distinctly monomodal or multimodal rather than exponential. Bishop et al.
(1964) computed interval histograms for spike trains recorded from the dark dis-
charge of lateral geniculate neurons in cats. They described a variety of results
ranging from nearly exponential to monomodal, to multimodal distributions, in-
cluding various combinations of these types. They were able to explain three char-
acteristics of their results by three different mechanisms. They first observed that by
the superposition process described by Cox and Smith they could generate approxi-
mately exponential distributions from the pooling of many regular processes.
Secondly, they suggested that multiple-firing (burst) events could account for the
groups of short intervals which appeared. The third process which they described
was a random deletion of the monomodally distributed train, yielding a multimodal
distribution similar to those measured. They simulated this procedure by first
generating a gamma distribution by frequency division (retaining every nth event
and deleting the rest) of the output of a Geiger counter and then making random
deletions. The resulting distributions appeared quite similar to the experimental
observations.
Ten Hoopen and Reuver (1965, 1967, 1968) have considered the types of in-

teractions described by Bishop et al. from a statistical point of view. They derived
analytical expressions for the output probability distributions to be expected from
specific models of superposition and deletion of interacting stochastic point
processes.
Ten Hoopen (1966) considered the superposition of N stationary, ergodic, and

independent sequences of events denoted by

fi(t) = E(t - ti,j), (8)

originating from the ith source with probability density function pi(r), and distribu-
tion function Pi(r). The mean rate mi of the ith source is given by

mi = (OxY' = [j p'p,(r') d.'] . (9)

The problem is to calculate the probability density function of the superposition of
the N sources, p(Tr), where

N

f(t) = f,(t) (10)
i-I
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f(t) =E a(t -t8). (l
8

Such a superposition of spike trains is shown schematically in Fig. 7.
While, as Ten Hoopen shows, the superposition of spike trains tends to obscure

the form of the distributions of independent input processes, approaching a
Poisson process in the limit, the deletion of events from an excitatory spike train
by an inhibitory spike train shows very specific dependence on input distributions.
Ten Hoopen and Reuver (1965) described a model for the interaction of an excit-
atory spike train and an inhibitory spike train converging on an output neuron
(Fig. 8). In their model, an inhibitory spike would always delete the next succeeding
excitatory spike. The output of the deletion process was a spike train consisting of
the undeleted excitatory events. An illustration of this deletion process is shown in
Fig. 8, where x(t) is the excitatory input, y(t) is the inhibitory input, and z(t) is the
output.

If we consider that the excitatory process has a pdf of the form +(r), and the in-
hibitory process has a pdf of the form A(r), where both are renewal processes, then
the output pdfp(r) may be calculated by the methods of renewal theory (Cox, 1962).
Ten Hoopen and Reuver (1967) obtained a general expression for the pdf p(r) of
the output process, while Srinivasan and Rajamannar (1970 b) considered the
calculation of the higher order moments of the process. The general form of the
result for p(T) is very complex, and two specific cases were solved first (Ten Hoopen
and Reuver, 1965): (a) a Poisson process inhibiting a renewal process, and (b) a
renewal process inhibiting a Poisson process.

Since the work of Ten Hoopen and Reuver (1965, 1967, 1968), a series of
papers has appeared describing the statistical analysis of models of inhibitory inter-
action of stationary point processes in relation to their probability density functions

INPUTS OUTPUT

INPUTS , ,, .

I I 1 I I I I

a I I ! I I I

OUTPUT I 1 1 1 111 11 I I I I | | |I lI D

FiGuRE 7 A model for the superposition of spike trains.

BIOPHYSICAL JOURNAL VOLUME 13 1973232



EXCITATORY INPUT

~t>OUTPUT
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Output
I I ' t Process

FIGURE 8 A model for the simple interaction of two spike trains in which each inhibitory
event deletes the next succeeding excitatory event. The remaining excitatory events form
the output process.

(Coleman and Gastwirth, 1969; Lawrence, 1970 a, b, 1971; Srinivasan and Rajaman-
nar, 1970 a, b; Srinivasan et al., 1971). Many of these papers presented modifications
of the simple interaction model to make it correspond more closely to physiological
cases. Srinivasan and Rajamannar (1970 b) analyzed the case of dependent inter-
ference between excitatory and inhibitory processes as first proposed by Ten Hoopen
and Reuver (1968). Coleman and Gastwirth (1969) described a model where the
effectiveness of the inhibition decays with time. These modified interaction models
show a similar marked dependence on both the mean rate and the distribution of the
input process.

The Mean Rate Transfer Function

It is of considerable physiological interest to consider the role of spike train inter-
action models in relation to neural coding and in the function of neural networks.
In order to characterize the processing of mean rate coding by a simple interaction
model we consider mean rate coding of the excitatory input m<* and mean rate
coding of the output mp . We can then define the mean rate transferfunction T of the
network as

T=mp/m+, (12)

which will depend on both the mean rates and the distributions of the excitatory and
inhibitory input processes. In order to specify the effective inhibitory mean rate, we
define the inhibition strength:

p=m ,/mO. (13)
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We wish to use the mean rate transfer function T(p) to describe functionally the
behavior of a network in response to various input mean rates and distributions.
We are particularly interested in analyzing how input distribution coding effects the
output mean rate of the network and thus inferring the extent to which input dis-
tribution coding can be "decoded" by the network. Our use of the gamma dis-
tribution to describe randomness or regularity of process will be useful for specify-
ing this distribution coding dependence.
Although it would be possible to calculate the mean rate transfer function relation-

ships for interaction models by using Ten Hoopen and Reuver's (1967) calculations
of p(r), such an approach yields useful results only for the cases where one of the
processes is Poisson. Instead of first calculating the probability density function of
the output to obtain the mean rates, we will proceed by calculating the renewal
density of the output process and obtain the mean rate transfer function. Cox (1962)
defined the random variable Nt of a renewal process as the number of renewals which
occur in (0, t), and in general Nt1,,2 is the number of renewals in the interval (t1, t2).
The "renewal function" is defined as:

H(t) = E(Nt) (14)
and more generally

H(t1) -H(t2) = E(Ntl t2) (15)
The "renewal density" is defined as

h(t) = lim E(Nt,t+At) ( 16)
At-O+ A t

= H'(t). (17)
The renewal density describes the probability of one or more renewal in an interval
oflength At. When the process is not strictly renewal, the more general term " product
density" is used for h(t).

Srinivasan and Rajamannar (1970 a) have described the product densities of
degree one and two for the simple interaction model of Ten Hoopen and Reuver
(1965). They observed that the set of registered events can be divided into two
mutually exclusive classes depending on whether an inhibitory event occurs between
0 and t or not. Their expression for the product density of degree one is:

co t t

h(t) = g(t) fpi(t') dt' + j Fi(u) du L g(v)o(t - vx) dv(t - u), ( 18)

where g(t) is the renewal density of degree one of primary events:

g(t) = +(t) + f g(u)0(t - u) du, ( 19)
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p'(-r) is the probability density function of the interval between a registered event
and the next inhibitory event:

J c(x)V(t + x) dxpi = 0 o (20)

j +(x) V(x') dx' dx

where V(r) is the probability density function of the forward recurrence time of
inhibitory events:

V(7) = X(T)/E(T). (21)

where x(r) is the survivor function of inhibitory events defined by

X(T) = f 1,(u) du. (22)

Fl(u) is the renewal density of degree one of inhibitory events at u starting with a
registered primary event at u = 0. Fl(u) is given by the following renewal equation:

F1(u) = p'(u) + p'(t1)f(u - t') dt', (23)

wheref(t) is the renewal density of degree one of inhibitory events given an inhibitory
event at t = 0.

In the case of a renewal process, we can calculate the mean rate of the stationary
process by taking the limit

limg(t) = m (24)
t--O

We can show that this is the same mean rate one would calculate from the prob-
ability density function in the following manner. From Eq. 24 we find

m = lim [sG(s)], (25)
8-0

where G(s) is the Laplace transform of g(t). From the renewal equation for g(t) we
know that:

G(s) = S) (26)

Therefore,

m = lim SI(s) (27)
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by L'Hospital's rule

m = lim [b(s) +s (s)] (28)

= lim [-4(s)Y'l, (29 )
8-.o

= [f rcTI(r ) dri], (30)

= 1/7. (31)

For a nonrenewal process we know that in general

G(s) #l VS() (32)

and we cannot directly obtain the pdf from the product density. With certain re-
strictions, however, we can still obtain the mean rate from the product density.
These restrictions involve the range of serial order present in the nonrenewal process.
For short range serial order, the average product density:

h(t) = fh(t') dt', (33)

approaches a constant k as T becomes large. In the limit we say that

lim h(t) = m, ( 34 )

the mean rate. In the following analysis of simple interaction between renewal
processes we will assume that only short range order is present in the output process
and that Eq. 34 holds.
We now wish to compute the mean rate transfer function for the simple interac-

tion of two renewal processes with arbitrary gamma distributions. We designate
the excitatory process as " 1" and the inhibitory process as "2" and define:

fi(r) Probability density function.
F,(s) Laplace transform of pdf.
Ji(r) Distribution function.

Ri(r) Survivor function [ = 1-i(T)].
wi(T) pdf of forward recurrence time

[ = Ri(r) /E(r) ]
gi(t) Renewal density.
E;(T) Mean interval.
Mi Mean rate.
ni Order of the gamma distribution, i = 1, 2.
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The probability density functions of the excitatory and inhibitory processes are

;,nrne-li-pir
( - 1! (35)

with mean rate

Mi = ,u/ni . (36)

If we rewrite Eq. 14 using this notation and proceed to the limit

m, = lim h(t), (37)

we obtain the following result:

f R2(u) fi(v) dv du
mp- =o , (38)

T|fl(Tr') dT f /f2(r') dT'
00

mp = milm2f R2(u)5i(u) du. (39)
Our general expression for the mean rate transfer function is then

T = m,/iM, (40)
r0

= M2 f R2(u)9i(u) du. (41)

We can simplify Eq. 41 by noting that

TYi(u) = 1 - RI(u), (42)
and we obtain

T = 1-m2 Ri(u).R2(u) du. (43)

If we now write out the function Rj(r) in terms of the gamma distribution, then

R() =1 -ff(x) dx, i = 1, 2 (44)

I1-P(ni,,x), x =,u 'r , (45)

where P(a, x) is a form of the incomplete gamma function such that

P(a, x) = r(a) f e-rrl dr. (46)
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When a takes integer values, a = n, we can expand P(n, x) in the following manner:

P(n, x) = 1 -(1 + +x2!+2+ +( x-I)I_e (47)

We can therefore rewrite our expression for the survivor function as

ni-1 r.i

Ri(x) =E [ e (48

Substituting into Eq. 43 gives:

n--1 rn1)h d(k)
T = 1- m:alim E k! ki)O * ds(k) [Rj(s + ,u)],

i= 1,2;j= 1,2; i j (49)
where

R1(s) = - A
-(A ]1 (50)

The derivative in Eq. 49 is

d(k)
dS k) [R,(s + ,i)] = (-l)k*k!*[s + ,]k+1)(_l)k n

k [ (k-I)! 1 (n + I-l)(n, + I-2) .. (ni)
1-1 (S + Ai) (s +++I)nj + I

k= I nn,-1. (51)
Substituting Eq. 51 into Eq. 49 yields

T = -n-_ I2 + (1 + R) I-- (1 + vt)f

*,(k - 1)[(nj + I- 1)(nj + I -2) ... n,][+ } ( 52 )

where R =
Eq. 52 is the general form of the mean rate transfer function for the simple inter-

action of two arbitrary gamma distributions, fi(r), the excitatory input, and f2(T),
the inhibitory input. From the symmetry of Eq. 43 we know that either i or i in
Eq. 52 can equal 1, and the other equal 2. The choice of which process should be i
and which should bej is made such that the simplest form of the output is obtained.
In this case we let ni be the smaller of n1 and n2, so as to minimize the extent of
the summation.

Table I shows the explicit functional forms of T(p) for some specific choices of ni
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TABLE I

FUNCTIONAL RELATIONSHIPS FOR AN ELEMENTARY
DELETION PROCESS

T(p) m,(p)/m# = mean rate transfer function.
p mi'lmo = inhibition strength.
P Exponentially distributed (Poisson process).
R Regularly distributed.
rn Gamma distribution of order n.

Interaction T(p)
P- R e-P

P r, , 1 +
p, p 1/(1 + P)

r. - P 1-p[1-(1+
I

R P I1-p(l-elp)
R -R 1-p

The table shows the functional relationships between the mean rate transfer
function T and the inhibition strength p for several different deletion proc-
esses. These results were derived from the statistical model of spike train
interaction proposed by Ten Hoopen and Reuver (1965).

and n2. These are the simplest analytical expressions obtainable from Eq. 52 since
in each case, except for the last, ni = 1. T(p) is the mean rate transfer function which,
as can be seen in the figure, depends explicitly on p, the inhibition strength, and n,
the distribution coding parameter. These results are plotted in Fig. 9, for four par-
ticular combinations of input distributions: Poisson-Poisson, Poisson-Regular,
Regular-Poisson, and Regular-Regular. Fig. 9 demonstrates that the simple inter-
action network has distinctly different mean rate transfer characteristics for different
input distributions. This result suggests that distribution coding could play a sig-
nificant role as a neural coding mechanism in particular network configurations.

Distribution Coding in a Lateral Inhibition Network

By assuming a simple network model of a relay cell network, we can examine the
functional role of distribution coding in the context of sensory information proc-
essing. Burke and Sefton (1966) suggested that the lateral geniculate nucleus could
be considered as a lateral inhibition network with primary optic nerve inputs to
principal cells, primary outputs to the visual cortex, and inhibitory interneurons
mediating the lateral inhibition. Fig. 10 shows a schematic diagram of a feed-for-
ward lateral inhibition network where interneurons have been omitted for simplicity.
It is apparent that if we consider each principal cell of the network as an interaction
point for our statistical model of interaction, then we can calculate the mean rate
transfer function for the array, given the input mean rate and distributions. First we
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T

p
100

FIGURE 9 Plot showing the theoretically calculated relationship between rate and dis-
tribution parameters for the case where an inhibitory spike train (mean rate mp) inhibits an
excitatory spike train (mean rate m+) with a resulting spike train of mean rate m. The input
spike trains have distributions of intervals P = Poisson, or random, or R = regular. P - R,
for example, symbolizes a random process inhibiting a regular process. The graph plots the
mean rate transfer function T (= mp(p)/m0) vs. the inhibition strength p (= m1/mO). The
graph was computed based on the statistical model of spike train interaction proposed by
Ten Hoopen and Reuver (1965). The graph shows that the output mean rate from these
model interactions depends on both the rates and distributions of the input processes.

Pi
- EXCITATORY

INHIBITORY

FIGURE 10 Schematic drawings of a feed-forward lateral inhibition network. The neurons
are represented as a spatial array n;, i = 0 -O N, where i denotes the ith neuron. An array of
inputs ai(r) are shown.

calculate the interval distribution of the superposition of the two inhibitory processes
using the model of Ten Hoopen (1966). Then we use a gamma distribution ap-
proximation in order to calculate the mean rate transfer function for each principal
cell of the network using the general expression for the interaction of two gamma
distributions (Eq. 52).
The apparent functions which a lateral inhibition network may have in the context

of the visual system have been discussed extensively. The existence of a neurophysio-
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logical correlate of contrast enhancement and Mach bands (Ratliff, 1965) has been
verified in Limulus eye (Ratliff and Hartline, 1957) by studying the mean rate out-
put from single visual receptors due to stimulation of the eye at various points. A
similar phenomenon has been found in cats in the identification of "on-center"
and "off-center" retinal ganglion cells by Barlow et al. (1957). Each type of cell has
a lateral inhibitory effect, the first in response to on-center illumination, the second
in response to off-center illumination. In such experiments it has usually been as-
sumed that mean rate of firing alone is the significant parameter.

Fig. 11 shows the results of calculations to determine the mean rate transfer func-
tion for four different patterns of input stimuli to the lateral inhibition network.
Each graph shows the spatial distribution of output mean rates for a particular
spatial pattern of input mean rate and interval distribution. The spatial coordinate
represents the spacing of the principal neurons in the network. The pattern of inputs
in each of the four cases is represented at the top of each graph by a horizontal line
divided into two segments. P indicates a Poisson process, and R indicates a regular

,. ........................................................ ...................

P(p) P(7p) R(7p)
LUi

.. ......

UJ C:) SPATIAL 1*81 x x
COORDINATE

FIGURE 11 The spatial distribution of output mean rates from a model feed-forward
lateral inhibition network with four different input spatial patterns of mean rate and interval
distribution. The spatial coordinate a represents the spacing of the neurons in the feed-
forward network. The pattern of inputs to the network in each case is represented at the top
of each graph by a horizontal line divided into two segments. Again, P indicates a Poisson
process, and R indicates a regular process. The inputs to the left side of all four graphs is a
Poisson process of mean rate ,&. The inputs to the right halves of the graphs are:

(a) Poisson process of mean rate A, (b) regular process of mean rate ;&, (c) Poisson proc-
ess of mean rate 7M&, and (d) regular process of mean rate 7,u. The dashed curves in each
case represent the normalized mean rates of the output processes plotted vs. distance.
These curves show that the spatial distribution of output mean rates from the network will
depend on the mean rate and the spike interval distribution of the inputs. Thus distributions
which we have observed experimentally at the retinal ganglion cell level could significantly
affect the nature of spatial processing of information at the lateral geniculate nucleus level.

SANDI3RSON, KozAK, AND CALVERT Distribution Coding in Visual Pathway 241



process. For the calculations we use a gamma distribution of order 10 (n = 10) as
the regular process. The input to the left side of all four graphs is a Poisson process
of mean rate u. The input to the right halves are: (a) a Poisson process of mean rate
A,) (b) a regular process of mean rate ,, (c) a Poisson process of mean rate 7u, and
(d) a regular process of mean rate 7,u. The dashed curves in each case represent the
normalized mean rates of the output processes plotted vs. distance.

Fig. 11 shows that the spatial distribution of output mean rates from the network
will depend on the mean rate and the spike interval distribution of the inputs. The
model predicts that spatial information processing in the relay cell network will
depend on both mean rate and distribution coding of input spike trains. This result
is important for the study of neural coding mechanisms since, although many dif-
ferent parameters of spike trains have been suggested as having coding significance,
few except the mean rate have been shown to have functional importance in the
context of the neural network. Thus we have shown that distribution coding changes
the mean rate transfer function characteristics of a simple interaction model and is
consequently effective in changing the spatial processing characteristics of a lateral
inhibition network. The results from the lateral inhibition model suggest that
physiological evidence of distribution coding might be found in simply intercon-
nected neural networks where the integrity of the input distributions is maintained.
The class of relay cell nuclei, in general, and the primary thalamic sensory nuclei in
particular seem to satisfy these criteria.

CONCLUSIONS

Our experiments have shown that the interval distributions of spike trains re-
corded from retinal ganglion cells when the visual field is uniformly illuminated
systematically differ from those recorded when the visual field is dark. The distri-
butions with illumination tend to be regular or multimodal, whole those in the dark
approach exponential distributions. Such a systematic variation leads us to asso-
ciate regular and multimodal distributions with the lateral inhibitory processess in
the retina which accompany light illumination and enhance contrast, and associate
random distributions with dark-adapted response where summation of input signals
takes place to enhance brightness.

It is not our purpose in this paper to discuss the mechanisms by which distribu-
tion coding could be generated at the retinal level. The visual stimulus incident on
the retina undergoes a complex "transformation" of information before being rep-
resented as a spike train code at the retinal ganglion cell level (Kozak, 1971; Sander-
son, 1972). The theoretical models we have presented in this paper are models of
the interpretation of a neural code rather than of the generation of a neural code.
We have shown how mean rate coding and distribution coding affect the activity of a
idealized neural network model (the feed-forward lateral inhibition network). The
lateral inhibition network is intended to resemble the relay cell networks of the
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primary thalamic sensory nuclei. The lateral geniculate nucleus is the primary
thalamic sensory nucleus of the visual system and the principal network structure
between the retina and the visual cortex. The lateral geniculate nucleus must "inter-
pret" the information coding from the retina (e.g., Levick et al., 1969) and the visual
cortex must interpret information coded by the lateral geniculate nucleus.

In analyzing experimental results related to neural coding, we feel that it is im-
portant to consider the neural code as having both an origin and a destination in
the context of the nervous system. We observed experimentally that spike interval
distributions in the retinal ganglion cell may be correlated with particular illumina-
tion conditions of the retina. Our theoretical model indicates that the transfer func-
tion of a neural network may depend on distribution coding as well as mean rate
coding of the inputs. These results suggest that parameters other than mean rate
could fruitfully be analyzed at many levels of neuronal systems and should be con-
sidered as clues to the information processing capabilities of a neural structure.
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