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ABsrRAcr Assuming a spherical geometry for the left ventricle and a cylindrical
geometry for arteries, wall stresses and elastic stiffnesses are evaluated on the basis
of a large elastic deformation theory. On the basis of canine pressure-volume data,
the numerical results indicate marked gradients of stress in the endocardial layers
even for thin-walled vessels, a result not predicted by the classical theory of elas-
ticity. These high gradients of stress are due to the fact that the elastic stiffness of
the wall material increases with the stress which reaches maximum levels in the
endocardial layers. The high stresses may be responsible for ischemia of the left
ventricle and be a triggering mechanism for atherosclerosis.

INTRODUC TI ON

Most studies relating to the quantitation of left ventricular wall stresses have been
based on the classical theory of elasticity (Wood, 1892; Burch et al., 1952; Burton,
1957; Sandier and Dodge, 1963; Ghista and Sandler, 1969; Wong and Rautaharju,
1968; Mirsky, 1969, 1970; Streeter et al., 1969; Gould et, al. 1972). This theory
assumes that elastic deformations are small, i.e., less than 10% of their initial un-
loaded dimensions. However, it is well known for biological materials that deforma-
tions ofthe order of 50-100% can take place. It is therefore apparent that the classical
theory is not adequate to describe the mechanical behavior of biological tissues and
the theory must be replaced by a more appropriate one.
The need to obtain a better understanding of the mechanical properties of rubber-

like materials has resulted in the rapid development of a finite elastic deformation
theory which is capable of describing such large deformations. This theory has al-
ready been applied in recent years to biological problems by Fung (1967), Mirsky
(1968), Gou (1970), Simon et al. (1971, 1972), and Vaishnav et al. (1972). In par-
ticular, Simon et al. (1972) have shown that the stress distribution in thin-walled
tubes is far from being uniform, a result that might be expected with the classical
elasticity theory in the form of the Laplace Law.
The prime purpose of the present study is to provide a method for quantitating

left ventricular wall stresses since recent studies (Monroe et al., 1972; Barnard et al.,
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1972) have indicated the presence of ischemia in the canine heart and an unfavorable
alteration in the subendocardial oxygen supply demand relationship in the normal
human heart. Although the problem of arterial wall stress has previously been
considered, a simpler method of analysis is presented here and additional mechanical
properties of the arteries are discussed. In particular, it is important to develop
methods for evaluating elastic stiffness in both arteries and veins in view of the fact
that fibrosis of the intima has been reported after saphenous vein bypass surgery.

THEORETI CAL CO NSI DERATIONS

For the present analysis we are primarily interested in the qualitative aspects of wall
stress distribution. Thus idealized geometries are assumed for both the left ventricle
and the arteries. A spherical geometry is assumed for the left ventricle and the arteries
and veins are approximated by cylinders constrained at a constant length after
pressure inflation.

In each case, the material is assumed to be isotropic, homogeneous, and incom-
pressible. It is recognized that these assumptions are rather crude; however, they are
dictated by the fact that experimental data with regard to nonhomogeneity and
anisotropy of biological tissues are sparse, although Patel and his associates have
quantitated the anisotropic elastic properties in arteries (1969, 1970).

Left Ventricle

Large deformation theory of elasticity is presented in great detail by Green and
Zerna (1954) and Green and Adkins (1960) who have studied the particular problems
of symmetrical expansion of thick spherical shells and cylindrical tubes initially
extended followed by inflation. For completeness of this presentation, the mathe-
matical details will be outlined here for both the ventricle and artery.

Consider a spherical coordinate system (R, 0, p) in the strained body having its
origin at the center of the shell, and let (r, 0, p) be the coordinate system in the
unstrained body. Denoting the internal and external radii of the shell in the un-
strained and strained states by r1, r2 and R1, R2, respectively, the following rela-
tions hold as a consequence of the assumption of incompressibility:

r3 -Rs = r3-R18 = r28 _-R2X (1)

r8 R18 1/3

Q(R) = r/R = 1+ r )11 (2)

We now introduce the concept of a strain energy density function denoted by W,
which is the amount of mechanical energy required to deform a given volume of
material. If this function W is known, the elastic mechanical properties of the ma-
terial may be determined since they are obtainable from the constitutive relations
(stress-strain relations) which are based on the strain energy function.

In general, W is a function of the strain components 7-i, hence W = W('Yi,)
where in particular, -fl ,)722, 'y represent the radial, circumferential, and meridional
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components of strain, respectively. For the special case of spherical symmetry of an
incompressible material, the strain energy density function may be written as a
function of strain invariants which are combinations of the strain components
y,ij (Green and Zerna, 1954). For the present analysis, the particular strain invariant
I is given in the form

I = Q4 + 2/Q2, (3)

and W is expressed as W = W(I).
In terms of W and Q, the nonzero components of stress are

T11 = 2Q40W/oI+ PH,

R2722 = (2/Q2)O W/IO + PH, (4)

where 7-1, R2r22 are the radial and circumferential components of stress, respectively,
and PH is a "hydrostatic pressure" to be determined from the equilibrium and
boundary conditions.
The equation of equilibrium for the evaluation of the function PH is given in the

form

(dPH/dQ) + Q4(d4VdQ) + 2(Q3 - 1)4 = 0, (5)

where '1 = 2 0 WIOL On integration we obtain

pQ
PH=-Q4 +2J (Q3+1) dQ+C, (6)

where C is a constant of integration to be determined from the boundary conditions.
For the present analysis, it is assumed that P is the left ventricular pressure and on
the epicardial surface, the pressure is zero.

Therefore the boundary conditions are:

Tll = - P on R = Ri; 9'l = 0 on R = R2. (7)

These conditions yield the following relations:

Qi
- P = 2 f (Q3+ 1) tI'dQ + C (Qi = rI/RI),

PH = - Q4 + K(R) - PI

K(R) = 2 (Q3 + 1) s dQ,

T = K(R) - P,
R2 22 = (1/Q2 - Q4) b + K(R) - PI

K(R2) = P. (8)
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This latter condition serves to determine R1 if the pressure P and the strain energy
density W are known since R2 may be expressed in terms of R1 via the incompress-
ibility condition 1.

It should be noted that expressions 4 for the stress components are analogous to
the stress-strain relations in the classical theory of elasticity for an isotropic incom-
pressible material, namely,

a,, = I[ + 2Ger,

@o = II +2Gene, (9)

where e, , eOe , arr, and 0o are strain and stress components, II is the hydrostatic
pressure, and G is the shear modulus of elasticity.
The equilibrium condition K(R2) = P may be better understood by putting it in

an alternative form. Now

Q pQ
K(R) = 2 J (Q3 + 1) * 20W/OIdQ = 4 (Q3 + 1)(dW/dQ)(dQ/dI) dQ

=f [Q3/(Q8 - 1)] (dW/dQ) since dI/dQ = 4Q 4/Q8

JR (# ri3-R ) dRdR. (10)

Hence

K(R2) = [r23W(R2) - ril3W(R1) - (4w) U]/(r3 - R13) = P, (11)

where use has been made of the incompressibility conditions 1 and

R2

U= 44R2WdR (12)
R1

is the total elastic energy stored by the spherical ventricle. Alternatively, we may
write

U = (47r/3)(R13 - r13)P + (47/3)r28W(R2) - (47r/3)ri3W(Ri). (13)

Cylindrical Arteries

For the case of the cylindrical arteries, we assume that a uniform simple extension
takes place parallel to the axis of the tube. This is followed by a uniform inflation
in which the length remains constant and the radii r1, r2 in the unstrained state
change to R1, R2 .
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If we consider a cylindrical polar coordinate system (R, 0, z) in the deformed
state, then the point (R, 0, z) was initially at the point (r, 0, z/X), where r is a
function of R and X is the ratio of the deformed to the undeformed length. The
functional relationship between r and R is obtained from the incompressibility
condition with the result that

27rR dR dz = 27rr dr dz/X,
or

r(dr/dR) XR. (14)

Integration of this equation yields

r2 = X(R2 + K) = R2Q2(R), (15)

where K is a constant of integration and Q = r/R. Since r = r1 when R = R1 and
r = r2 when R = R2,

R12 F K = r12/X; R22 + K = r22/X. (16)

Again as in the case of the ventricle, we introduce the strain energy density func-
tion W and express the stress components in the form

T11 = PH + 2(Q2/X2) (0 W/dI) (radial),

R2=22 PH + 2(WW/0I)/Q2 (circumferential), (17)

where the strain invariant I is given by

I = X2+ Q2/X2+ 1/Q2. (18)

The hydrostatic pressure PH satisfies the equilibrium equation

(d/dR)[PH + 2(Q2/X2)(aW/aI)] + (2/R)[(Q2/X2) - (1/Q2)](OW/0I) (19)

which on integration yields the expression

PH = -2(Q2/X2)(aW/0I) - L(R) + H, (20)

where H is a constant of integration and L(R) is given by

L(R) = | Q2- W(a ) dR (21)

The boundary conditions rT1 = - P on R = R1 and T" = 0 on R = R2, where P
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is the arterial pressure, yield the following relations:

H = O

L(R1) = P

R2
Q/2 Q)(22 )

T111 = L(R) = J - 1/Q2)(20W/OI) dR/R

R2r22= T11 + 2(c/W/I)[(1/Q2) _ (Q2/x2)].

As before, the equilibrium condition L(R1) = P may be written in terms of the
total energy stored elastically in the cylindrical shell as follows:

R2

L(R1) = 2(OW/aI)[(1/Q2) - (Q2/X2)I dR/R,

rR2
= 2 [(1/Q2) _ (Q2/X2)](dR/dQ) (dQ/dI) (dW/R),

R2

= JR1 (R2/K+1)dW,

= W(R2) - W(R1) + [R2/K - 2(WR/K)dR["2,
.R2

= (r22/XK) W(R2) - (rl2/XK) W(R1) - (2/K) J RWdR = P, (23)

or

U = P(7rR12Xlo - 7rr,210) + (7rr22lo) W(R2) - (7rr210) W(R1), (24)

where lo is the undeformed length of the artery and the total energy U is given by

rR2
u = J (27rXloR) WdR. (25)

Evaluation of the Strain-Energy Density Function a W/OI

Case 1: Left Ventricle. For the determination of the function OW/OI, a
modified method similar to that employed by Simon et al. (1972) will be adopted
here. As a first approximation, aW/&I will be evaluated from the set of Eqs. 4 em-
ploying midwall values for the stress components T11, R2'r22 as obtained from the
classical theory of elasticity for a thick spherical shell (Timoshenko and Goodier,
1951). These stresses, which are close to average values, may be written in the form

J?M2Tr22 = P(V/Vw0)[l + 0.5(R2/Rm)8],

Tmll = P(V/Vw,)[1 - (R2/R=)31] (26)
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where V is the left ventricular volume, VK, is the left ventricular wall volume, and
the subscript m denotes the midwall value. Thus (a W/&I)m is given by

(0W/lI)m = Qm2(Rm2rmn - T1)/2(l - Qin6),

= 0.75 P(V/tVw)(R2/Rmn)3Qm2/(l - Qm6), (27)

which can be evaluated for each pressure level P if the pressure-volume and pressure-
radii data are known. However, in order to determine the stress distribution through
the wall of the left ventricle, we require a WiaI as a function of I (which indirectly
is a function of R).

In their studies, Simon et al. (1972) assumed a W/aI in the exponential form
aWIaI = AekI where aWIaI and I in this instance are midwall values. Furthermore,
aWIaI was evaluated at a given pressure P on the basis of the Laplace Law for a
thin cylinder. From a semilog plot of a WiaI vs. I, they obtained approximate values
for the constants A, k. These calculations were repeated for various values of A and
k until the pressure-radius response predicted by the equilibrium equation K(R2) = P
agreed with the experimental data. This approach was employed initially in the
present study but was abandoned because of the tedious computations.
An alternative approach which is quite accurate and relatively simpler from the

computational point of view is outlined here: (a) for each pressure level P, awiaI
is evaluated at the midwall employing relation 27, and (b) this value for ( W/laI)m
is then plotted against IM which is the average of the values for I at the endocardial
and epicardial surfaces, i.e., IM = (II + I2)/2. The data are fitted to an exponential
curve in the form aWiaI = A + BeCI where A, B, C are constants determined from
a nonlinear regression analysis. The constants are then adjusted until the equilibrium
condition P = K(R2) agrees to within 5 % of the experimental pressure-radius
data.
The justification for adopting midwall values for a W/aI stems from the fact

that the equilibrium condition

tQ2
K(R2) 4(Q + 1)(a1W/aI)dQ

Ql

= (aW/CI)m[(Q24 - Qi4) + 4(Q2 - Q1)I (28)

yielded values for the pressure P to within 10% when aW/0I was assumed constant
over the range of integration. The rationale for employing an average value IM
rather than Im stems from the observation that I declines sharply from the endo-
cardial to the epicardial surfaces with the result that Im takes on values close to I2 -

Case 2: Arteries. A similar procedure is employed for the arterial analy-
sis. For a thick-walled cylinder, the classical theory (Timoshenko and Goodier
1951) yields the following expressions for the midwall radial and circumferential
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stresses

Tmll = P(V/lVw)[l - (R2/Rm)21,

Rm2Tm22 = P(V/V2x)[l + (R2/Rm)2]. (29)

Thus (aW/OI)m as determined from Eqs. 17 is

(aJW/dI)m = P( V/VIe) (R2/Rm)2/ (Q Q2) (30)

This quantity is plotted against IM = (I, + I2)/2 and curve fitted to an exponential
function of the form

a W/aI = A + Becz. (31)

NUMERICAL RESULTS AND DISCUSSION

Left Ventricle

Pressure-volume data obtained from dog studies by Spotnitz et al. (1966) have been
employed in the evaluation of left ventricular wall stresses. These data are presented
in Table I which includes also the strain energy density (aW/OI)m at each pressure
level. The first approximation to OW/OI was determined to be OW/If =
-6.9 + 0.4 e0 916' and after several calculations this was modified to

aW/OI = -6.1 + 0.4 w0981. (32)

With this expression for OW/Of, the integral expression for K(R2) was computed
at 5 mm Hg pressure increments over the range 5-30 mm Hg. Fig. 1 shows the ex-
perimental (P vs. R1) and calculated [K(R2) vs. R1] pressure-radius curves and it is
observed that agreement was obtained to within 4% over this pressure range. In

TABLE I
PRESSURE-VOLUME DATA AND STRAIN-ENERGY DENSITY

FOR THE LEFT VENTRICLE*

P V R1 Rm R2 (dW/OJ)m li

mm Hg ml cm mm Hg
5 31.5 1.96 2.56 3.15 3.73 3.56

10 40.0 2.12 2.67 3.22 6.82 3.86
15 46.7 2.23 2.74 3.27 9.9 4.1
20 52.0 2.31 2.80 3.31 13.0 4.28
25 56.5 2.38 2.85 3.34 16.1 4.44
30 60.0 2.43 2.90 3.37 19.3 4.56

Wall volume V,. = 100 ml.
At zero pressure, V = 12 ml, R, = 1.42 cm, R2 = 2.99 cm.
* Data obtained from the dog studies by Spotnitz et al. (1966).
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FiGuRE 1 Pressure-radius curves for the canine left ventricle. The solid curve is obtained
from the studies by Spotnitz et al. (1966). The dotted curve is evaluated from the integral
expression 8 for K(R2). There is agreement between the two curves to within 4%.

Fig. 2 the left ventricular circumferential stress based on both the classical theory
and large deformation theory is plotted as a percentage of the wall thickness for a
ventricular pressure P = 20 mm Hg. The circumferential stresses have been nor-
malized to (PRI/2h) which is the mean stress as given by the Laplace Law for a
sphere (Mirsky, 1969). The marked differences in the stress distributions are quite
apparent and there is a 10-fold increase in the stress at the endocardial surface over
that predicted by the classical theory.
An approximate expression for the strain energy function W(I) may be obtained

on integration of expression 32 with the result that

W(I) = Ci - 6.1 I + 0.43 e0-931, (33)

where C1 = 11.3, obtained from the condition W = 0 when I = 3 (undeformed
state). This expression is displayed graphically in Fig. 3 as a function of the wall
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FiGuiu 2 Tangential wall stress distributions obtained from classical thick-walled theory
and large deformation theory on the basis of a spherical geometry for the left ventricle. The
stress is normalized to the Laplace stress for a sphere (o = PR1/2h). Note the marked
gradient of stress in the endocardial layers for the finite theory shown by the dotted curve.

thickness for the pressure levels P = 10, 20, 30 mm Hg. It can be noted that in the
endocardial layers, there are significantly elevated levels in the strain energy which
increase more rapidly with an increase in the pressure level. The nonuniformity
through the wall thickness of both the wall stress and strain energy is not surprising
in view of the fact that for biological materials, elastic wall stiffness increases with
the stress as will be shown in the next section and observed in Fig. 4.

Elastic Stiffness of the Left Ventricle. Since there is a wide discrepancy in
the stresses as obtained from both the classical theory and finite deformation theory,
inaccuracies must also occur in the evaluation of elastic stiffness. In previous studies
by Mirsky and Parmley (1972), the elastic stiffness of the left ventricle was obtained
from the expression dc-/de where o- is the midwall circumferential stress based on
the classical theory and e is the midwall circumferential strain defined by
de = dR1/Rm . Alternative expressions are often employed in arterial mechanics and

BIOPHYSICAL JOURNAL VOLUME 13 19731150



120

3 so0 ls

J"L..

.0~~~~~~~~~~~~~~~~~~~0

% Will Thickness
FIGURE 3 Strain energy function W(l) plotted as a percentage of wall thickness. The
curves are qualitatively similar to the stress distributions. It should be noted that the gradi-
ent in the endocardial layers increases rapidly with an increase in the ventricular pressure P.

in particular, the incremental elastic modulus is defined as

EINc 34A-6 - AO-rr) 32 (heee - Aer,)

where Aaurr , Aooo are the incremental radial and circumferential stresses, respectively,
and Aerr , Aeoo are the corresponding incremental strains. A derivation of this formula
is given in the Appendix.

Unfortunately, there appears to be some confusion as to the choice of formulae
for evaluating stiffness. Therefore, several formulae will be outlined here, since the
choice is of importance when considering the problem of wave propagation through
arteries to be discussed later.
As shown in the Appendix, expression 34 reduces to

EINc = (Aaoe - Ao7)/2Aee . (35)
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FIGURE 4 The elastic stiffness-stress relations for the left ventricle as obtained from the
classical and large deformation theories. E.. and E,,J are the elastic stiffness at the midwall
based on the classical and finite theories, respectively, employing the formula RA,&R".
The quantities E.C and EfI are the incremental moduli obtained on the basis of expression
37. In each case, the elastic stiffness based on the finite theory are much lower than those
obtained from the classical theory.

With this expression, it is now possible to evaluate the incremental moduli at
various locations through the wall thickness as follows: at the endocardial surface,
a =- P, Aeee = AR1/R1 , thus

El = (Rj/2)(Ao-ei/AR + AP/,AR1), (36)
where a09 is the endocardial circumferential stress. At the midwall,

Em = (Rm/2)(Ae0 - ACrr)m/ARmA (37)

and finally at the epicardial surface where AO'r = 0,

E2 = (R2/2)Aoe2/AR2. (38)
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In Fig. 4 the elastic stiffness Emn is plotted against midwall stress ao, employing the
formula RmLAaTm/ARm and expression 37. These expressions are evaluated on the
basis of the classical and large deformation theories. Several points are worthy of
note: (a) the elastic stiffness bears a linear relationship with the stress, a consequence
of the exponential stress-strain relation which is characteristic for biological ma-
terials, (b) the elastic stiffness constants (represented by the slopes of these lines)
based on the formula da/de are similar for both theories, and (c) elastic stiffness
evaluated from the finite theory is much lower than that based on the classical
theory.
On the other hand, if we examine the elastic stiffness values at the endocardial

surface, we find that the values predicted by the classical theory are much lower than
those given by the large deformation theory. It should be noted that elastic stiff-
nesses based on the latter theory were not evaluated at the epicardial surface since
the stresses here were very small so that small errors in these stresses induced by the
various approximations employed could result in large errors in the elastic stiffness.
Simon et al. (1972), however, did note large variations at the epicardial surface be-
tween the two theories in their studies with arteries. Thus it is important to state the
location in the wall when elastic stiffnesses are evaluated. This is particularly of con-
cern in a study of wave propagation velocities in arteries to be discussed in a later
section.

Cylindrical Arteries

Elastic Stiffness. As observed for the left ventricle, the elastic stiffness
apparently varies through the wall thickness. For an artery maintained at a con-
stant length after the initial stretch, the incremental modulus EINC is (see Appendix)

EINC = (Y4)(AOee/AeeO - Aar7r/Ae9e). (39)
Expressions for the incremental moduli at various locations through the wall are
given by

E, = (4)Ri[(Ao-e/A.R1) + (AP/AR1)] (endocardial),

Em = (Y4)R<RmATdV - a-r)rn/ARm (midwall), (40)

E2= (Y94)R2A40o2/AR2 (epicardial),

where the various quantities have been previously defined.
The qualitative differences between the two theories for both the incremental

modulus and the elastic stiffness given by the expression E = Aaoe/Aeoe = RAoat/AR
are similar to those obtained for the ventricle. However, it is worthwhile to note that
the effect of increasing the stretch ratio tends to decrease the stiffness at the midwall
but increase it at the endocardial surface. This is consistent with the changing stress
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ity C,, in a Mooney material is given by

C20M= (Alp)(APIAA))
= P(r22- rL2) (Ri2r22 + R22r,2)/X2pR12R24D, ( 41 )

1154 BiopHYsicAL JOURNAL VOLUME 13 1973



where A is the cross-sectional area of the vessel lumen, p is the density of the fluid
medium (blood) and

D = 2 loge (Rlr2/R2r,) + (R2 2- R12) (R12-r,2/X)/R12R22.

For the present analysis, the wave velocity C4, will be evaluated from the following
two expressions:

CWi2 = Eeh/2pRi,

Cw22 = (RI/2p) (AP/ARI), (42)

where E. is the endocardial elastic modulus given by

Ee = RiAoei/ARI. (43)

Since the experimental data for the P - R2 relationship are available from the studies
of Simon et al. (1971), the P -R1 data can be readily calculated with the aid of
Eqs. 16. These data are given in Table II and the P - R1 relation has been expressed
in the exponential form

P = 10.2 + 0.0265 e18 4 (X = 1.53), (44)

where P is in millimeters of mercury and R1 in centimeters.
Furthermore ae9 is expressed in terms of R1 by

a101 = 59.4 + 0.0663 e2l 182 (X = 1.53), (45)

where ae0 is the endocardial stress based on the classical theory. Note that if P and
o-9i are expressed in dynes per square centimeter, the wave velocities Cw,jL, Cw2 are
given in centimeters per second.

Fig. 6 shows a plot of the wave velocities Cw,M, Cw 1, and C.2 as a function of the

TABLE II
PRESSURE-RADIUS DATA FROM THE ARTERIAL

STUDIES OF SIMON ET AL.*

P Ri Rm R2

mm Hg cm

25 0.348 0.375 0.401
50 0.396 0.420 0.445
75 0.425 0.449 0.473
100 0.442 0.464 0.485
150 0.467 0.489 0.510
200 0.483 0.508 0.524

* The above data are based on a stretch ratio X = 1.53.
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FiGuRE 6 The wave propagation velocity C. is plotted as a function of the arterial pres-
sure. C,O is the wave velocity calculated from the Moens-Korteweg formula (Eih/2pR)112;
C12 = [(RI/2p)AP/ARi]112 and Ctm is the velocity obtained for a Mooney material.

arterial pressure. The wave velocities C., are approximately 15 % higher than C.,2
and if E. is replaced by the incremental modulus E1 (Eq. 40), the resulting wave
velocities would be 10% lower than C.o2 . It is also observed that the velocities C,.M
for the Mooney material are essentially independent of the pressure and are much
lower than those wave velocities observed experimentally (Anliker et al., 1968). In
their studies, Simon et al. (1972) obtained the wave velocities by differentiating the
integral expression 22 for L(RI). This analysis appears to be unnecessarily tedious
and could be replaced by the previously described procedure, namely (a) obtain
L(R1) vs. R1 relation, and (b) curve fit these data to an exponential and then apply
the differentiation.

It may be concluded from these analyses that (a) marked gradients of stress occur
in the endocardial layers of both arteries and ventricles subjected to internal pres-
sures. These high stresses may be responsible for ischemia of the left ventricle and
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could be a triggering mechanism for the atherosclerotic lesions (Fry, 1969) fre-
quently observed in human abdominal aortas. Such results are only predicted from
a large deformation analysis; (b) Laplace's Law even for thin-walled vessels may be
open to question since the present theory yields large stress gradients for such struc-
tures; (c) caution must be exercised in evaluating elastic stiffness from the familiar
Moens-Korteweg formula (Eq. 42) for wave velocity since the stiffness varies through
the wall and differs for both theories.

Further studies along these lines are necessary in order to better characterize the
ventricular response to pressure loading, taking into account fiber orientation and a
more appropriate geometry. Finally, methods must be devised to circumvent the
problem of obtaining undeformed geometry in both the ventricle and artery if we
desire to apply such analyses in the clinical situation.
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APPENDIX

Development ofan Expression for Incremental Modulus in the Sphere and Cylinder

Spherical Case. In the spherical coordinate system (r, 0, so), the stress-strain rela-
tions may be written in the form (Lekhnitskii, 1963)

°ar = clierr + C12eoo + C12e(,p

0.99 = C12err + clieHo + c12ep,

Tpp = Cl2err + c12eO8 + clle,,,,

where

cni = E(l - v)/(l + v)(1 - 2v); C12 = Ev/(I + v)(I - 2v)

E being the Young's modulus and iv the Poisson ratio.
Subtraction of the first two equations yields the result

099 -°,rr = (cll- C12)(eOO - err) = E(eoe - err)/(l + V),

i.e., E = (1 + v)(ae0 - o,,,)/(eee -e").

For an incompressible material, v = 0.5 hence the incremental modulus is given by

EINC = (M))(Aaoo - Aafrr)/(Aeee - Aerr).

Furthermore, the incompressibility condition requires that err + eee + e,, = 0, hence Aerr =
-Aeog -Ae, = -2Aeeq and the above expression reduces to

EINC = (AOu0 - A ,)/2Aeee.

Cylindrical Case. For the cylindrical coordinate system (r, 0, z) the stress-strain
relations are given by

atr = Clle,. + C12e88 + C12ez X

0900 = c12e., + clleOe + C12e51,

Cgzg = cl2e,r + c12eO8 + cilex5.

On subtracting the first two relations we obtain

(aeo- a") = E(eeo- er,)/(l + v)
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and the incremental modulus for an incompressible material is again given in the form

EINC = (%2)(Acree - Aarr)/(Aeee - Aerr).
For the cylindrical case, the incompressibility condition requires that err + eeo + e,8 = 0 i.e.,
Aerr + teoo + te,5 = 0. However, it was assumed that the cylinder length remains constant
after the initial stretch. Thus e., = constant, Ae5, = 0, terr = -Ae.. and the incremental
modulus expression reduces to

EINC = (Y4) (Aae. - Aarr)o/eo, .
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