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ABSTRACT

With the growing number of completely sequenced
bacterial genes, accurate gene prediction in bacterial
genomes remains an important problem. Although
the existing tools predict genes in bacterial genomes
with high overall accuracy, their ability to pinpoint
the translation start site remains unsatisfactory. In
this paper, we present a novel approach to bacterial
start site prediction that takes into account multiple
features of a potential start site, viz., ribosome binding
site (RBS) binding energy, distance of the RBS from
the start codon, distance from the beginning of the
maximal ORF to the start codon, the start codon itself
and the coding/non-coding potential around the start
site. Mixed integer programing was used to optimize
the discriminatory system. The accuracy of this
approach is up to 90%, compared to 70%, using the
most common tools in fully automated mode (that is,
without expert human post-processing of results).
The approach is evaluated using Bacillus subtilis ,
Escherichia coli and Pyrococcus furiosus . These
three genomes cover a broad spectrum of bacterial
genomes, since B.subtilis is a Gram-positive bacterium,
E.coli is a Gram-negative bacterium and P.furiosus is
an archaebacterium. A significant problem is generating
a set of ‘true’ start sites for algorithm training, in the
absence of experimental work. We found that
sequence conservation between P.furiosus and the
related Pyrococcus horikoshii clearly delimited the gene
start in many cases, providing a sufficient training set.

INTRODUCTION

As of March 1999, 20 bacterial genome sequences have been
published and sequencing of many more is in progress. The
complete list of these sequences is available from the public
database (http://www.tigr.org ). With the growing number of
completely sequenced bacterial genes, accurate gene prediction in
bacterial genomes remains an important problem. Significant
progress has been made in the past few years in developing
computational tools for gene prediction, GeneMark (1,2) and
GLIMMER (3) being the most widely used tools for bacterial
gene predictionin silico.

Although the existing tools predict the genes in bacter
genomes with high overall accuracy, their ability to pinpoin
the translation start site remains unsatisfactory. In order to a
lyze the putative protein product of a gene, it is valuable
know as accurately as possible the translation initiation s
The two main sources of evidence used in finding bacter
genes are long open reading frames (ORFs) and some form
statistical regularity from codon usage bias, typically measur
in a window of ~100 bp. While both kinds of evidence help
great deal in providing rough gene locations, neither one he
the investigator very much in choosing between alternat
start codons near the beginning of an ORF.

The so-called Shine–Dalgarno consensus sequence (S
and Dalgarno, 1974) is often used to search by eye for
ribosome binding site (RBS), but there are a number of mo
reliable methods (reviewed in 4). Stormo and colleagues
present one of the pioneering works in the computation
characterization of translation start sites in prokaryotes. Sch
and colleagues (6) developed an algorithm for calculating
optimal binding energy between the 16S rRNA ofEscherichia
coli and the region upstream of a potential initiation codo
allowing internal loops and bulges, and showed a difference
the binding energy distribution for regions upstream of tru
initiation codons and spurious, gene-internal, ATG codons.

The study of Schurret al. suggests that a practical gene sta
prediction method might be made on the basis of an optim
binding energy calculation. High accuracy on the basis of t
RBS might be difficult inE.coli, where the RBS pattern is
rather weak. However, in clostridial Gram-positive bacteria,
particular Bacillus subtilis and Staphylococcus aureus, the
predicted energy at the potential RBS tends to be mu
stronger, perhaps because in these organisms the transla
initiation complex is missing ribosomal protein S1, thought
help in melting inhibitory secondary structures in the mRN
(reviewed in 7). An energy-based algorithm to locate the RB
in these organisms was implemented in (8).

M. Borodovsky’s group pioneered improved start site loca
ization in bacterial gene finders, culminating in (9,10). Th
final synthesis in (9) uses such factors as the start codon sc
RBS score, downstream box score, pre-start signal score
post-start signal score, all based on similarity to profiles genera
from a training set.

Frishman and colleagues further explored the idea of us
diverse evidence (11). The evidence used for gene recogni
was coding potential and the evidence for start site predict
was RBS score which included a profile based score as wel
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a score depending on the distance of the RBS to the start
codon.

In this paper we present one more approach to bacterial start
site prediction that takes into account multiple features of a
potential start site, viz., RBS binding energy, distance of the
RBS from the start codon, distance from the beginning of the
maximal ORF to the start codon, the start codon itself and the
coding/non-coding potential around the start site. There is a
biological rationale supporting each of these factors as discussed
in Materials and Methods.

For the developer, the main innovation here is that the
discrimination problem is taken to be the same as the one faced
by the ribosome: to choose one start codon, from among the
first few potential starts in the ORF, at which to initiate trans-
lation. A true optimization method, mixed integer programing
(MIP) is used to derive a discriminatory model appropriate to
this formulation of the problem. In cases where different trans-
lation start sites are thought to be used on different occasions,
the final optimized scoring of start sites can still be used to rank
the possibilities.

For the user, the main innovations are: (i) the energy function
used to evaluate a potential RBS is biologically motivated and
allows for gapped alignments between the 16S rRNA and the
RBS (important for at least some genes); (ii) the biological
preference for start codons early in the ORF is incorporated in
the algorithm in a very natural way; (iii) in each of three widely
divergent species (B.subtilis, a Gram-positive bacterium;
E.coli, a Gram-negative bacterium andPyrococcus furiosus,
an archaebacterium), a set of true start sites was hand selected
based on the best available evidence, and the algorithm cross
validated in each species; and (iv) no hand-tuning of the algorithm
is required.

Most computational techniques for finding genes tend to be
rather organism-specific and require a large training set of
known genes to parameterize them for a new genome (4,12).
This presents, of course, a problem with new genomes appearing
very rapidly and with few genes known with any certainty in
some of the new genome sequences. Thus increasing emphasis
is being placed, among algorithm developers, on methods that
can discover patternsde novo, in completely unannotated
genomes. For example, both GeneMark-Genesis (13) and
GLIMMER (3) use long ORFs to derive models of coding
sequence. Grosse and colleagues have developed a coding
region statistic based on mutual information that is organism
independent and performs about as well as most codon usage
statistics.

Searching for genes using potential homologs from related
species, formalized in the Procrustes algorithm (14) and Critica, is
also an important means of looking for genes without depending
too much on peculiarities of the species at hand. A significant
problem is generating a set of ‘true’ start sites for algorithm
training, in the absence of experimental work. We found that
sequence conservation betweenP.furiosus and the related
Pyrococcus horikoshiiclearly delimited the gene start in many
cases, providing a sufficient training set in at least this case.

MATERIALS AND METHODS

The novel approach was tested onB.subtilis, E.coli andP.furiosus.
For B.subtilis, the sequence was taken from GenBank (accession
number AL009126) (15). The genes in the GenBank annotation

with names starting with a ‘non-y’ character were taken
have correctly indicated starts. These are individually verifi
for the start sites as per the naming convention (A.Danch
personal communication). This set included 1246 gen
Escherichia colisequence was taken from GenBank (access
number U00096) (16). A set of 184 high confidenceE.coli N-
terminals were taken from (17), where N-terminals we
derived from direct protein sequencing. From the original s
of 223 N-terminals given in that study, several were remov
since they were predicted using observed protein seque
where Edman sequencing was blocked or initiated at a s
nificant distance from the likely N-terminal. The sequence f
P.furiosuswas provided by Bob Weiss at the Utah Genom
Center (http://www.genome.utah.edu ), and a set of start s
was extracted via homology withP.horikoshii (GenBank
accession numbers AP000001–7) ORFs.

Pyrococcus furiosusmaximal ORFs were first aligned
against several archaeal genomes, includingArchaeoglobus
fulgidus, Methannococcus jannaschii, Methanobacterium
thermoautotropicumand P.horikoshii, using BLAST (18).
(These alignments were used to derive the training set but w
not, of course, used in the final prediction algorithm.) Only th
alignments withP.horikoshiithat showed strong homology and
crisp drop in conservation could be used for start site predicti
The pairs of genes with >80% identity over 200 bp were realign
at the amino acid level using FASTA3 (19). The alignmen
included 33 amino acids upstream of the maximal ORF start
bothP.furiosusandP.horikoshii. Next, each of the alignments
was examined individually, via a plot of percent amino ac
identity in a moving 15-residue window. Those with no ambigui
were chosen for the test/train set. A typical such case,
homology between relatedP.furiosusandP.horikoshiigenes,
is shown in Scheme 1.

The final P.furiosusset contains 240 genes including 1
experimentally characterized genes from the literature.

For each genome, the following analysis was done. For ea
geneg (uniquely identified by the stop site locuseg), a complete
list Sg of potential start sites was generated which obvious
contains the ‘true’ startsg. This list contains all in-frame start
codons positioned downstream of the closest in-frame s
codon upstream ofeg.

For each potential start sites belonging toSg, we compute
five parameters: (i) the distance of the start codon from t
maximal start inSg; (ii) the start codon; (iii) the binding energy
between the 3' end of 16S rRNA and the region of the geno
immediately upstream of the putative start site; (iv) the leng
of the gap between the end of the RBS and the start codon;
(v) the score of the start codon based on coding potential of
regions upstream and downstream of the start codon.

All the above factors are biologically motivated. The rationa
behind factor 1 is the fact that the 5' of the gene is available
the translation machinery prior to the 3' end. Factors 2, 3 a
4 play a role in the stability of the translation initiation complex
and factor 5, which is a function of codon usage around t
start site, captures both the well-known fact of codon bias
well as, perhaps, some aspect of the role of RNA structure
start site specificity.

As an illustration, a geneg starting at position 88 and ending
at position 906 of the genome will be converted into a list
potential starts and associated parameters as shown in Tab



Nucleic Acids Research, 1999, Vol. 27, No. 173579

n

es
ts of

the
is
ol
pt

kes
in
e it
t.
a
the
al

ied,
tial
46

5
,

an

o

e

at

n
m.

ture
The binding energy was computed using a dynamic pro-
graming algorithm developed in (8) and later updated by S.
Hannenhalli to reflect the energy and loop parameters in (20).
The start score based on coding potentials was computed using
GeneMark. This is a crude measure of how likely the start is,
based upon it being at the boundary of non-coding and coding
sequence. The calculation for the start score is given as

GeneMark start score =Pnoncod*Pcod,

where Pnoncod refers to the probability of non-coding, based
upon the Markov model used by GeneMark, for one window
width (which is a default of 96 nt in GeneMark) upstream of
the start codon, andPcod is the probability of coding for one
window width downstream of the start codon in the frame
defined by the start codon.

The values corresponding to each of these factors are converted
into a log-odds estimate. Under this measure, the support by a
parameterP with valuep is measured as

LogOdd(P = p) = log[(frequency of P= p in true set)/
(frequency of P= p overall)]

Represent the five log-odd scores for the five parameters for
the potential startsasranks, codons, energys, spacingsandCodPots
respectively.

Define a function

Scores = wr* ranks + wc*codons + we*energys + ws*spacings +
wC*CodPots
wherew’s are relative weights of the parameters. For a give
set of weights, the potential startsmaximizingScores is chosen
as the start of the gene.

For a set of ‘true’ genes, the set of all potential start sit
other than the true one make a negative data set. The weigh
the parameters are trained on the training set so as to maximize
number of true positives. Most of the problems that arise in th
field, requiring some discriminatory approach, have one po
of positive data and one pool of negative data and the attem
is made to discriminate between these two pools. What ma
this problem different is that the decision is to be made with
each set (corresponding to potential starts for a gene) wher
is knowna priori that there is exactly one true site in each se
Fortunately, MIP (21) models this problem quite well. For
recent application of MIP to sequence analysis see (22). In
following, we describe our MIP models to compute an optim
set of weights.

Let n be the number of genes. Letmbe the number of potential
starts (considered) for each gene. In all the genomes stud
the true start for a gene was among the first five (5' to 3') poten
starts in >98% of the cases. To make it precise, among 12
true starts inB.subtilis, 785 were at rank 1, 280 at rank 2, 10
at rank 3, 38 at rank 4, 20 at rank 5. For all practical purposesm
could be taken as 5. We limitm only to simplify the presentation
and the implementation of the model, since the constraints c
be expressed concisely for uniformm.

For theith genegi, the potential starts are represented assi,j,
1 ≤ j ≤ m. Without loss of generality, we assume thatsi,1 is the
‘real’ start andsi,j, 2 ≤ j ≤ m are the ‘false’ starts. For a given
(potential) startsi,j, the five log-odd values corresponding t
the five factors are denoted by vi,j

k, 1 ≤ k ≤ 5, respectively.
Also, letwk, 1 ≤ k ≤ 5 be the five weights to be computed. W
fix w1 = 1 to normalize the weights. LetM be a ‘sufficiently
large’ integer. In Figure 1, we present the first MIP model th
we used to compute the weights.

This model minimizes the number of genes in which a violatio
occurs, i.e., the score of the ‘true’ start is not the maximu
This is becausef i must be 1 for genei as long as the ‘true’ start
does not have the maximum score. This model does not cap

Scheme 1.

Table 1.Set of potential starts and associated parameters for the gene ending
at position 906

Start Stop Offset Codon Energy Gap Coding
potential

73 906 0 atg –12.700 –2 0.900

88 906 15 gtg –6.400 9 0.500

373 906 300 ttg –4.600 –1 0.000

499 906 426 ttg –2.400 4 0.000

619 906 546 ttg –3.800 7 0.000

703 906 630 ttg –8.000 7 0.000

757 906 684 atg –5.500 5 0.000

784 906 711 atg –6.200 2 0.000
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the extent of violation for a gene, i.e., the number of ‘false’ starts
with better scores than the ‘true’ start for each gene. Intuitively,
this should lead to a better discrimination in the test set. This
slightly more sophisticated model is presented in Figure 2. The
number of constraints in the second model grows by a factor ofm.

The above models were implemented on Unix system using
the AMPL modeling language (23) that interfaces with
CPLEX as the underlying MIP solver. Training a system of
equations with about 2000 constraints and four parameters to
be trained, takes ~1 min on a Unix desktop DEC-alpha
machine. The program is implemented in Perl and will be
made available upon request along with any datasets used in
this work.

RESULTS AND DISCUSSION

We first studied the distribution of distance between true st
site and maximal start site. The nature of the distribution w
very similar for all three species. The distribution forB.subtilisis
shown in Table 2 as an example. Table 3 shows the distributi
of start codons in the three genomes. Performance of
approach in start site prediction for two slightly different MIP
models is summarized in Table 4.

To show the relative contribution of the factors used in th
MIP models, we used each of these factors in isolation (exclud
the distance between RBS and the start codon, since this d
not make sense in isolation) to predict the start site. Performa
of our approach is presented in terms of percentage true posit
achieved in the training set and the complementary test
When testing the factors in isolation, we use the entire ‘tru
gene set at our disposal since training the relative weights w
not needed.

One of the two most prevalent tools for bacterial gene pred
tion, GLIMMER (3), picks the maximal ORF as the predicte
gene. The other, GeneMark, lists the potential start sites for
user to choose from based on expert knowledge. One of our g
is to increase the reliability of the first-pass, computationa
chosen start sites. The MAX_ORF line of Table 4 is then a
indirect comparison to the use of the above tools in fully aut
matic mode, with no human post-processing.

To check the robustness of our approach, the system w
trained on 10 different training sets containing a randomly chos
subset of the genes and tested on the remaining genes.
fraction of true positives (TP) on the training and the test se
represented by the mean and the standard deviation over

Figure 1. MIP Model 1.

Figure 2. MIP Model 2.

Table 2.Distribution of distance between true
start and maximal start forB.subtilis

Offset range (bp) No. of genes

0–50 1017

51–100 151

101–150 54

151–200 10

201–250 6

250–300 3

>300 1

Table 3.Distribution of start codons in various genomes

Genome B.subtilis E.coli P.furiosus

%ATG 79.9 94.0 90.8

%GTG 8.9 4.9 9.2

%TTG 11.2 1.1 0.0
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10 trials and is shown in Table 4. For each pair of training and
test sets, the two models of MIP were applied (see Materials
and Methods for the description of the models). Although the
second model is more complex (with more constraints), it does
not outperform the first model. We emphasize that we use
approximately half of the genes as the training set inE.coli and
P.furiosusand only ~20% of the genes in the case ofB.subtilis.
Traditionally, researchers have used at least 75% of the data set
for training, which may exaggerate the performance of the
method. From the results in Table 4, one might conclude that
there is always one factor that is responsible for the combined
performance but it is not uniform across species. For example,
the RBS binding energy plays a critical role inB.subtilisstart
site prediction but not in the other two species. And the start
codon alone is a reasonably accurate predictor of start site in
E.coli. This remains the case if we disregard all but ATG as a
valid start.

Each of the methods developed to date for improving start
site prediction in prokaryotes has its own strengths, which we
discuss next. It is difficult at this point to compare accuracy
due to differences in testing methods. Any of the methods is
probably much better than merely choosing the maximal ORF.
The more ambitious user may want to use all three until the
situation is clearer.

Obtaining a suitable set of reliably known gene starts for
training and benchmarking is a difficult issue. Hayes (10) used
the proteomics-derivedE.coli set from (17), and the full
B.subtilisannotations. There are ambiguities in interpreting the
proteomics data due to post-translational processing, but on the
whole they are quite reliable. TheB.subtilis set of starts is
much less certain since most of the annotations are comput-
ationally predicted with no experimental evidence. To avoid
this circularity we only considered genes inB.subtilis with
names starting with a ‘non-y’ character. These are the genes
that have received individual attention. They may still have
little supporting evidence for the particular initiation codon
chosen, yet we feel it may be better than it seems since most
investigators interested in a gene will have compared the gene
carefully to known homologs. Training our algorithm on the
‘non-y’ genes and testing them on the ‘y’ genes gives an accuracy
of ~84% implicating a lower accuracy of annotation in the ‘y’
genes. We used these two sets plus theP.furiosusset chosen by

genome conservation withP.horikoshii. This last set is the
most objective in that the reasoning is very direct—no deduc
protein is involved—but also the least objective in that th
genes to include were chosen on the basis of an ‘obvio
change in conservation level. We feel it is actually very reliab
since the increase in conservation at the start site was, in f
very clear in every case. This method of start prediction will b
codified in an objective algorithm, tested carefully across a num
of taxa, and published elsewhere. Frishman and colleagues sta
searching PIR with criteria meant to eliminate most protei
predicted by computational means alone. These are t
aligned to the genome and minimal ORFs around the align
region are picked to compute the coding potential paramete
Then the ORFs (predictedab initio) longer than certain threshold
with high coding potential and with only one start codo
upstream of the aligned region are used as the training set
RBS profile generation. The training algorithm used has
unique strength in that it is resilient to inclusion of incorrect da
so that perhaps less care is needed in selecting a training set.

Each of the existing algorithms makes use of coding potent
but in different ways. Frishman and colleagues take the larg
ORF with acceptable coding potential over the whole leng
and then choose the 5'-most start with an acceptable R
score. We, following Hayes (10), make use of the change
coding potential from before to after the initiation codon. A
three approaches depend heavily on scoring a potential R
Hayes (10) and Frishman and colleagues (11) use a posi
weight matrix, while we use an estimate of binding energ
The matrix has the advantage of not requiring knowledge
the 16S rRNA, though in practice this is not an issue. T
energy function has the advantage of being biologically bas
not requiring any assumptions for training, and allowin
bulges and loops in the secondary structure formed by
mRNA and the 16S rRNA. Though there are known cas
where bulges and loops are almost certainly required (7), i
not known how important this consideration is in practice. T
test the effect of loops and bulges, we applied the procedure
E.coli without allowing for loops and bulges. Notice that thi
changes both the binding energy and the distance of the bind
site from the start codon. The average accuracy on the train
and the test sets were 92.8 and 85.4% respectively using
model 1. Repeating this onB.subtilisnon-y genes resulted in

Table 4. Performance comparison of various approaches

Genome B.subtilis E.coli P.furiosus

No. of genes 1246 184 240

Fraction taken for training 0.2 0.5 0.5

MIP Model 1 TP% in training set (µ/σ) 92.6/1.9 93.6/1.5 92.7/1.7

TP% in test set (µ/σ) 90.4/0.7 84.5/3.8 86.2/3.6

MIP Model 2 TP% in training set (µ/σ) 92.3/2.0 94.0/1.9 93.5/1.3

TP% in test set (µ/σ) 90.4/0.8 84.9/4.0 86.6/3.2

MAX_ORF TP% 63 69 70

START_CODON TP% 67 81 82

RBS_BINDING_ENERGY TP% 85 59 64

START_PROBABILITY TP% 51 69 71
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average accuracy of 91.93% on the training set and 89.7% on
the test set. These results clearly de-emphasize the role of
bulges and loops in binding sensitivity.

The majority of prokaryotic genes use the 5'-most start
codon in the ORF. As noted above, Frishman and colleagues
use the 5'-most start with a score above a minimum acceptable
level. This approach divides all scores into only two classes.
Our approach is to include the proximity to the 5' end of the
maximal ORF as an explicitly scored feature of each potential
start. Our algorithm explicitly scores potential start codons in
terms of the frequency of occurrence of the codon itself. All
three methods score the distance between the RBS and the start
codon, but Frishman and colleagues build this into the RBS
PWM, so that it cannot have an independent weighting factor.
Hayeset al. (9) is the only method of the three to make use of
the so-called ‘downstream box’ (24).

Hayes requires hand tuning in the optimization and, given
the rate at which new genomes are appearing, we wanted an
algorithm that could be optimized fully automatically. Frishman
et al. choose a single universal cutoff for the combined score of
the RBS and its distance from the initiation codon. On the other
hand, we independently weight each of the five different features
we use, and then choose these weights to optimize accuracy in
the actual discrimination context, namely that of choosing one
from among the first few potential starts in the maximal ORF.

The algorithm of Hayes (9) gives better accuracy on the
E.coli test set (90.2%) and worse on theB.subtilis (80.6%).
Dissecting the precise reasons for performance differences is
extremely hard, since the two methods use independent sets of
evidence. Difference in training/test set may well be part of it.
The reason Hayes’ approach does better withE.coli could be
partially explained by: (i) he uses larger training set based on
filtered set of genes from GeneMark: by using 80% of the
known starts for training and testing on the remaining 20% the
new approach achieves an average of 89.2%; and (ii) the per-
formance figure shown is the average, the best performance
achieved is 88.3%.

It is difficult to compare the accuracy of our method with
that of Frishmanet al. since the latter was evaluated against
database annotation, which itself is often largely derived by
computational methods. They report accuracy of 79.1% on the
B.subtilisand 70.0% on theE.coli based on GenBank annota-
tions.

In summary, we have presented a novel approach to bacterial
start site prediction that takes into account multiple features of
a potential start site. The methodology we have presented here
is intended to supplement the existing bacterial gene finding
tools by starting with what is probably a correct gene prediction
and merely helping to pinpoint the particular initiation codon
used. The algorithm includes a sufficiently comprehensive set

of biologically motivated start site features that it should b
applicable to a broad range of species. These features
combined using an elegant, appropriate and fully automa
optimization procedure.
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