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ABSTRACT

With the growing number of completely sequenced
bacterial genes, accurate gene prediction in bacterial
genomes remains an important problem. Although
the existing tools predict genes in bacterial genomes
with high overall accuracy, their ability to pinpoint
the translation start site remains unsatisfactory. In
this paper, we present a novel approach to bacterial
start site prediction that takes into account multiple
features of a potential start site, viz., ribosome binding
site (RBS) binding energy, distance of the RBS from
the start codon, distance from the beginning of the
maximal ORF to the start codon, the start codon itself
and the coding/non-coding potential around the start
site. Mixed integer programing was used to optimize
the discriminatory system. The accuracy of this
approach is up to 90%, compared to 70%, using the
most common tools in fully automated mode (that is,
without expert human post-processing of results).
The approach is evaluated using  Bacillus subtilis

Escherichia coli and Pyrococcus furiosus . These

three genomes cover a broad spectrum of bacterial
genomes, since B.subtilis is a Gram-positive bacterium,

E.coli is a Gram-negative bacterium and  P.furiosus is

an archaebacterium. A significant problem is generating
a set of ‘true’ start sites for algorithm training, in the
absence of experimental work. We found that
sequence conservation between

start in many cases, providing a sufficient training set.

INTRODUCTION

P.furiosus and the
related Pyrococcus horikoshii  clearly delimited the gene

Although the existing tools predict the genes in bacterial
genomes with high overall accuracy, their ability to pinpoint
the translation start site remains unsatisfactory. In order to ana-
lyze the putative protein product of a gene, it is valuable to
know as accurately as possible the translation initiation site.
The two main sources of evidence used in finding bacterial
genes are long open reading frames (ORFs) and some form of
statistical regularity from codon usage bias, typically measured
in a window of ~100 bp. While both kinds of evidence help a
great deal in providing rough gene locations, neither one helps
the investigator very much in choosing between alternative
start codons near the beginning of an ORF.

The so-called Shine-Dalgarno consensus sequence (Shine
and Dalgarno, 1974) is often used to search by eye for the
ribosome binding site (RBS), but there are a number of more
reliable methods (reviewed in 4). Stormo and colleagues (5)
present one of the pioneering works in the computational
characterization of translation start sites in prokaryotes. Schurr
and colleagues (6) developed an algorithm for calculating the
optimal binding energy between the 16S rRNAEstherichia
coli and the region upstream of a potential initiation codon,
allowing internal loops and bulges, and showed a difference in
the binding energy distribution for regions upstream of true
initiation codons and spurious, gene-internal, ATG codons.

The study of Schuret al. suggests that a practical gene start
prediction method might be made on the basis of an optimal
binding energy calculation. High accuracy on the basis of the
RBS might be difficult inE.coli, where the RBS pattern is
rather weak. However, in clostridial Gram-positive bacteria, in
particular Bacillus subtilis and Staphylococcus aureushe
predicted energy at the potential RBS tends to be much
stronger, perhaps because in these organisms the translation
initiation complex is missing ribosomal protein S1, thought to
help in melting inhibitory secondary structures in the mRNA
(reviewed in 7). An energy-based algorithm to locate the RBS
in these organisms was implemented in (8).

As of March 1999, 20 bacterial genome sequences have beerM. Borodovsky’s group pioneered improved start site local-
published and sequencing of many more is in progress. Thgation in bacterial gene finders, culminating in (9,10). The

complete list of these sequences is available from the publittnal synthesis in (9) uses such factors as the start codon score,
database (http://www.tigr.org ). With the growing number ofRBS score, downstream box score, pre-start signal score and
completely sequenced bacterial genes, accurate gene predictiopipst-start signal score, all based on similarity to profiles generated
bacterial genomes remains an important problem. Significaritom a training set.

progress has been made in the past few years in developingrrishman and colleagues further explored the idea of using

computational tools for gene prediction, GeneMark (1,2) andliverse evidence (11). The evidence used for gene recognition
GLIMMER (3) being the most widely used tools for bacterial was coding potential and the evidence for start site prediction

gene predictiorn silico. was RBS score which included a profile based score as well as
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a score depending on the distance of the RBS to the stanith names starting with a ‘non-y’ character were taken to
codon. have correctly indicated starts. These are individually verified
In this paper we present one more approach to bacterial stddr the start sites as per the naming convention (A.Danchin,
site prediction that takes into account multiple features of g@ersonal communication). This set included 1246 genes.
potential start site, viz., RBS binding energy, distance of th&scherichia colsequence was taken from GenBank (accession
RBS from the start codon, distance from the beginning of theumber U00096) (16). A set of 184 high confiderieeoli N-
maximal ORF to the start codon, the start codon itself and theerminals were taken from (17), where N-terminals were
coding/non-coding potential around the start site. There is derived from direct protein sequencing. From the original set
biological rationale supporting each of these factors as discussefl223 N-terminals given in that study, several were removed
in Materials and Methods. since they were predicted using observed protein sequence

For the developer, the main innovation here is that thevhere Edman sequencing was blocked or initiated at a sig-
discrimination problem is taken to be the same as the one facerficant distance from the likely N-terminal. The sequence for
by the ribosome: to choose one start codon, from among the.furiosusvas provided by Bob Weiss at the Utah Genome
first few potential starts in the ORF, at which to initiate trans-Center (http://www.genome.utah.edu ), and a set of start sites
lation. A true optimization method, mixed integer programingwas extracted via homology with.horikoshii (GenBank
(MIP) is used to derive a discriminatory model appropriate taaccession numbers AP000001-7) ORFs.
this formulation of the problem. In cases where different trans- Pyrococcus furiosusmaximal ORFs were first aligned
lation start sites are thought to be used on different occasionggainst several archaeal genomes, includinghaeoglobus
the final Qp_t_ir_nized scoring of start sites can still be used to ranlﬁJ|giduS Methannococcus  jannaschiiMethanobacterium
the possibilities. o _ . _ thermoautotropicumand P.horikoshij using BLAST (18).

For the user, the main innovations are: (i) the energy functiogThese alignments were used to derive the training set but were
used to evaluate a potential RBS is biologically motivated angyot, of course, used in the final prediction algorithm.) Only the
allows for gapped alignments between the 16S rRNA and thgjignments withP. horikoshiithat showed strong homology and a
RBS (important for at least some genes); (ii) the biologicalyisp drop in conservation could be used for start site prediction.
preference for start codons early in the ORF is incorporated ifrhe pairs of genes with >80% identity over 200 bp were realigned
the algorithm in a very natural way; (i) in each of three widely ¢ the amino acid level using FASTA3 (19). The alignments
divergent species Bsubtilis a Gram-positive bacterium; jnclyded 33 amino acids upstream of the maximal ORF start in
E.coli, a Gram-negative bacterium amyrococcus furiosus pothp furiosusandP.horikoshii Next, each of the alignments
an archaebacterium), a set of true start sites was hand selecigds examined individually, via a plot of percent amino acid

based on the best available evidence, and the algorithm Crogg ity in a moving 15-residue window. Those with no ambiguity
validated in each species; and (iv) no hand-tuning of the algorithfyo - ‘chosen for the test/train set. A typical such case, of

is required. . . . homology between relatdd.furiosusand P.horikoshiigenes,
Most computational techniques for finding genes tend to b&; shown in Schenﬁ 1.

rather organism-specific and require a large training set o The final P.furiosusset contains 240 genes including 15

known genes to parameterize them for a new genome (4’1ZQXperimentally characterized genes from the literature.

This presents, of course, a problem with new genomes appearinq:m each genome, the following analysis was done. For each

very rapidly and with few genes known with any certainty in (f?eg (uniquely identified by the stop site loces, a complete
P

some of the new genome sequences. Thus increasing emph f potential start sit ted which obviousl
is being placed, among algorithm developers, on methods th SJ.O po e‘n |a's art sites was generated which obviously
contains the ‘true’ starg,. This list contains all in-frame start

can discover patternde novQ in completely unannotated q ioned d ¢ t the ol ¢ inf ‘
genomes. For example, both GeneMark-Genesis (13) arfdonS Posilioned downstreéam of the closest in-irame stop

GLIMMER (3) use long ORFs to derive models of coding c040n upstream a, , _
sequence. Grosse and colleagues have developed a codinfOr €ach potential start sitebelonging toS,, we compute
region statistic based on mutual information that is organisnf1Ive parameters: (i) the distance of the start codon from the
independent and performs about as well as most codon usag@leal start ir§y; (ii) the start codon; (iii) the binding energy
statistics. etween the 3' end of 16S rRNA and the region of the genome
Searching for genes using potential homologs from relateinmediately upstream of the putative start site; (iv) the length
species, formalized in the Procrustes algorithm (14) and Critica, &f the gap between the end of the RBS and the start codon; and
also an important means of looking for genes without dependingy) the score of the start codon based on coding potential of the
too much on peculiarities of the species at hand. A significantegions upstream and downstream of the start codon.
problem is generating a set of ‘true’ start sites for algorithm All the above factors are biologically motivated. The rationale
training, in the absence of experimental work. We found thabehind factor 1 is the fact that the 5' of the gene is available to
sequence conservation betwePrfuriosus and the related the translation machinery prior to the 3' end. Factors 2, 3 and
Pyrococcus horikoshiilearly delimited the gene start in many 4 play a role in the stability of the translation initiation complex,
cases, providing a sufficient training set in at least this case. and factor 5, which is a function of codon usage around the
start site, captures both the well-known fact of codon bias as
well as, perhaps, some aspect of the role of RNA structure in
MATERIALS AND METHODS start site specificity.
The novel approach was testedBisubtilis E.coli andP.furiosus As anillustration, a geng starting at position 88 and ending
For B.subtilis the sequence was taken from GenBank (accessiaat position 906 of the genome will be converted into a list of
number AL009126) (15). The genes in the GenBank annotatiopotential starts and associated parameters as shown in I]I'able 1.
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>>PH0224_198383_199954 (557 aa)
initn: 3081 initl: 3081 opt: 3081
Smith-Waterman score: 3081; 81.836% identity in 523 aa overlap

10 20 30 40 50 60
furiosus MXSLKTVFLNYRLLTVTLKXCSPSYLWWXKMVHWADYMAEKI IKERGEKEEYVVESGITP

horikoshii QRNYYMLQWRNKLLFLNTXKHNINSKFGDYMVHWADYIADKIIRERGEKEKYVVESGITP
10 20 30 40 50 60

70 80 90 100 110 120
furiosus SGYVHVGNFRELFTAYIVGHALRDRGYNVRHIHMWDDYDRFRKVPKNVPQEWEEYLGMPV

horikoshii SGYVHVGNFRELFTAYIVGHALRDKGYEVRHIHMWDDYDRFRKVPRNVPQEWKDYLGMPI
70 80 90 100 110 120

Scheme 1.

Table 1.Set of potential starts and associated parameters for the gene endingDefine a function

at position 906 .
P Score = w*rank; + w.*codon + w.*energy + wg*spacing +

Start Stop Offset Codon Energy Gap Coding WC* Cod Pog
potential wherew's are relative weights of the parameters. For a given
73 906 0 atg _12.700 -2 0.900 set of weights, the potential stamnaximizingScorgis chosen
as the start of the gene.

88 906 15 aig ~6.400 9 0-500 For a set of ‘true’ genes, the set of all potential start sites
373 906 300 ttg -4.600 -1 0.000 other than the true one make a negative data set. The weights of
499 906 426 ttg —2.400 4 0.000 the parameters are trained on the training set so as to maximize the
619 206 546 ttg _3.800 7 0.000 number of true positives. Most of the problems that arise in this
203 906 630 g 8000 7 0.000 field, requiring some discriminatory approach, have one pool

' : of positive data and one pool of negative data and the attempt
757 906 684 atg -5.500 5 0.000 is made to discriminate between these two pools. What makes
784 906 711 atg -6.200 2 0.000 this problem different is that the decision is to be made within

each set (corresponding to potential starts for a gene) where it
is knowna priori that there is exactly one true site in each set.
Fortunately, MIP (21) models this problem quite well. For a

recent application of MIP to sequence analysis see (22). In the

The binding energy was computed using a dynamic profo|iowing, we describe our MIP models to compute an optimal
graming algorithm developed in (8) and later updated by Sget of weights.

Hannenhalli to reflect the energy and loop parameters in (20). | gt n be the number of genes. Lietbe the number of potential
The start score based on coding potentials was computed Usighrts (considered) for each gene. In all the genomes studied,
GeneMark. This is a crude measure of how likely the start isqe true start for a gene was among the first five (5' to 3') potential
based upon it being at the boundary of non-coding and codingarts in >98% of the cases. To make it precise, among 1246
sequence. The calculation for the start score is given as true starts irB.subtilis 785 were at rank 1, 280 at rank 2, 105
GeneMark start score Proncod peod at rank 3, 38 at rank 4, 20_ at rank 5. For al! practical purposes,
could be taken as 5. We limih only to simplify the presentation
where Proneod refers to the probability of non-coding, based and the implementation of the model, since the constraints can
upon the Markov model used by GeneMark, for one windowhe expressed concisely for uniform
width (which is a default of 96 nt in GeneMark) upstream of For theith geneg, the potential starts are representedigs
the start codon, an8* is the probability of coding for one 1 <j < m. Without loss of generality, we assume tiétis the
window width downstream of the start codon in the framereal’ start ands'i, 2 < j < mare the ‘false’ starts. For a given
defined by the start codon. (potential) starts', the five log-odd values corresponding to
The values corresponding to each of these factors are convertgt five factors are denoted byiy 1 < k < 5, respectively.
into a log-odds estimate. Under this measure, the support byAso, letw,, 1< k <5 be the five weights to be computed. We
parameteP with valuep is measured as fix w; = 1 to normalize the weights. Lé&dl be a ‘sufficiently

LogOddP = p) = log(frequency of P= p in true sey/ large’ integer. In Figure 1, we present the first MIP model that
(frequency of P= p overal)] we used to compute the weights.

This model minimizes the number of genes in which a violation
Represent the five log-odd scores for the five parameters fayccurs, i.e., the score of the ‘true’ start is not the maximum.
the potential stagasrank, codon, energy, spacingandCodPot  This is becaus& must be 1 for genkas long as the ‘true’ start
respectively. does not have the maximum score. This model does not capture
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GIVEN v 1<i<ni< j<mi<k<s RESULTS AND DISCUSSION

We first studied the distribution of distance between true start
5 ) site and maximal start site. The nature of the distribution was
VARIABLES :1* = Y w, * v,/ I<i<nl< j<m very similar for all three species. The distribution Bisubtilisis
= shown in Table 2 as an example. Table 3 shows the distributions
of start codons in the three genomes. Performance of our
approach in start site prediction for two slightly different MIP
models is summarized in Tatle 4,

fil<i<n

MINIMIZE : Y '

=1

SUBJECTTO:t" —t"' < f'*M 1<i<n2< j<m Table 2. Distribution of distance between true
w, =1 start and maximal start fd@.subtilis
0<w,2<k<5

) Offset range (bp) No. of genes
O0<f'<Ll<i<n
. 0-50 1017
flisanlinteger1<i<n
51-100 151
101-150 54
Figure 1. MIP Model 1. 151-200 10
201-250
250-300 3
GIVEN v/ 1<i<nl<j<ml<k<5 >300 !

5
VARIABLES 1"/ =Y w, v/ 1<i<nl< j<m

k=

14

-] —
_ Table 3.Distribution of start codons in various genomes
fP1<i<n2<j<m

Genome B.subtilis E.coli P.furiosus
Z ; %ATG 79.9 94.0 90.8
MINIMIZE =YY f* °
i=l j=2 O/OGTG 89 49 92
%TTG 11.2 1.1 0.0

SUBJECT TO :t"/ —t"' < fV*M 1<i<n2< j<m

=1

0<w,2<k<5

0<fH<LI<i<n2<j<m To show the relative contribution of the_fa_ctors_ used in the
MIP models, we used each of these factors in isolation (excluding

f"is an Integer 1<i<n2< j<m the distance between RBS and the start codon, since this does
not make sense in isolation) to predict the start site. Performance
of our approach is presented in terms of percentage true positives
achieved in the training set and the complementary test set.
When testing the factors in isolation, we use the entire ‘true’
gene set at our disposal since training the relative weights was
not needed.

the extent of violation for a gene, i.e., the number of ‘false’ starts One of the two most prevalent tools for bacterial gene predic-

with better scores than the ‘true’ start for each gene. Intuitivelytion, GLIMMER (3), picks the maximal ORF as the predicted

this should lead to a better discrimination in the test set. Thigene. The other, GeneMark, lists the potential start sites for the

slightly more sophisticated model is presented in Figure 2. Thaser to choose from based on expert knowledge. One of our goals

number of constraints in the second model grows by a factor of is to increase the reliability of the first-pass, computationally

The above models were implemented on Unix system usinghosen start sites. The MAX_ORF line of Taﬂe 4 is then an

the AMPL modeling language (23) that interfaces withindirect comparison to the use of the above tools in fully auto-

CPLEX as the underlying MIP solver. Training a system ofmatic mode, with no human post-processing.

equations with about 2000 constraints and four parameters toTo check the robustness of our approach, the system was

be trained, takes ~1 min on a Unix desktop DEC-alpharained on 10 different training sets containing a randomly chosen

machine. The program is implemented in Perl and will besubset of the genes and tested on the remaining genes. The

made available upon request along with any datasets usedfiaction of true positives (TP) on the training and the test set is

this work. represented by the mean and the standard deviation over the

Figure 2. MIP Model 2.
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Table 4. Peformance comp#on d vanous approdaes

Genome B.subtilis E.coli P.furiosus
No. of genes 1246 184 240
Fraction taken for training 0.2 0.5 0.5
MIP Model 1 TP% in training set/o) 92.6/1.9 93.6/1.5 92.7/1.7
TP% in test set/o) 90.4/0.7 84.5/3.8 86.2/3.6
MIP Model 2 TP% in training setu/o) 92.3/2.0 94.0/1.9 93.5/1.3
TP% in test set/o) 90.4/0.8 84.9/4.0 86.6/3.2
MAX_ORF TP% 63 69 70
START_CODON TP% 67 81 82
RBS_BINDING_ENERGY TP% 85 59 64
START_PROBABILITY TP% 51 69 71

10 trials and is shown in Table 4. For each pair of training andyjenome conservation witR.horikoshii This last set is the
test sets, the two models of MIP were applied (see Materialmost objective in that the reasoning is very direct—no deduced
and Methods for the description of the models). Although theprotein is involved—but also the least objective in that the
second model is more complex (with more constraints), it doegenes to include were chosen on the basis of an ‘obvious’
not outperform the first model. We emphasize that we usehange in conservation level. We feel it is actually very reliable,
approximately half of the genes as the training s&.ioliand  since the increase in conservation at the start site was, in fact,
P.furiosusand only ~20% of the genes in the cas®dfubtilis  very clear in every case. This method of start prediction will be
Traditionally, researchers have used at least 75% of the data setdified in an objective algorithm, tested carefully across a number
for training, which may exaggerate the performance of theftaxa, and published elsewhere. Frishman and colleagues start by
method. From the results in Table 4, one might conclude thagearching PIR with criteria meant to eliminate most proteins
there is always one factor that is responsible for the combinepredicted by computational means alone. These are then
performance but it is not uniform across species. For examplaligned to the genome and minimal ORFs around the aligned
the RBS binding energy plays a critical roleBnsubtilisstart  region are picked to compute the coding potential parameters.
site prediction but not in the other two species. And the starThen the ORFs (predicteb initio) longer than certain threshold,
codon alone is a reasonably accurate predictor of start site inith high coding potential and with only one start codon
E.coli. This remains the case if we disregard all but ATG as aipstream of the aligned region are used as the training set for
valid start. RBS profile generation. The training algorithm used has a
Each of the methods developed to date for improving starinique strength in that it is resilient to inclusion of incorrect data,
site prediction in prokaryotes has its own strengths, which weo that perhaps less care is needed in selecting a training set.
discuss next. It is difficult at this point to compare accuracy Each of the existing algorithms makes use of coding potential,
due to differences in testing methods. Any of the methods ibut in different ways. Frishman and colleagues take the largest
probably much better than merely choosing the maximal ORFORF with acceptable coding potential over the whole length,
The more ambitious user may want to use all three until theand then choose the 5'-most start with an acceptable RBS
situation is clearer. score. We, following Hayes (10), make use of the change in
Obtaining a suitable set of reliably known gene starts foicoding potential from before to after the initiation codon. All
training and benchmarking is a difficult issue. Hayes (10) usethree approaches depend heavily on scoring a potential RBS.
the proteomics-derivedE.coli set from (17), and the full Hayes (10) and Frishman and colleagues (11) use a position
B.subtilisannotations. There are ambiguities in interpreting theveight matrix, while we use an estimate of binding energy.
proteomics data due to post-translational processing, but on tiidne matrix has the advantage of not requiring knowledge of
whole they are quite reliable. ThB.subtilis set of starts is the 16S rRNA, though in practice this is not an issue. The
much less certain since most of the annotations are computnergy function has the advantage of being biologically based,
ationally predicted with no experimental evidence. To avoidhot requiring any assumptions for training, and allowing
this circularity we only considered genes Bhsubtiliswith  bulges and loops in the secondary structure formed by the
names starting with a ‘non-y’ character. These are the geneBRNA and the 16S rRNA. Though there are known cases
that have received individual attention. They may still havewhere bulges and loops are almost certainly required (7), it is
little supporting evidence for the particular initiation codonnot known how important this consideration is in practice. To
chosen, yet we feel it may be better than it seems since mostst the effect of loops and bulges, we applied the procedure on
investigators interested in a gene will have compared the geriecoli without allowing for loops and bulges. Notice that this
carefully to known homologs. Training our algorithm on the changes both the binding energy and the distance of the binding
‘non-y’ genes and testing them on the 'y’ genes gives an accuraajte from the start codon. The average accuracy on the training
of ~84% implicating a lower accuracy of annotation in the 'y’ and the test sets were 92.8 and 85.4% respectively using LP
genes. We used these two sets plusRHariosusset chosen by model 1. Repeating this dB.subtilisnon-y genes resulted in
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average accuracy of 91.93% on the training set and 89.7% af biologically motivated start site features that it should be
the test set. These results clearly de-emphasize the role applicable to a broad range of species. These features are

bulges and loops in binding sensitivity.

combined using an elegant, appropriate and fully automatic

The majority of prokaryotic genes use the 5'-most starbptimization procedure.

codon in the ORF. As noted above, Frishman and colleagues
use the 5'-most start with a score above a minimum acceptab
level. This approach divides all scores into only two classes.
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terms of the frequency of occurrence of the codon itself. All
three methods score the distance between the RBS and the s
codon, but Frishman and colleagues build this into the RB
PWM, so that it cannot have an independent weighting factor. 1.
Hayeset al. (9) is the only method of the three to make use of 2:
the so-called ‘downstream box’ (24).

Hayes requires hand tuning in the optimization and, given
the rate at which new genomes are appearing, we wanted aa.
algorithm that could be optimized fully automatically. Frishman 5.
et al. choose a single universal cutoff for the combined score of
the RBS and its distance from the initiation codon. On the other
hand, we independently weight each of the five different features7.
we use, and then choose these weights to optimize accuracy in
the actual discrimination context, namely that of choosing one
from among the first few potential starts in the maximal ORF.

The algorithm of Hayes (9) gives better accuracy on the q
E.coli test set (90.2%) and worse on tBesubitilis (80.6%).

6.

Dissecting the precise reasons for performance differences i¥.

extremely hard, since the two methods use independent sets of
evidence. Difference in training/test set may well be part of it., ;
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