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Abstract The heat shock chaperones mortalin/mitochondrial heat shock protein 70 (mtHsp70) and Hsp60 are found
in multiple subcellular sites and function in the folding and intracellular trafficking of many proteins. The chaper-
oning activity of these 2 proteins involves different structural and functional mechanisms. In spite of providing an
excellent model for an evolutionarily conserved molecular ‘‘brotherhood,’’ their individual functions, although over-
lapping, are nonredundant. As they travel to various locations, both chaperones acquire different binding partners
and exert a more divergent involvement in tumorigenesis, cellular senescence, and immunology. An understanding
of their functional biology may lead to novel designing and development of therapeutic strategies for cancer and
aging.

INTRODUCTION

The mitochondrion generates copious amounts of free
radicals. In addition to the mitochondrial antioxidant de-
fense consortium that quenches and neutralizes free rad-
icals, mitochondrial chaperones prevent the aggregation
and promote refolding of redox-modified proteins (Par-
cellier et al 2003). Chaperones play crucial roles in mi-
tochondrial biogenesis that involve the import, and par-
titioning of nuclear-encoded precursor proteins within
the matrix and 2 mitochondrial membranes. We focus on
the 2 major mitochondrial chaperones in this review: the
first part presents a structural–mechanistic view of the 2
chaperones working together within the confines of their
native cellular locale, the mitochondria. This life-essential
‘‘brotherhood’’ between mortalin and Hsp60 is best ap-
preciated by their major complementing roles in main-
taining mitochondrial biogenesis and energetics. The sec-
ond part reviews aspects related to their extramitochon-
drial biology, putting to fore their acquisition of novel
cellular functions. Surprisingly, these 2 chaperones have
begun to display entirely unique behaviors. Their func-
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tional divergence as sentinels of longevity and as death
effectors is discussed.

PART I. CELL STRESS, THE MITOCHONDRIA,
AND ITS CHAPERONES

The heat shock proteins (Hsps) or molecular chaperones
are present in all organisms and play an important role
in cell survival. They are highly conserved proteins and
constitute one of the most ancient cellular defense sys-
tems on the planet. The term ‘‘heat shock protein’’ was
so coined due to their strong induction of gene expression
in response to heat stress in Drosophila larvae (Ritossa
1962). The activities of chaperones in both housekeeping
and stress response are based on their ability to interact
with unfolded (nascent) and misfolded (denatured) pro-
teins. They transiently associate with short peptide seg-
ments of the folding intermediates while preventing their
aggregation by shielding-off exposed hydrophobic patch-
es (Gosslau et al 2001).

The functionality of chaperones, such as the recognition
of substrates and their refolding activity, interactions with
cochaperones, clients, and other cofactors (adenosine tri-
phosphate [ATP] and cations), depends on their own
unique architectures. Two of the best-known mitochon-
drial chaperone machines, in terms of structure and dy-
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Fig 1. (A) A ‘‘kettle pot’’ model for the structure of mortalin. Above,
For simplicity, we can compare the structure of the mortalin with a
kettle pot showing its handle (ATPase domain), which consists of 4
subdomains that fold into a pair of lobes to form a deep catalytic
cleft and regulates the opening of the lid, and the pot (substrate-
binding cleft), which contains the substrate. Upon binding to ATP,
the Hsp70 ATPase confers the lid an altered conformation, opening
it by bending the hinge (shown by an empty square), and allows the
substrate to enter the cleft. Below, Ribbon diagrams of the peptide-
binding domain (in standard stereo [left] and one rotated 908 coun-
terclockwise [right]) (from the Protein Data Bank, 1dkx.pdb). Four
loops emanate within this b-subdomain: an inner pair (L1,2 and L3,4)
that establishes a hydrophobic substrate cleft, and a flanking outer
pair (L4,5 and L5,6) that stabilizes the substrate-binding cleft. (B) A
‘‘donut and munchkin’’ model for Hsp60. Shown in side view is the
structure of the GroEL–GroES–(ADP)7 complex with the 4-banded
appearance of the ‘‘doubly stacked donut’’ GroEL and its apical
spherical-shaped GroES (munchkin) with a central substrate-binding
cavity. Each ‘‘donut’’ is composed of a ring of 7 subunits. Each sub-
unit (right) is composed of 3 domains: apical, intermediate, and
equatorial. Upon binding of 7 molecules of ATP to the equatorial
domains, sequential conformational changes occur in both the in-
termediate and apical domains, and allosteric interactions are trans-
mitted from one ring to the other causing the expansion of the cavity
size that gives an illusion that the complex ‘‘breathes.’’ If substrate
is not folded properly, it can rebind to the same or different GroEL
molecule, and the cycle of regurgitation is repeated until the protein
substrate attains its native state (from the Protein Data Bank,
1a6d.pdb).

Fig 2. Mortalin and Hsp60 cooperate during mitochondrial biogen-
esis and maintenance. After protein synthesis, preproteins enter the
mitochondria through the outer membrane (TOM) followed by the
inner membrane (TIM) translocation channels. Mortalin, bound to
Tim44, brings the preprotein into the matrix by acting either as a
molecular ratchet or motor (see box and see Schneider et al 1994;
Neupert and Brunner 2002). During its transit, the preprotein is si-
multaneously refolded by mortalin, or is handed over to the Hsp60
complex for further cycles of protein refolding. Alternatively, some
proteins are synthesized by resident mitochondrial ribosomes, and
the nascent proteins are also assisted to fold by mortalin and Hsp60.
Upon reaching the native state, mature mitochondrial proteins are
further trafficked, assembled, and sorted to their proper places to
start functioning in various mitochondrial processes. Because pro-
teins may be damaged, either by wear-and-tear or by ROS attack
during their lifetime, the repair of misfolded domains or degradation
is achieved with the assistance of the 2 chaperones.

namics, are mortalin/mitochondrial Hsp70 (mtHsp70)
and Hsp60.

Architectural individuality of the mitochondrial
chaperones

Mortalin/mtHsp70

Mortalin is a heat-uninducible, novel member of Hsp70
family of proteins initially identified from the cytoplas-
mic fractions of normal mouse fibroblasts. It is 679 amino
acids long with molecular weight 73 913 Da. It has a high
degree of identity with other members of the Hsp70 fam-
ily, including Escherichia coli DnaK (51%), Saccharomyces
cerevisiae SSC1p (65%), the constitutive cytosolic Hsp70
from rat, Hsc70 (46%), and the rat endoplasmic reticulum
(ER) isoform BiP (49%). The precursor protein has a 46-
amino acid–long mitochondrial-targeting signal peptide.
It undergoes Ca-dependent autophosphorylation, has

multiple subcellular sites and binding partners, and has
functions related to the control of cell proliferation and
stress (Kaul et al 1993; Wadhwa et al 1993a; 2002). The
crystal structure of mortalin has not been elucidated so
far. Based on its evolutionary conservation within the
Hsp70 family (Macario and de Macario 1999; Mayer and
Bukau 1998), it is expected to have structural character-
istics similar to that of other Hsp70s.

The Hsp70 contains 2 principal domains joined by a
protease-sensitive site, ie, the N-terminal adenosine tri-
phosphatase (ATPase) and C-terminal regions (Fig 1).
Chaperonizing activities of the Hsp70 family proteins are
intimately linked with ATP hydrolysis. The structure of
44-kDa ATPase domain, modeled after that of the bovine
Hsc70, consists of 4 subdomains that fold into a pair of
lobes forming a deep catalytic cleft (Sriram et al 1997).
Studies on E coli Hsp70, DnaK, have demonstrated that
its ATPase activity can be cyclically stimulated by co-
chaperones DnaJ and GrpE. DnaJ permits the hydrolysis
of Hsp70-bound ATP allowing the adenosine 59-diphos-
phate (ADP)-bound Hsp70 to interact more strongly with
unfolded proteins. The nucleotide exchange factor GrpE
enables the recycling of Hsp70 back into an ATP-bound
state, permitting the efficient release of its substrate (Har-
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rison et al 1997). Multiple GrpE-like proteins and a
unique human GrpE homolog, HMGE, have been re-
ported to be restricted to the mitochondria and to form
chaperone pairing with mortalin/mtHsp70 (Naylor et al
1998; Choglay et al 2001). Besides the known mtDnaJ
(Zhao et al 2002), dj2 and dj3 could be candidate cochap-
erones of mortalin, because these cytosolic DnaJs are also
detected in the mitochondria (Terada and Mori 2000). As
these cycles of ATP hydrolysis occur, allosteric changes
in the N terminus are transmitted to the peptide-binding
domain (PBD). The 18-kDa PBD is made up of 2 sets of
4-stranded antiparallel beta sheets that form a twisted
sandwich. Whereas the ATPase domains are strictly con-
served, the PBD domain shows a greater sequence vari-
ation resulting in the diversification of the client peptides
and substrate specificity. This also reflects the adaptive
specialization of each member of the Hsp70 family (Ru-
diger et al 2000). Flanking the PBD is a 10-kDa-long C-
terminal helix ‘‘lid’’ of 5 distinct helical domains (A–E)
that do not directly come to contact with the peptide sub-
strate. The helix is kinked in the middle and is bent up-
ward, resulting in the loss of interaction with the outer
pair of loops that, in turn, enhances the lid’s capacity to
flip-flop. This structure has also been proposed to func-
tion as a molecular ‘‘latch’’ that closes the peptide-bind-
ing pocket and makes peptide binding less dynamic in
the ADP-bound state (Zhu et al 1996). Whereas helix A
has high sequence conservation between Hsp70 proteins,
the second half of helix B is divergent. Although the func-
tion of this variable C-terminal domain remains unclear,
it has been shown to bind to some cofactors in order to
modulate its activity (Horton et al 2001) and possess im-
munomodulatory functions (Lehner et al 2004).

There is a substantial understanding of what substrates
are recognized by Hsp70 from the studies of 3 research
teams that have used proteomic and combinatorial pep-
tide technologies. First, with a 15-mer phage display li-
brary, Takenaka et al (1995) demonstrated that Hsc70 pre-
fers 2 distinct sets of sequence motifs important for its
dual chaperoning roles: one as an organelle-translocator
motif (NIVRKKK-like) and the other as sequences rec-
ognized to enable protein refolding (FYQLALT-like). Sec-
ond, a more comprehensive screen was conducted for
DnaK substrates using a library of 4360 cellulose-bound
13-mer peptides. This screen deduced that the binding
motif possesses a central hydrophobic core of 4 or 5 res-
idues enriched particularly with Leu and to a lesser ex-
tent with Ile, Val, Phe, and Tyr. It has 2 flanking regions
enriched with basic residues while disfavoring acidic res-
idues (Rudiger et al 1997). And third, by liquid chroma-
tography–ion trap mass spectrophotometry (LC-ITMS) of
endogenously bound peptides to Hsp70, the database of
this comprehensive proteomic screening reveals that
Hsp70-binding motifs must contain both basic and acidic

residues at critical positions (1, 3, 5, 7, and 9), disfavoring
large aromatic residues (Grossmann et al 2004).

Two allelic forms of mortalin were discovered in mice.
One, being an uncanny exception to the gero-protective
paradigms of Hsp70 chaperones, is the pancytoplasmic
mortalin (mot-1). Initially christened as a ‘mortality fac-
tor’ due to its marked presence in normal murine fibro-
blasts and mortal cybrids (Wadhwa et al 1993a), overex-
pression of the protein (mot-1) induced aging in immor-
talized fibroblasts (Wadhwa et al 1993b). In contrast, its
other allelic form, the perinuclear mortalin (mot-2), sup-
ported malignant transformation of mouse fibroblasts
(Kaul et al 1998) and extended life span of human fibro-
blasts (Kaul et al 2003) and worms (Yokoyama et al 2002).
Human cells have only the mot-2 (hmot-2) that is distrib-
uted pancytoplasmically in normal cells. When human
cells become immortal and/or tumorigenic, the subcel-
lular distribution of hmot-2 shifts to a perinuclear form
and gains the ability to inactivate p53 and Ras–Raf path-
ways (Wadhwa et al 1998, 2003). Although these events
appear to be a universal feature of immortalization, the
molecular factors that govern this switch remain to be
defined.

Hsp60/Hsp10

Described as a ‘‘giant breathing machine’’ (Richardson et
al 1998), the mammalian Hsp60/Hsp10 (chaperonin)
complex engulfs misfolded proteins and regurgitates
them into properly folded structures. Due to the stability
of the bacterial chaperonin system and the relative ease
with which GroEL can be purified and crystallized, most
of our biophysical understanding of Hsp60 are based on
the E coli GroEL chaperonin (Ranson et al 2001). This
oligomer, weighing nearly a million daltons, has the co-
chaperonin GroES/Hsp10 resting on its apex (Hunt et al
1996). GroEL’s body is a 14 subunit-toroidal assembly
that creates a large central cavity to which the unfolded
protein substrate binds via hydrophobic interactions.
Each GroEL subunit can be divided into 3 domains, ie,
(1) the apical domain that binds to both its substrate and
GroES, (2) the equatorial domain that contains a binding
site for ATP and the ring, and (3) the intermediate do-
main that functions as a mobile linker to these 2 domains
(Fig 1). The central cavity is an assemblage of rings that
processes misfolded proteins at 2 transitional states, ie,
(1) peptide-accepting state: when it is open, exposing a
flexible hydrophobic ‘‘lip’’ that captures non-native spe-
cies and funnels them in the cavity (Weissman et al 1995;
Sigler et al 1998; Fenton and Horwich 2003) and (2) pep-
tide-folding state: once the protein is ingested, the lid-like
chaperonin GroES caps the end and triggers unscram-
bling of the secondary structure of the substrate by mul-
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tivalent mechanical vacillations of its hydrophobic/hy-
drophilic interior (Farr et al 2000).

Similar to Hsp70, ATP binding to 1 of the 2 rings of
the GroEL complex drives its protein-folding cycle. Si-
multaneously, as GroES caps the complex, the interior of
the cavity starts achieving a global physical change, in
terms of shape and hydrophobicity. The cavity of the
bound ring enlarges by more than 2-fold while its hydro-
phobic binding surface twists away from the polypeptide
throwing off the engulfed protein into the cavity. As a
result of the allosteric communication among its subunits,
the interactive surface of the apical domains of GroEL
switches from hydrophobic to hydrophilic, and vice ver-
sa. The different subunits with their coordinated move-
ments engulf the protein with exposed hydrophobic sur-
face and reorients until it attains a native state (Ranson
et al 2001). The binding of nucleotide alone, in the absence
of GroES, has not been observed to produce such an ex-
tent of apical movement (Bukau and Horwich 1998; Rye
et al 1999). This captivating choreography of GroES–
GroEL–ATP complex has been captured in a movie and
can be viewed from the site courtesy of the University of
London’s Helen Saibil (http://people.cryst.bbk.ac.uk/
;ubcg16z/cpn/elmovies.html).

Despite the high sequence homology of mammalian
mitochondrial Hsp60 to bacterial GroEL, this chaperonin
possesses unique features (Levy-Rimler et al 2002). The
oligomeric state of mammalian Hsp60 is different from
that of bacterial, yeast mitochondrial and chloroplast
chaperonins. As the last 3 types exist as tetradecamers of
2 heptameric rings, the mammalian mitochondrial chap-
eronin, depending on its concentration, maintains a dy-
namic equilibrium between its monomeric, heptameric,
and tetradecameric states (Levy-Rimler et al 2001). Fur-
thermore, they differ in their requirement for cochaper-
ones (Levy-Rimler et al 2002).

Roles in mitochondrial biogenesis

Mortalin in preprotein translocation

Because the mitochondrial genome encodes just a handful
of proteins, it relies heavily on the import of proteins
from the cytosol. It has, therefore, evolved an elaborate
translocation system for efficient import of nuclear-coded
proteins and also for export of proteins coded by its own
genome (for recent reviews, see Koehler 2004; Rehling et
al 2004; Wiedemann et al 2004). During the import, most
proteins, eg, those targeting the matrix, would need to
pass through the outer membrane (translocase of the out-
er membrane [TOM]) followed by the inner membrane
(translocase of the inner membrane [TIM]) channels
(Neupert 1997). Because bulky proteins need to unfold
during shuttling and then refold back to their native con-

formations, mitochondrial molecular chaperones are as-
sumed to play the central role in mitochondrial biogen-
esis. It is noteworthy that most of our understanding of
mitochondrial transport mechanisms is from the study of
the simple yeast (S cerevisiae) cell model due, in part, to
the highly conserved nature of mitochondrial import and
translocation processes (Voos and Rottgers 2002). A yeast
cell can survive when starved of energy (the main func-
tion of the mitochondrion) but, ironically, perishes under
all conditions when it harbors deletion in Ssc1, the yeast
homolog of mortalin (Craig et al 1987). In the following
discussion, mortalin has been used interchangeably with
mtHsp70 and Ssc1 for consistency and ease.

Precursor proteins contain targeting and sorting infor-
mation to reach the mitochondrion, whereas the translo-
cons recognize the information and direct the precursor
to the correct compartment. The outer membrane con-
tains the TOM complex for translocation and the sorting
and assembly machinery (SAM) complex for assembly.
Translocation of positively charged N terminus of the
preprotein through the TIM channel is driven by the en-
ergy from the membrane potential generated in the ma-
trix (Geissler et al 2000, 2001). Albeit, membrane potential
effects may not be sufficient to transport an entire pro-
tein, the import process is fueled by another energy
source, ATP. Mortalin/mtHsp70 has been identified as the
only ATPase component of this preprotein mitochondrial
import complex and is required for the translocation of
most mitochondrial inner membrane and matrix proteins
(Schneider et al 1994; Brunner et al 1995). The protein
transport machinery of the inner mitochondrial mem-
brane contains 4 essential Tim proteins: Tim17, Tim23,
Tim50, and Tim44. The TIM channel comprises 3 integral
membrane proteins, Tim17, Tim50, and Tim23. While
tethered onto the inner face of the inner mitochondrial
membrane, Tim44 is transiently associated with mortal-
in/mtHsp70, the 2 cochaperone J-proteins, Pam18 and
Pam16 (a degenerate J-protein), and the nucleotide ex-
change factor Mge1 (homolog of the bacterial GrpE), to
form an ATP-driven import complex, called the prese-
quence translocase-associated motor (PAM) (D’Silva et al
2004). The binding sites of Mge1 and Tim44 to mortalin
have been assigned at the variable region along C-ter-
minal a-helical lid (Strub et al 2003). During the trans-
location, Mge1 enhances the otherwise low intrinsic
ATPase activity of mortalin via the release of ADP and
Pi (Dekker and Pfanner 1997). Interestingly, whereas mor-
talin is an essential component for import of both tightly
and loosely folded preproteins, Tim44 is believed to be a
nonessential structural component. Instead, Tim44 may
play a more specialized role in translocation of tightly
folded domains (Bomer et al 1998). Recent data have pro-
vided evidence that Pam16, lacking the canonical tripep-
tide motif His-Pro-Asp (HPD), heterodimerizes with
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Pam18 and antagonizes its function modulating the in-
teraction of mortalin with precursor proteins (Li et al
2004).

With the role of mortalin/mtHsp70 as the core of the
mitochondrial transport machinery, its appreciation
through the years has put forth 2 controversial hypothe-
ses regarding its mechanism(s): mortalin/mtHsp70 as a
molecular ratchet and as a dynamo in the ‘‘trapping’’ and
‘‘motor’’ models, respectively (Voos and Rottgers 2002).
In the trapping model, brownian motion is the initial
driving force that becomes converted into vectorial move-
ment of the preprotein. Subsequently, as the N-terminal
part of the preprotein is inserted into the inner mem-
brane, pulled by the membrane potential, the exposed hy-
drophobic stretches of the protein within the matrix are
then recognized as substrate by mortalin/mtHsp70. The
binding with mortalin/mtHsp70 results in the holding of
the protein and prevents its backflow. The fact that several
Hsp70-binding sites are known to exist within a single
protein, gradual trapping of the peptides completes the
translocation process. The enhanced trapping by morta-
lin/mtHsp70 also reduces dependence on the import-
driving activity of the membrane potential (Strub et al
2000; Geissler et al 2001). A more recent paper by Liu et
al (2003) proposed that ATP hydrolysis may be unnec-
essary during the regulated interactions of mortalin/
mtHsp70 by Tim44. Furthermore, the release of Tim44 is
also more rapid than the rate of ATP hydrolysis. As this
be the case, the otherwise proposed existence of the trans-
location motor complex, as discussed later, may not run
concurrent with the peptide translocation (Fig 2).

In the motor model, using Tim44 as a fulcrum on the
membrane, with hydrolysis of ATP, mortalin/mtHsp70
generates a ‘‘power-pull’’ for the polypeptide (Voos et al
1996). Experimental data to support the existence of a
‘‘mortalin/mtHsp70 dynamo’’ demonstrate both the re-
quirement for preprotein unfolding during import and
the generation of an inward-directed translocation force.
Due to the geometry of the import channel, precursor
proteins are required to cross the mitochondrial mem-
branes in a completely unfolded, or even stretched con-
formation. Components of the outer membrane, eg, sur-
face receptors or the import pore have no unfoldase ac-
tivity (Huang et al 2000). The mitochondrial import ma-
chinery, therefore, must be able to unfold a preprotein
simultaneously as it transports (Voos and Rottgers 2002).
Unfolding of a tightly folded preprotein, such as cyto-
chrome b2, requires ATP hydrolysis in the matrix, indi-
cating the direct involvement of mortalin/mtHsp70
(Glick et al 1993; Wachter et al 1994). Unfolding of a pre-
cursor at the mitochondrial surface is dramatically accel-
erated when its presequence is long enough to span both
membranes and interact with mortalin/mtHsp70 in the
mitochondrial matrix. Furthermore, the rates of unfolding

are also orders of magnitude faster than for spontaneous
unfolding, suggesting that mortalin/mtHsp70 could be
the ATP-driven force-generating motor during protein
import (Matouschek et al 1997). In the mitochondrial pro-
tein import motor, mortalin/mtHsp70 first hydrolyzes
ATP, and then associates tightly with Tim44 and a pre-
cursor protein, and finally undergoes a conformational
change to drive translocation (Horst et al 1996). The mo-
tor does not exert a constant pulling force but instead
releases a translocating polypeptide chain such that the
precursor can then slide back and refold on the surface
of the mitochondria. Since refolding competes with trans-
location, the (polypeptide) cargo may undergo several
rounds of unfolding and refolding prior to their import
(Gaume et al 1998). In contrast to this model, a prereq-
uisite for import protein via the passive trapping mode
is that the preprotein must unfold spontaneously before
entering the translocation channel so that it can slither
into the matrix and get trapped by mortalin/mtHsp70.
Current evidence, albeit, points out that both the mech-
anisms cooperate in order to obtain maximal import ef-
ficiency (Voos et al 1999; Voos and Rottgers 2002). Al-
though the Hsp90–Hsp70 complex has been isolated and
shown to stimulate mitochondrial import of precursor
protein (Scherrer et al 1993), the involvement of Hsp90 as
well as its mitochondrial counterpart, TRAP-1, on protein
translocation remains obscure so far.

Folding and assembly by Hsp60

After entry into the mitochondrial matrix, the preproteins
are initiated to refold and assemble. Hsp60 is one of the
most important components of the protein-folding sys-
tem within the mitochondrial matrix. It was demonstrat-
ed that yeast cells carrying a null mutation of Hsp60 are
nonviable due to severe defects in folding of mitochon-
drial proteins, whereas those with conditional mutants
tend to accumulate misfolded proteins that are unable to
form active enzyme complexes (Cheng et al 1989). It was
later shown that newly imported mitochondrial prepro-
teins interact with Hsp60 upon its entry into the matrix
compartment (Mahlke et al 1990; Langer and Neupert
1991; Hartl et al 1992). A rare genetic disorder, congenital
lactic acidemia, is found associated with a general decline
in Hsp60 activity, leading to multiple mitochondrial en-
zyme deficiencies (Briones et al 1997). Similarly, patients
with hereditary spastic paraplegia SPG13 harbor a mu-
tation in the gene encoding the mitochondrial Hsp60
(Hansen et al 2002) and in the short chain acyl-CoA de-
hydrogenase (SCAD) that both result in mitochondrial
folding anomalies (Pedersen et al 2003). Hsp60 deficiency
has also been reported in fibroblasts derived from a pa-
tient with a fatal, systemic mitochondrial disease leading
to deficiency of multiple (10 out of 11) mitochondrial en-
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zymes as well as abnormality of mitochondrial structure
(Agsteribbe et al 1993).

Roles in the mitochondrial stress response

Exposure of cells to stress results in a global misfolding
and impairment of cellular processes leading to a trans-
activation of genes with a heat shock element (HSE).
However, cells can also respond to localized or organelle-
specific stresses. The mitochondrial-specific stress re-
sponse (MSR) in mammalian cells has recently been elu-
cidated (Martinus et al 1996; Zhao et al 2002). Deletion
of mtDNA from mammalian cells induced a stress re-
sponse by stimulating the transcription of the nuclear
genes encoding Hsp60 and Hsp10. Of note, both Hsp60
and Hsp10, but not mortalin, are also upregulated by
heat stress (Naylor 1996). The possible explanations of the
uninducible feature of mortalin may lie in its abundance
and multiplicity of its roles.

PART II. BEYOND THE MITOCHONDRIAL
BORDER

Despite the fact that they are popular mainstays of the
mitochondria, the story of these 2 cooperating chaperones
does not end within this organelle. In recent years, evi-
dence has emerged indicating that they are (unexpect-
edly) found in other locations, evoking questions as to
whether these wandering proteins fulfill other essential
functions as well (for review, see Soltys and Gupta 1999,
2000).

The mitochondrial Hsp60 precursor protein contains
an N-terminal mitochondrial targeting sequence (MTS)
that gets cleaved during its import into the matrix com-
partment (Singh et al 1990; Venner and Gupta 1990; Ven-
ner et al 1990). Hsp60 was initially discovered in mam-
malian cells as a protein specifically altered in Chinese
hamster ovary (CHO) cells resistant to the microtubule
(MT) inhibitor podophyllotoxin. Hsp60 and tubulin have
been independently detected on the plasma membrane
(Soltys and Gupta 2000). The extramitochondrial locali-
zation of Hsp60 in a variety of mammalian cells and tis-
sues was also confirmed by electron microscopy (EM)
(Soltys and Gupta 1996, 1997) and its role as amino acid
transporter has been suggested (Jones et al 1994). Hsp60
is also present in mature secretory granules of beta cells.
Interestingly, in nonobese diabetic mice, accompanying
the progression of insulitis is the loss of Hsp60 in the
insulin-secretory granules. A role of Hsp60 in insulin bio-
synthesis/packaging and in pathogenesis of insulin-de-
pendent diabetes has been proposed (Brudzynski 1992).

Membrane-associated Hsp60 forms a complex with his-
tone 2B and is regulated via site-specific phosphorylation
by type I protein kinase in a human leukemic T cell line

(Khan et al 1998). Ikawa and Weinberg (1992) have iden-
tified an association of Hsp60 with plasma membrane–
resident p21ras protein. More recently, a study on bioti-
nylation of cell surface proteins in cancer vs normal cell
lines and subsequent analysis with mass spectrometry re-
ported that both Hsp60 as well as mortalin are highly
abundant in the surface of cancer cells when matched
against normal cells (Shin et al 2003).

Compelling evidence has emerged indicating that mor-
talin/mtHsp70, just like Hsp60, docks at extramitochon-
drial sites. Visual studies of the protein with specific an-
tibodies in a variety of cell lines revealed its existence in
multiple extramitochondrial sites that include the endo-
plasmic reticulum, cytoplasmic vesicles, and cytosol
(Wadhwa et al 2002). How mortalin is being targeted to
these other compartments is not clear at present, but one
possibility is that binding of mortalin to residents of dif-
ferent organelles may assist in its relocation. Far Western
screening had identified glucose-regulated ER chaperone
(GRP94) as one of its binding partners. Mortalin–GRP94
interaction has been confirmed by mammalian 2-hybrid
assays, in vitro and in vivo coimmunoprecipitations (Tak-
ano et al 2001). In addition, mortalin is also found to bind
to various other proteins including p53, membrane-asso-
ciated proteins such as fibroblast growth factor 1 (FGF-1),
interleukin receptor 1a (for review, see Wadhwa et al
2002), cytoskeleton elements, mitochondrial protein
p66shc, and peroxisomal protein mevalonate pyrophos-
phate decarboxylase (MPD) (Wadhwa et al 2003; Choi et
al 2004; Orsini et al 2004). Some complement-activated
cells have been shown to release mortalin by vesiculation
that has been interpreted as a protective response against
complement-mediated lysis (Pilzer and Fishelson 2005;
Pilzer et al 2005). In a manner re-enacting its role in mi-
tochondrial import, mortalin assumes a function in traf-
ficking nonmitochondrial proteins too. Interestingly, its
interaction with FGF-1 assists the growth factor’s intra-
cellular uptake and organellar routing. This process is
coupled to the cell cycle–dependent tyrosine phosphory-
lation of mortalin (Mizukoshi et al 1999, 2001). A similar
phenomenon is noted in the ATP-sensitive association of
mortalin with the receptor for the proinflammatory cy-
tokine interleukin 1 (IL-1) that leads to receptor internal-
ization and downstream signaling cascades (Sacht et al
1999).

Gaining new roles in neoplasia

Apoptosis or programmed cell death is a central regula-
tor of tissue homeostasis. Genetic disturbances of apo-
ptotic signaling pathways are found in almost all cancers
and are linked to tumor development and progression.
Resistance to apoptosis is also one of the main contrib-
utors to bad prognosis and insensitivity to conventional



Cell Stress & Chaperones (2006) 11 (2), 116–128

122 Deocaris et al

cancer therapies. Elevated expression of Hsp90, Hsp70,
and Hsp27 has been widely reported in various cancers.
Their abundance measured from tumor biopsies is indic-
ative of worse prognosis (Jolly and Morimoto 2000). Dun-
das et al (2005) demonstrated the prognostic value of
mortalin/mtHsp70 overexpression in a large series of co-
lorectal cancers by a comparative proteomic. Of note, el-
evated levels of mortalin have also been noted in many
in vitro–immortalized and tumor-derived cells, and tu-
mor tissues (Wadhwa et al 2006). Consistently, the reduc-
tion in mortalin level by antisense and ribozymes in im-
mortal and cancer cells led to their growth arrest (Wadh-
wa et al 2004).

On the other hand, studies describing clinical associa-
tions with the up-regulation of Hsp60 in tumor biopsies
appear to conflict. For patients with acute myeloid leu-
kemia (AML), overall survival and complete remission
rates correlate with lower expression of Hsp27 and
Hsp60. When confounded with the amount of cytogenetic
abnormalities accrued by the cancer cells, a more pejo-
rative outcome begin to emerge (Thomas et al 2005), a
finding that is consistent with the role of Hsps as surviv-
al/microevolutionary buffers for genomic instability (Soti
and Csermely 2002). And like mortalin, cellular distri-
bution of Hsp60 and Hsp10 are potentially informative
in tumor diagnosis. For instance, both Hsp60 and Hsp10
proteins are localized only in cells of basal and parabasal
layers of low-grade cervical tumor lesions, whereas in
higher grades, a diffused pattern in all layers is seen
(Cappello 2003). Hsp60 has also been found to be of some
utility in predicting disease progression in patients with
cancers of the bladder (Lebret et al 2003) and uterus–
cervix (Cappello et al 2002), but not in tumors of the pros-
tate (Cornford et al 2000), tongue (Ito et al 1998), and
bone (Uozaki et al 2000). Contradicting results have been
reported for the prognostic value of Hsp60 in ovarian
(Schneider et al 1999) and esophageal squamous cell car-
cinomas (Faried et al 2004). As this is the case, Hsp60 may
seem to act in a cell type–specific manner; its function in
the induction of cell death is believed to be operative in
cancer types that show good prognosis, contradicting the
generally accepted prosurvival percept of Hsp60 as a
‘‘chaperoning angel’’ (from the vantage point of a tumor
cell).

Mortalin as a prosurvival chaperone

In a proteome analysis of oubain-treated vascular smooth
muscle cells (VSMCs), mortalin/mtHsp70 was identified
as one of the important antiapoptotic genes (Taurin et al
2002). Its overexpression suppresses apoptosis from var-
ious stressors, eg, arsenite in rat lung epithelial cells (Lau
et al 2004), differentiation agent 1,25-dihydroxyvitamin
D3 in rat gliomas (Baudet et al 1998), and glucose star-

vation and ischemia reperfusion in Chinese hamster lung
(CHL) cells (Gao et al 2003). It causes inactivation of p53
function by cytoplasmic sequestration (Wadhwa et al
1998) and protects cells from ATP depletion and energy
deprivation associated with cell death by preventing the
rapid rise in mitochondrial reactive oxygen species (ROS)
(Liu et al 2005).

As a native of the mitochondrion, mortalin is envi-
sioned to play an even more expansive role in its mod-
ulation of apoptosis pathways. Treatment of cells with
ultraviolet radiation induces the release of monomeric
p66Shc from its inhibitory complex with mortalin and trig-
gers a collapse of the mitochondrial trans-membrane po-
tential. After engagement of Fas receptor with its ligand,
the N-terminal portion of cyclin dependent kinase 11
(CDK11 p60) translocates from the nucleus to the mito-
chondria and associates with mortalin/mtHsp70 (Feng et
al 2005). Similarly, p53 has also been reported to trans-
locate to the mitochondria and induce apoptosis indepen-
dent of its well-known transcriptional functions (Mihara
et al 2003). Furthermore, overexpression of antiapoptotic
Bcl-2 or Bcl-xL abrogates stress signal-mediated mito-
chondrial p53 accumulation and apoptosis (Marchenko et
al 2000). The overall picture of the role of the mitochon-
drial p53 in apoptosis relies on the direct interaction of
Bcl2 and Bcl-xL with p53 as detected by coimmunopre-
cipitation experiments (Mihara et al 2003). In addition,
p53 can ‘‘kidnap’’ Bcl-xL and Bcl2 from tBid, Bak, and
Bax, creating apoptotic homodimers (Chipuk et al 2004).
Whether mortalin manipulates p53 by stealing it from the
p53–Bcl-xL/2 complex and finally dragging it for protea-
somal degradation would be an interesting plot in the
prosurvival story of this mitochondrial chaperone.

Proapoptotic and antiapoptotic Hsp60

Hsp60/Hsp10 complex bears an unusual role in apopto-
sis. Overexpression of Hsp60 prevents apoptosis by pro-
tecting mitochondrial functions after ischemic injury in
both cardiac and muscle cells (Lau et al 1997; Lin et al
2001). Cytosolic Hsp60 forms a macromolecular complex
with both Bax and Bak, blocking their ability to effect
apoptosis. Reduction in Hsp60 levels in these cells either
by antisense or hypoxic treatment precipitates to the
translocation of Bax (Gupta and Knowlton 2002; Kirch-
hoff et al 2002). Adenoviral transduction of Hsp60/Hsp10
in cardiac myocytes attenuated doxorubicin-induced car-
diac muscle death by inhibiting ubiquitination of Bcl-xL,
increasing the abundance of the Bcl-xL and Bcl-2, without
altering expression of Bad (Shan et al 2003). Others have
proposed that Hsp60 also protects epithelial cells from
stress-induced death via activation of extracellular signal-
regulated kinase (ERK) and inhibition of caspase-3
(Zhang et al 2004). Hsp60 and mortalin/mtHsp70 are
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also 2 of the major cellular proteins that become cova-
lently modified after treatment with certain nephrotoxic
agents, such as tetrafluoroethyl cysteine analogs (Bruschi
et al 1993; Bruschi and Lindsay 1994).

There have been accumulating reports on the proapo-
ptotic role for Hsp60/Hsp10 complex during apoptosis.
One can account for 3 different twists for Hsp60’s pro-
apoptotic personalities. First (in the cytoplasm), after re-
lease from the mitochondria, Hsp60 and Hsp10 activate
caspase-3 in an ATP-dependent fashion in response to
camptothecin treatment (Samali et al 1999; Xanthoudakis
et al 1999). A similar phenomenon of caspase-3 activation
has also been previously identified from ultrasound-in-
duced cell death in Walker 256 carcinosarcoma cells (Tian
et al 2005). Second (in the mitochondria), Hsp60 has been
discovered, from proteomic studies, to be an important
target by the hepatitis B virus X protein (HBx). Instead
of preventing HBx-induced apoptosis, overexpression of
Hsp60 further facilitates HBx-induced apoptosis in he-
patic cells (Tanaka et al 2004). And third, (on the plasma
membrane) of endothelial cells, Hsp60 displays cross-re-
activity to antiendothelial cell antibodies (AECAs) from
patients with systemic autoimmune diseases, ie, vasculitis
and lupus erythematosus. By an ambiguous mechanism,
apoptosis was triggered by anti-Hsp60–containing
AECA-positive sera and was inhibited by neutralization
with free recombinant Hsp60 (Jamin et al 2005).

Mortalin and Hsp60 in the senescence pathways

As with apoptosis, senescence (cellular aging) represents
another major barrier to tumorigenesis. Most human nor-
mal somatic cells permanently stop dividing after a finite
number of cell divisions in culture and enter a state of
‘‘permanent growth arrest,’’ termed as cellular or repli-
cative senescence (Hayflick and Moorehead 1961). Tumor
cells, on the other hand, acquire the means to bypass this
limit to extend their life span and achieve immortality.
Being immortal has its own drawbacks; a tumor cell suf-
fers an accumulation of genetic mutations, partly, as a
result of the absence of proliferation breaks that counter
genomic instability. It is noteworthy that many of their
key components of the senescence pathways are regulated
by interactions with the molecular chaperones. Hsps
serve as safeguards to maintain homeostasis and integ-
rity of these critical protein interactions. The observation
that tumor cells often have elevated levels of Hsps may
be associated with a premalignant cell’s response to the
selection process occurring during tumorigenesis. By vir-
tue of their activities as molecular chaperones, Hsps con-
tribute to cellular immortalization and provide survival
advantages for neoplasia.

The Hsp60 does not seem to show an impact on cel-
lular life span. Whereas overexpression of mortalin ex-

tends the in vitro life span of normal human fibroblasts
(Kaul et al 2003), population doublings (PDs) of human
fibroblasts overexpressing Hsp60 remained unchanged
(Wadhwa et al 2005). What could account for this dis-
crepancy? Looking back at the molecular chaperone mod-
el of Hsp60, coimmunoprecipitation experiments with
GroEL showed that fewer than 15% of proteins could
bind to Hsp60 in vitro (Ewalt et al 1997) and no more
than 2% misfolded proteins can be processed by this
chaperonin in vivo (Todd et al 1996). Whereas Hsp60 pos-
sess a fastidious central cavity that discerns a smaller
fraction of proteins, the structure of mortalin may accom-
modate exposed hydrophobic protein strands in its pro-
miscuous peptide-binding domain. This might explain an
apparent ‘‘dominance’’ of mortalin during mitochondrial
biogenesis: preproteins are first processed (ie, unfolded,
trapped, translocated, refolded) by mortalin/mtHsp70
prior to passing them on to Hsp60 for mitochondrial pro-
tein triage. The functional distinctions between the 2
chaperones are likely to account for the fact that overex-
pression of mortalin, but not of Hsp60, leads to life span
extension. This observation also underscores the indepen-
dence of senescence and apoptosis pathways. Some stress
chaperones, Hsp90, Hsp27, and Hsp70 (Hsc70 and the
heat-inducible Hsp70) have been assigned roles in resis-
tance of many cancers to anticancer drugs (Rashmi et al
2004) estimated to cause treatment failure in over 90% of
patients. With the exception of Hsp27, very little is known
yet about the roles of the mitochondrial chaperones in
chemoresistance.

The parable of the 2 brothers—a perspective

This review is akin to a parable that tells a story of 2
brothers (proteins) that have distinctive structural char-
acteristics and behaviors, and have been entasked to ful-
fill evolutionarily conserved, life-essential roles in the mi-
tochondria for the past 2 billion years, marking the be-
ginning of eukaryotic transition to aerobic metabolism
(Kurland and Andersson 2000; Gabaldon and Huynen
2004). As a general assumption in biology that proteins
bound for specific organelles do not leave their destined
compartments, the recent spate of reports refocus the
spotlight to their extraordinary extramitochondrial biol-
ogy. We have depicted the 2 prodigal chaperones as dis-
playing remarkably divergent personalities that accom-
pany the breakdown of their fraternity. It is easy to see
such contrasts when presented in terms of their newly
acquired functions in aging and carcinogenesis as well as
their emergent binding partners. Their ectopic expres-
sions permitted them to assume more expansive roles in
signal transduction, cell communication, and neoplastic
development. And partly, as a result of their neolocali-
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zations, these chaperones possess the ability to modulate
the immune system.

Mortalin/mtHsp70 and Hsp60 both have intrinsic an-
tigenicities and are reported to be a potent activator of
innate immunity. Aberrant expression of these chaper-
ones in certain organs promotes immunopathology (Wick
2000). For example, binding of Hsp60 to high-density li-
poproteins may explain the known association between
immunity developed against Hsp60 and atherosclerosis
(Bocharov et al 2000; De Bruyn et al 2000). Hsp60 also
serves as a ligand to Toll-like receptors (TLRs), the mo-
lecular sensors of innate immune system (Vabulas et al
2002). Their deregulated expression may also result in
autoimmune pathologies. Yokota et al (2000) showed the
presence of autoantibodies against Hsp60 in patients with
autoimmune diseases, including rheumatoid arthritis,
systemic lupus erythematodes, Sjögren syndrome, and
mixed connective tissue disease. It is not remote for both
mortalin and Hsp60 to show immunotherapeutic poten-
tial as was shown for Hsp70 (Todryk et al 2003).

In principle, we can exploit many of the new properties
acquired by these chaperones in biotechnology and use
them as therapeutic targets and agents. However, before
that, we need to explore reasons for their uncanny dias-
pora and frame our acquired knowledge into coherently
broad biological and even philosophical perspectives.
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