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ABSTRACT

Specific and non-specific complexes of DNA and
photolyase are visualised by atomic force micro-
scopy. As a substrate for photolyase a 1150 bp DNA
restriction fragment was UV-irradiated to produce
damaged sites at random positions. Comparison with
a 735 bp undamaged DNA fragment made it possible
to separate populations of specific and non-specific
photolyase complexes on the 1150 bp fragment,
relieving the need for highly defined substrates.
Thus it was possible to compare DNA bending for
specific and non-specific interactions. Non-specific
complexes show no significant bending but
increased rigidity compared to naked DNA, whereas
specific complexes show DNA bending of on average
36°°°° and higher flexibility. A model obtained by docking
shows that photolyase can accommodate a 36 °°°° bent
DNA in the vicinity of the active site.

INTRODUCTION

Many genome transactions require proteins to recognise and
act at specific sequences or structures in DNA. Specific site
recognition often requires or results in changes in DNA
conformation. Analysis of DNA deformation within a specific
protein–DNA complex can yield important information on the
mechanism of site recognition. The flexibility of DNA complexed
to protein has been suggested to play a role in site recognition
and can also be expected to influence downstream biochemical
reactions (1). Within the resolution limits of the technique,
atomic force microscopy (AFM) studies of protein–DNA
complexes yield valuable information on the global arrangement
of proteins and DNA, as well as the variety and distribution of
different structures in a population.

Protein-induced DNA bending can be easily measured by
AFM. Where comparison is possible, AFM-determined bending
angles agree well with those determined by X-ray crystallography
and gel band shift methods (2). However, among these methods
AFM uniquely reveals the flexibility of protein–DNA complexes
through analysis of the distribution of the DNA bending
angles.

Photolyase, a 55 kDa protein, uses near-UV or visible lig
(300–500 nm) to reverse UV-induced dimerisation of two ad
cent pyrimidine bases in DNA. Photolyase binds to pyrimidin
dimers with high specificity and affinity independent of th
surrounding DNA sequence (3). Based on the crystal struct
of photolyase, Parket al. (4) speculated about structura
features involved in binding to and repair of DNA. Howeve
the three-dimensional structure of the photolyase–DNA comp
has not yet been determined, leaving the detailed mechan
of substrate recognition and specific binding to UV-induce
pyrimidine dimers in DNA largely unknown.

In this study data will be presented on the conformation
DNA when photolyase is bound at specific and non-speci
sites. In our experiments UV-irradiated fragments that conta
randomly located damaged sites can be distinguished fr
fragments that had not been irradiated, based on their con
length. Thus, populations of specific and non-specific interactio
can be discriminated, relieving the need for a highly defin
substrate necessary for other techniques. A direct compar
is made between the bending and flexibility of specific complex
and non-specific complexes and naked DNA.

MATERIALS AND METHODS

Sample preparation

DNA fragments used for photolyase binding were releas
from pET-XPB (5) byNcoI digestion. The digested DNA was
separated on an agarose gel and the 1150 and 735 bp fragm
from the cDNA sequence of the human XPB gene, were isola
by electroelution. DNA photolyase fromAnacystis nidulans
was purified to apparent homogeneity as described previou
(6). As a substrate for photolyase 1150 bp DNA was irradiat
with ~3800 J/m2 UV (254 nm), introducing damage, mainly
pyrimidine dimers, at random sites. Reaction mixtures with
final volume of 10µl contained 8.0µg/ml of the damaged fragment
4.8 µg/ml of an undamaged 735 bp restriction fragment a
0.45µg/ml photolyase in 100 mM NaCl, 4 mM HEPES, pH 6.5
5 mM MgCl2, 1 mMβ-mercaptoethanol. After 10 min the reactio
mixture was diluted 10 times in deposition buffer, consisting
20 mM HEPES, pH 6.5, 5 mM MgCl2, 1 mMβ-mercaptoethanol.
Within 1 min a 5µl drop was pipetted onto a freshly cleave
mica disk and after ~30 s rinsed with water and blown dry wi
nitrogen gas. To prevent photorepair before immobilisation,
sample manipulation was performed in the dark.
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AFM set-up

Triangular Si3N4 cantilevers purchased from Park Scientific
instruments (Sunnyvale, CA), with a spring constant of 0.5 N/m
and a resonance frequency of 110 kHz, were used in a home
built AFM (7). Images with a scan area of 2× 2 µm2, 512× 512
pixels, were acquired in tapping mode, using a free peak-to-peak
amplitude of 200 nm, an amplitude set-point of 180 nm and a
pixel rate of 6 kHz.

Image processing and data analysis

AFM data were processed using the Interactive Data Language
(RSI, Austin, CO) in a self-written software package. Standard
image processing consisted of line subtraction by fitting of a
second order polynomial to each line in the image. The contours
of DNA molecules were hand traced by selection of 2–8 points
along a DNA strand, using an algorithm similar to that
described by Rivettiet al. (8). Proteins were manually selected.
Because tip–sample convolution limits the resolution of AFM
images, the DNA strand can only be resolved ~10 nm from the
centre of the protein. Bending angles were determined by evaluating
the angle between the centre of the protein and a point 15 nm
upstream and downstream on the DNA, as shown in Figure 1.
The measured bending angles are expected to show a Gaussian
distribution (2). Because we only measure the smallest angleΘ
and because angle distributions are truncated at 0° (9), the dis-
tribution was fitted with:

whereA is a normalisation constant andσ the standard deviation.

RESULTS

A typical AFM image of photolyase–DNA complexes is
shown in Figure 1a. Photolyase has a diameter of ~5 nm and

appears as 3 nm high globular structures on DNA molecul
The height of tapping mode AFM images is not very accura
depending on tip–surface interaction and feedback settin
(10), which explains the discrepancy between theoretical a
observed height of the DNA and the protein. Photolyase m
ecules are observed on both 1150 and 735 bp restriction fragme
Figure 1b shows a zoom of an undamaged 735 bp molec
while Figure 1c shows a UV-irradiated 1150 bp DNA fragmen
The latter fragment is longer and contains more photolya
molecules.

The contour length of all DNA molecules was determined b
hand tracing and the resulting contour length distribution
plotted in Figure 2. Two peaks at 252 and 366 nm, correspond
to 735 and 1150 bp, are clearly resolved. Thus UV-damag
DNA fragments can be clearly distinguished from undamag
DNA fragments based on their contour lengths. For the rest
this analysis fragments with measured contour lengths <300
were classified as non-damaged, while fragments >330
were classified as UV-irradiated.

The numbers of photolyase–DNA complexes on both DN
fragments are listed in Table 1. We expect the same numbe
non-specific complexes per kb on both damaged and n
damaged fragments. This was confirmed by repeating
experiment with restriction fragments that were not exposed
UV radiation. In this experiment no significant difference wa
found between the number of complexes per kb, whi
excludes sequence-specific and length-dependent effects.

Thus 78% of the photolyase molecules bound to UV-irradiat
fragments are non-specific complexes, resulting in an aver
of 0.7 specific complexes per 1150 bp DNA fragment. Assumi
a complex dissociation constantKd ≈ 10–8 (3), half of the damaged
sites are expected to be occupied by photolyase in the reac
buffer and the number of damaged sites can be estimated t
~2 per 1150 bp DNA. This number is approximately 10 time
less than we expected based on the UV dose the DNA w
exposed to. However, in the dilution step that is necessary
immobilisation of DNA on mica, specific complexes may hav
dissociated, causing an underestimation of the number
damaged sites (see Discussion). Because the 735 bp fragm
is used as an internal reference, our characterisation of specific
bound photolyase protein on damaged DNA will not be influenc

Figure 1. (a) An AFM image of a reaction mixture of photolyase and 735 and
1150 bp restriction fragments; scan area 2× 2 µm2, height range 4 nm. The
1150 bp restriction fragment was irradiated with UV before deposition.
(b) Software zoom of a 735 bp DNA fragment with photolyase. (c) Software
zoom of a 1150 bp DNA fragment with photolyase; scan area 250× 250 nm2.
The latter fragment is clearly longer and contains more photolyase molecules.
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Figure 2. Measured contour length distribution of a mixture of 735 and 1150
restriction fragments. Solid lines show Gaussian fits of two peaks, resulting
252 ± 36 nm for the smaller fragment and 366 ± 64 nm for the longer fragme
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by the likelihood that not all damaged DNA sites are occupied
by photolyase.

In order to obtain reliable data on the conformation of a
protein–DNA complex it is important that during deposition
the DNA is able to equilibrate on the mica deposition surface (2).
This condition was checked by measurement of the persistence
length of undamaged DNA molecules that did not contain any
photolyase molecules. DNA molecules that can diffuse over
the surface are expected to have a persistence length of 53 nm
(independent of the actual length of the DNA), which is also
found for DNA in solution (11). For DNA molecules that cannot
diffuse over the surface a much smaller persistence length has
been measured (8). Using a method based on end-to-end
distance measurements (8), we found a persistence length of
56 nm measured for 45 undamaged DNA fragments. This
shows that under the conditions used, DNA is able to diffuse
freely to find the energetically most favourable conformation.
Thus, immobilisation of DNA–photolyase complexes is not
expected to have perturbed protein-induced bending of DNA.

The bending angle of all the complexes located >15 nm from
a DNA end was measured. Distributions of bending angles on both
fragments are shown in Figure 3a and b. On 735 bp fragments all
complexes are non-specific photolyase–DNA interactions.
When fitted to equation1 a bending angle of 0 ± 18° was measured
for these non-specific complexes.

On 1150 bp fragments a much broader distribution of bending
angles is measured, originating from both specific and non-
specific interactions. The bending angle distribution of specific
complexes can be obtained by subtraction of the contribution
of non-specific complexes from the angle distribution on 1150 bp
DNA fragments. In this experiment 78% of the complexes on
1150 bp DNA fragments are non-specific. Thus the fitted dis-
tribution of non-specific complexes was divided by the number
of complexes that contributed to Figure 3a. This distribution was
multiplied by 0.78 times the number of complexes contributing to
Figure 3b and subtracted from it. The results represent the
bending angle distribution of specific photolyase–DNA complexes
and are plotted in Figure 3c. The fit of this distribution reveals
an average bending angle of 36 ± 30°.

For comparison, the bending angle of DNA at random positions
at least 50 nm away from a complexed photolyase was also
measured (Fig. 3d), resulting in an angle of 0 ± 24°. As
expected, no bending of DNA was measured.

The standard deviation of the bending angle distribution does
not represent the error in the measurement, but is proportional to
the flexibility. The flexibility of a DNA molecule is character-
ised by its persistence length and the standard deviation of the
bending angle can be related to this persistence length. The

standard deviation of the angle distribution of unbound DN
was 24°, which is slightly more than the 21° that would be
expected based on the persistence length found by measure
of the end-to-end distance.

For protein–DNA complexes the standard deviation of th
bending angle reflects the flexibility of the protein–DNA comple
However, because of resolution limitations, we could on
measure the bending angle over 30 nm, a length longer t
photolyase can physically cover. The flexibility of the DNA
extending from the protein will add to the standard deviatio
resulting in a broader angle distribution than that of the comp
itself. The measured average angle, however, is not affec
The standard deviation of the bending angle of protein–DN
complexes can be compared with that of unbound DNA. T
results of the bending angle measurements are summarise
Table 2. Both the decrease in standard deviation of the n
specific and the increase in the standard deviation of the spec
complex relative to naked DNA are statistically relevant with
confidence level of >99.9%. Thus in non-specific complex
photolyase decreases the flexibility of DNA, but in specif
complexes DNA appears more flexible than unbound DNA.

DISCUSSION

We have visualised photolyase–DNA complexes with AFM
air and analysed the global conformation of these complex
By comparing damaged with undamaged DNA it was possib
to discriminate between distributions of specific and non-spec
interactions using DNA fragments of different size. It is show
that DNA in the reported experiments was able to equilibra
on the surface, which points to weak DNA surface interaction
Thus the deposition process itself can be expected to have l
influence on the number of interactions and the conformati
of photolyase–DNA complexes.

Table 1. Summary of the number of photolyase–DNA complexes found on undamaged and UV-damaged DNA fragments

DNA size UV No. of DNA molecules No. of photolyase–
DNA complexes

No. of photolyase–DNA
complexes/DNA molecule

No. of photolyase–
DNA complexes/kb

735 bp – 246 172 1.4 1.94 ± 0.12

1150 bp – 287 134 2.1 1.86 ± 0.11

735 bp – 396 220 1.8 2.45 ± 0.07

1150 bp + 1544 432 3.6 3.11 ± 0.02

Table 2.Summary of the bending angle distribution, as fitted to equation
1, for specific and non-specific photolyase–DNA complexes and for
naked DNA

Θ, average angle;σ, standard deviation;n, number of measurements.

Θ (deg) σ (deg) n

Non-specific complex 0 18 321

Specific complex 36 30 328

Naked DNA 0 24 3656
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Recently, a number of studies on the structure ofEscherichia
coli photolyase and its interaction with DNA have been
reported in the literature (3,4,11,12). Because of the large
degree of similarity withA.nidulansphotolyase (13), we relate
some of these results to the data in this paper. In contrast to
Sancaret al. (14), who imaged individualE.coliphotolyase–DNA
complexes by electron microscopy, we observed a significant
number of non-specific complexes. The difference may be
explained by the different preparation protocol. For optimal
measurement the AFM image should represent the equilibrium
state of complex formation. The association rate constant for

specific complexes is in the range 106–107 M–1 s–1 (3), thus a
10 min incubation should be enough to reach equilibrium
Before DNA immobilisation on mica, the reaction mixture wa
diluted 10 times in a low salt deposition buffer. In general, lo
salt conditions enhance non-specific complexes and dilution
this buffer may have increased the number of non-spec
complexes. The dissociation rate of specific complexes w
estimated to be 2× 10–2 to 6 × 10–4 s–1 for E.coli photolyase
(14), but can range up to 0.48 s–1 for Streptomyces griseus
photolyase (15) and it may also vary with different buffer co
ditions. When the lifetime of the complexes is in the range
the time necessary for dilution and deposition, dissociation
specific complexes is very likely and may account for the diffe
ences. Indeed, forE.coli RNA polymerase it has been show
experimentally that the number of specific complexe
decreases when rinsing protein–DNA samples thoroug
before drying (9). The number of specific interactions an
therefore the estimated number of damaged sites on UV-irradia
DNA fragments will be underestimated if dissociation durin
sample preparation is not taken into account.

In non-specific complexes photolyase does not bend DN
This observation is in contrast to Cro protein (21) and oth
sequence-specific DNA binding proteins that have been stud
(2), which bend DNA when bound to specific and non-specif
sequences. DNA bound by protein is expected to have l
conformational freedom and hence to be more rigid than nak
DNA. The narrower bending angle distribution and thu
increased rigidity of non-specific complexes suggests clo
contact between DNA and photolyase over several nanometer
is interesting to compare this result with the reaction mechani
proposed by Parket al. (3) when they presented the crysta
structure of photolyase. DNA is suggested to bind to the f
surface of the helical domain with the phosphate backbone
one strand following a trace of positive electrostatic potent
that runs across this surface. Consistent with this model,
measured decrease in standard deviation of 6° indicates that
the DNA molecule is rigid over a range of about the size of
photolyase molecule. A longer interaction range would requ
DNA to be wrapped around photolyase, introducing a bend
the DNA, which is not observed.

Usually, the extent of DNA covered by a protein is studie
using footprinting techniques. Footprinting, however, cann
be used for non-specific complexes as no unique binding s
can be defined. Based on AFM data we suggest that photoly
binds to DNA over several nanometers, without distorting t
structure of DNA. From this data, it is tempting to suggest
mechanism of photolyase diffusion over DNA through th
groove in the protein, to find damaged sites. AFM measu
ments in liquid indeed show one-dimensional movement alo
DNA strands (23).

Recently the structure of a duplex DNA dodecamer containi
a cyclobutane thymine dimer was determined by NMR (24).
is shown that a thymine dimer introduces a small bend of 7° in
the DNA molecule. Such small distortions in the DNA structu
are not likely to be distinguished using AFM. Indeed, in th
experiments no obvious changes in conformation, like sha
kinks, were observed in the 1150 bp fragments.

We showed that on average photolyase bends DNA by 3°
when bound to damaged sites. This may include a slight intrin
bend of the damaged site, but is likely to be mainly prote
induced.

Figure 3. Bending angle distributions of photolyase–DNA complexes and
naked DNA. (a) Non-specific complexes on 735 bp DNA. (b) Mixture of specific
and non-specific complexes on 1150 bp DNA. (c) Specific complexes on 1150 bp
DNA obtained by subtraction from (b) of the distribution obtained from (a),
corrected for size and number of complexes. (d) A reference angle distribution
of DNA on random positions on the DNA strand. The solid line represents a fit
using equation1. The dotted line represents a Gaussian distribution using the
fitted average angle and standard deviation of equation1.
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Our observation that DNA is significantly bent by photo-
lyase in specific complexes is consistent with a structure where
the damaged bases are flipped out of the DNA helix into a
pocket in the protein. So far, two examples of DNA repair
enzymes have been reported in which bases are flipped out of
the DNA helix when a complex is formed. The damaged nucleo-
tide acted on by human 3-methyladenine DNA glycosylase is
isolated out of the DNA helix, which is bent by 22° at this point
(25). T4 endonuclease V, which cuts a DNA strand next to
pyrimidine dimers, also binds an extra helical base, but in this
case a nucleotide from the strand opposite to the damaged
strand is flipped out of the helix. Damaged DNA in complex
with T4 endonuclease V is bent by 60° (26). For photolyase,
flipping out of the pyrimidine dimer in the substrate complex
has been suggested (3).

In specific complexes ofE.coli photolyase four to five phos-
phates on the damaged strand around the dimer are in contact
with the protein in a groove of positive electrostatic charge, as
measured by footprinting (11) and site-specific mutation

experiments (12). In the centre of this groove is a hole with t
right dimensions and polarity to enclose a pyrimidine dim
that has flipped out of the helix, enabling the dimer to approa
the FAD chromophore close enough to allow electron trans
necessary for the dimer splitting reaction (3). A comparab
groove is present inA.nidulansphotolyase (see Fig. 4a). Docking
simulations, using a 30mer DNA with 36° bend angle indicate
that the kinked DNA fits into this groove with the kink in the
immediate vicinity of the FAD-containing active site (see Fig. 4c
Both non-bent and 45° bent DNA resulted in a poorer fit. Global
comparison with the electrostatic surface potential ofA.nidulans
photolyase (Fig. 4a) and comparison with the location of ami
acids that are known to play an important role in substrate rec
nition (Fig. 4b) show that in this respect a good fit is als
obtained. However, the model is based on static geometr
docking only and interactions with a flipped pyrimidine dime
have not been taken into account. At present we have no di
evidence that DNA actually follows this path on the prote
surface. Clarification of the exact structure must await hig
resolution structural determination of the damaged DNA
photolyase complex.

The increased flexibility of DNA that we observe in specifi
complexes was initially puzzling, as one would expect th
bound protein would restrict the conformational freedom
DNA. However, this result could be accounted for by th
model with the thymine dimer flipped out of the helix. It is
difficult to predict the precise structural consequences th
would have for the DNA, but it obviously necessitates leavin
two unpaired bases on the opposite strand. Recently Riv
et al. (27) showed that even a single base gap in a doub
stranded DNA molecule greatly increases the flexibility, chara
terised by a decrease in persistence length from 53 to 1.7
Though unpaired bases are not the same as a gap, we
expect some increase in flexibility of the DNA. Extra flexibility
due to unpaired bases would be evident, even in the comple

CONCLUSIONS

By using undamaged and damaged DNA fragments with differ
lengths, populations of specific and non-specific protein–DN
complexes can easily be discriminated. While other techniqu
require highly specific substrates for the study of protein–DN
interactions, we present an approach using AFM that is far l
demanding for sample preparation. In addition, it is possible
compare the structure of proteins bound to specific and no
specific sites in the same sample and thus formed under ide
cal conditions. We have shown that photolyase induces DN
bending only when bound to specific sites, whereas non-spec
complexes do not bend DNA. At non-specific interaction sit
DNA is shown to be more rigid than unbound DNA, while in
specific complexes DNA appears more flexible.
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	In this study data will be presented on the conformation of DNA when photolyase is bound at speci...

	MATERIALS AND METHODS
	Sample preparation
	DNA fragments used for photolyase binding were released from pET-XPB (

	AFM set-up
	Triangular Si

	Image processing and data analysis
	AFM data were processed using the Interactive Data Language (RSI, Austin, CO) in a self-written s...
	where


	RESULTS
	A typical AFM image of photolyase–DNA complexes is shown in Figure
	The contour length of all DNA molecules was determined by hand tracing and the resulting contour ...
	The numbers of photolyase–DNA complexes on both DNA fragments are listed in Table
	Thus 78% of the photolyase molecules bound to UV-irradiated fragments are non-specific complexes,...
	In order to obtain reliable data on the conformation of a �protein–DNA complex it is important th...
	The bending angle of all the complexes located >15 nm from a DNA end was measured. Distributions ...
	On 1150 bp fragments a much broader distribution of bending angles is measured, originating from ...
	For comparison, the bending angle of DNA at random positions at least 50 nm away from a complexed...
	The standard deviation of the bending angle distribution does not represent the error in the meas...
	For protein–DNA complexes the standard deviation of the bending angle reflects the flexibility of...
	<GRAPHIC>

	DISCUSSION
	We have visualised photolyase–DNA complexes with AFM in air and analysed the global conformation ...
	Recently, a number of studies on the structure of
	In non-specific complexes photolyase does not bend DNA. This observation is in contrast to Cro pr...
	Usually, the extent of DNA covered by a protein is studied using footprinting techniques. Footpri...
	Recently the structure of a duplex DNA dodecamer containing a cyclobutane thymine dimer was deter...
	We showed that on average photolyase bends DNA by 36
	<GRAPHIC>
	<GRAPHIC>

	In specific complexes of
	The increased flexibility of DNA that we observe in specific complexes was initially puzzling, as...

	CONCLUSIONS
	By using undamaged and damaged DNA fragments with different lengths, populations of specific and ...
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