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ABSTRACT

A tool for prediction of conserved secondary structure
of a set of homologous single-stranded RNAs is
presented. For each RNA of the set the structure
distribution is calculated and stored in a base pair
probability matrix. Gaps, resulting from a multiple
sequence alignment of the RNA set, are introduced
into the individual probability matrices. These
‘aligned’ probability matrices are summed up to give
a consensus probability matrix emphasizing the
conserved structural elements of the RNA set. Because
the multiple sequence alignment is independent of any
structural constraints, such an alignment may result in
introduction of gaps into the homologous probability
matrices that disrupt a common consensus structure.
By use of its graphical user interface the presented
tool allows the removal of such misalignments,
which are easily recognized, from the individual
probability matrices by optimizing the sequence
alignment with respect to a structural alignment.
From the consensus probability matrix a consensus
structure is extracted, which is viewable in three
different graphical representations. The functionality
of the tool is demonstrated using a small set of U7
RNAs, which are involved in 3 ′-end processing of
histone mRNA precursors. Supplementary Material
lists further results obtained. Advantages and draw-
backs of the tool are discussed in comparison to
several other algorithms.

INTRODUCTION

Identification of an RNA structure is a quite demanding task
taking into account the enormous number of possible
secondary structures, which is about 2N for a sequence length
of N nucleotides (1). To gain insight into the structure–function
relationships of single-stranded RNAs despite the complexity
of that problem, several experimental (for example enzymatic
and chemical mapping, optical melting curves, temperature
gradient gel electrophoresis, calorimetry, X-ray studies, NMR, etc.)
and computational methods (for example energy minimization,
helix list algorithms, genetic algorithms, Monte-Carlo simulations,
phylogeny, etc.) have been developed (for reviews see 2–6).

Most of the biochemical methods have in common the proble
that they are able to determine only the state of the nucleotid
either paired/stacked or non-paired, but not the base pair
partner of a paired nucleotide. Most biophysical methods allo
one to determine only thermodynamic and/or kinetic paramet
describing the structure but give no detailed information. Th
computational methods are necessary to propose signific
structural models that might be verified or rejected by th
experimental methods.

With a phylogenetic approach, or comparative sequen
analysis, RNA structures are established by selecting from
list of all possible helices those helices that are supported
‘consensus’ base changes; i.e. a base pair of a helix in
sequence is changed to another base pair in the same helix
different sequence. The major problem of such an approac
the need for many sequences, because on the one hand
sequences have to be highly homologous for success in
search for a ‘same’ helix, and on the other they have to be qu
divergent to deliver enough base pair changes to reach statis
significance. This might be even worse when ‘the structu
alignment does not necessarily reflect the evolutiona
relationship between the nucleotides’ (7); i.e. a ‘correc
sequence alignment does not have to coincide with a ‘corre
structure alignment, as shown by van Duinet al. (7) in their
work on coliphages.

In contrast, the thermodynamic approach based on ene
minimization (8–15) needs only a single sequence to find t
optimal, many suboptimal, or even the partition function, but
hampered by two assumptions: (i) the structure of the RNA
in thermodynamic equilibrium, which is, for example, not tru
during or directly after synthesis or for long sequences; (ii) a
thermodynamic parameters for structure formation are kno
with a sufficient degree of accuracy.

Taking into account the merits and drawbacks of the phy
genetic and the thermodynamic approaches, a combinatio
both methods (16–20) should increase the accuracy of e
single method and should help to overcome their individu
limitations. We have presented such an algorithm (19) th
consists of the following steps (see steps I–V in Fig. 1). (I) F
each RNA from a set of homologous RNAs a thermodynam
structure distribution is calculated by energy minimization; th
distribution is presented in a matrix of base pairing probabiliti
(similar to a dot plot). (II) A multiple sequence alignment o
the RNA set is produced. (III) Into each of the individual bas
pairing matrices gaps are introduced as proposed by
sequence alignment. (IV) The resulting ‘aligned’ matrices a
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summed up to give a consensus matrix. (V) From the
consensus matrix a consensus structure is extracted.

As shown in the publication of the original algorithm (19), it
behaves successfully as expected, but there was obviously a
problem caused by the multiple sequence alignment (step II) in
at least two cases. First, if there is a sequence duplication in a
sequence, it is of no importance to a sequence alignment
whether the gap (compensating for the missing sequence part
in the other sequences) is aligned to the 5′- or the 3′-part of the
duplication, but this might be of importance for the consensus
structure. Second, special sequences might be completely unrelated,
and thus the basis for introduction of gaps, but form identical
structural elements; for example, the sequences 5′-GNRA-3′ and
5′-UNCG-3′ (where N is any nucleotide and R is a purine)
show no sequence similarity but both are the basis for thermo-
dynamically extra-stable tetraloop hairpins (21,22). Such types
of structural misalignments result in non-identical positions of
homologous structural elements in the ‘aligned’ matrices, and are
easily recognized by parallel shifts of helices for some of the
sequences against similar helices in the remaining sequences.

To allow for the user to resolve such ambiguities and/or to
optimize the sequence alignments with respect to a common
structure, we have developed a tool including a graphical user
interface, which we will describe in the following. In principle
this tool allows the user to choose interactively alternative gaps
from the pool of suboptimal sequence alignments, which are
probably less optimal in terms of sequence alignment, and to
trade them with gain against an optimal common structural align-
ment; any modification of the sequence alignment immediately
results in a new representation of the aligned matrices and of the
consensus matrix (see steps VI and VII in Fig. 1). The functionality
of the tool will be shown for a set of U7 small nucleolar RNAs.
This RNA is used as an example because of its short sequence
length, which allows us to show screen copies of the full dot
plot matrices and not only enlarged portions thereof.

SYSTEMS AND METHODS

RNAfold

csRNAfold is based onRNAfold v.1.21 that is part of the
Vienna RNA package (13,23,24); it calculates the minimum

free energy and the partition function of RNA sequences. Tw
ConStruct-specific options were added: the first allows fo
writing the base pairing matrices in binary format and th
second allows for compression of these matrices bycompress.

tinoco

tinoco produces simple dot plot matrices containing a
possible base pairs of an RNA sequence (25). The ‘probabil
of each base pair is set to 0.5, which allows for the filterin
process in step IV.

File formats

RNAfold (23,24) reads sequences in a special format cal
Vienna format. To allow for conversion between differen
sequence formats we added toreadseq(26) the ability to read
and write the Vienna format.

The project file is a simple ASCII file that is created b
cs_makebut might be modified by any text editor. It contain
the project name, the file name of the multiple sequence fi
and the file names of the base pairing matrices.

The files containing mapping data, depictable byCircles
(see Fig. 7), have a file name identical to the correspond
sequence but with extension ‘.map’. The content of these fi
are multiples of two lines: each first line gives the color of th
triangles; each second line gives the nucleotide positions of
triangles separated by blanks. The nucleotide positions hav
be those of the unaligned sequence;Circles introduces gaps
according to the actual alignment. Comment lines (marked
an exclamation mark in the first row) may be interspers
freely.

All relevant windows (i.e. alltk canvas widgets) may be
printed directly to aPostScript-capable printer or saved to a
file in PostScriptformat, which should allow for conversion
into any graphics format.

Calculation of mutual information content

From the alignment the mutual information content (27–30)
paired positions in the consensus structure is calculated by

Ixi,xj
= ∑xi,xj

fxi,xj
logb(fxi,xj

/fxi
fxj

)

wherefxi
, fxj

andfxi,xj
are the frequencies of the pairing nucleo

tides xi and xj at positionsi and j and the joint frequency,
respectively. The frequencies of the nucleotides might
corrected for low numbers of sequences or highly conserv
positions using the unbiased probability estimator instead
the maximum likelihood estimation (31). The alphabet of allow
nucleotide symbols is A, G, C, U, gap and N; the latter two a
taken into account only if present at positioni or j. Nucleotidesxi
andxj are statistically interdependent ifIxi,xj

≥ χ2/2M, whereχ2 is
the tabulatedχ2 value with 9, 16 or 25 degrees of freedom fo
4, 5 or 6 different alphabet symbols, respectively. For comparis
with other publications the basisb of the logarithm may be
chosen to be either e or 2.

System

TheConStructpackage has been tested on a Silicon Graph
Indy and on several different PCs with a Linux operatin
system (details are listed in Table 1).

The graphical user interface is written using the comma
language and its corresponding graphics toolkittk/tcl (32).
dashpatch(33) is required to implement an additional canva

Figure 1. Flow chart of the toolConStructfor determination of a conserved
secondary structure. For details see text.
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option in the tk/tcl source necessary for hiding/displaying
individual canvas items. The routines for reading of base pair
matrices/insertion of gaps in step III and the routineDrawStructure
are implemented asC extensions of thetcl interpreter.

A C compiler is required for compilation ofreadseq, of the
modified RNAfold, and of a few routines that enhancetk/tcl
with the ability to read the base pair probability matrices and to
produce the structure representations.

If a compression/decompression program likecompressor
zcat is available,csRNAfolduses them to compress the base
pair probability matrices prior to storage, and the corre-
spondingcs_dproutine useszcatto expand the matrices. This
is convenient to save disk space.

The completeConStructpackage, as described in this paper, is
available from http://www.biophys.uni-duesseldorf.de/local/
ConStruct.html

Sequences

The Xenopus borealisand Xenopus laevissequences were
taken from two EMBL entries (34,35); each of these contains a
cluster of U7 RNA sequences; the names given in the figures
and text are xb#1_#2 and xl#1_#2, respectively, with #1 and #2
the positions of the start and end nucleotide, respectively. For
all other sequences the given names are identical to the EMBL
IDs (36–40).

RESULTS

Algorithm

Base pair matrices for each RNA of a set of homologous RNAs
are calculated either by energy minimization or by using a simple
dot plot procedure. The sequences are aligned to identify homolo-
gous regions. Then a consensus structure is calculated by
extracting structural elements common to all sequences. The
algorithm consists of the following steps (see Fig. 1).

Step I.For each sequenceRk with sequence lengthnk from a set
of homologous RNAsR1

…RM, a 2-dimensional base pair
matrix is created. This matrix is either a simple dot plot
showing all possible base pairs (seetinoco in Systems and
Methods) or a base pair probability plot calculated by one of
the energy minimization algorithms,RNAfold(13,23) orLinAll
(11,41), known from the literature. WithRNAfold the total
structure distribution is calculated and stored in a matrix; with
LinAll the optimal and a definite number of suboptimal structures,
which are sufficient to represent the structure distribution, are
calculated and stored. In both cases the matrices of base pair
probabilities account for thermodynamic weighting of structural
alternatives. Each matrix can be viewed as a dot plot. With
RNAfoldor with LinAll, the area of a dot is proportional to the
base pair probability of the nucleotides at the corresponding

positioni,j with 1 ≤ i < j ≤ nk. With the simple base pair dot plot
each pair in the matrix has the same ‘probability’. Execution
the calculations is simplified by the small programcs_make
(for a further description see below and Fig. 2).

Step II.With a cluster alignment program [for exampleClustAl
(42–44) or PileUp (45)] a multiple sequence alignment is
created for the set of RNAs. The aligned sequences are of iden
lengthN, which is larger than their original sizenk due to insertion
of gaps. Homologous nucleotides should have the same posit
in all aligned sequences.

Step III.Gaps are introduced into the base pair matrices at positi
corresponding to the gap positions of the aligned sequenc
This results in ‘homologous’ or ‘aligned’ base pair matrices

Table 1.Hardware and software with whichConStructwas tested

Workstation OS tcl tk Compiler compress/
zcat

SGI Indy IRIX 6.2 7.5i 4.1i gcc 2.7.2.2 or cc 4.0

586 Linux 2.0.32 8.0p2 8.0p2 gcc 2.7.2.3 4.2.4

Figure 2. cs_make. A graphical user interface allows the user to load a multipl
sequence file containing the aligned sequences (top) and to select a prog
for calculating the base pairing matrices, either by energy minimization wi
csRNAfoldor by a dot plot withtinoco (middle). After loading the sequence
file, a further window pops up (bottom) that allows the user to enter values f
weighting the different sequences (see text, step IV). The buttons allow
user to execute the selected program for the loaded sequences in backgr
mode, to write a project file, which is used to load the base pairing matric
into cs_dp(see Fig. 3), and to exitcs_make. In this example 12 U7 sequences
were loaded, matrices were calculated bycsRNAfoldat 25°C, and the project
file was stored with equal weights for each of the four RNAs belonging
three groups (x*,Xenopus; hs* and mmu7*, mammals; pmug7a*, sea urchin)
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dimensionsN × N nucleotides. Within each matrix homolo-
gous base pairs should be found at exactly the same location.
Take into account, however, that only an alignment of the
primary structure was performed during step II. This might
lead to a misalignment in terms of the secondary structure.

Step IV.TheM homologous base pair matrices are summed so
that the base pair probabilitypk(i,j) of each sequencek contributes
to the conserved base pair probabilitypc(i,j):

pc(i,j) = {[ wk·pk(i,j)1/a]/[ wk]} b

Probabilities of each sequence are weighted with a specific,
user-definable factorwk to avoid over-representation of a
sequence family in comparison to other sequences. For
example (see Supplementary Material, Table S5), having a set
of 7SL RNAs with nine hop sequences and one from rice it is
appropriate to choosewhop = 1/9 andwrice = 1. The weight
values are attached to the sequences or might be modified with
help of the program shown in Figure 2 and described below.
The exponents 1/a and b in the summation were chosen to
suppress individual but not conserved probability values in the
matrix. Valuesa = 3 andb = 3 are used in the example. In the
case of a certain helix being present only in a single or a few of
the homologous base pair matrices, the appearance of that
helix in the consensus base pair matrix is suppressed by the
exponentiation. In contrast, a helix common to most if not all
of the homologous base pair matrices at the identical position
shows up prominently in the consensus base pair matrix. For
example, if only one sequence forms a certain base pair with
p1(I,J) = 1 and the nine others of the set are not able to form that
base pair [p2…10(I,J) = 0], valuesa= 1 andb= 1 result inpc(I,J) = 0.1
whereasa = 3 andb = 3 result inpc(I,J) = 0.001, suppressing
the noise.

Step V.From the consensus base pair matrix a consensus structure
is extracted by means of dynamic programming and back-
tracking; that procedure maximizes the sum of base pair prob-
abilities. At present only the optimal consensus structure is
generated. We will improve that routine to allow the user to
also extract suboptimal folds, which might be of importance in
the case of RNAs that use conformational switching to implement
their biological function.

The consensus structure might be viewed directly in three
different graphical representations. (i) The first representation,
plotted by ConStructAlign, is basically an alignment of the
homologous sequences (see for example Fig. 5); the back-
ground of the nucleotide characters is colored according to the
nucleotide’s structural features: loop regions and dangling
ends are light green; base paired regions have a reddish color.
Nucleotides coinciding with the consensus sequence and
forming a base pair have a red background. Nucleotides in pink
differ from the consensus sequence but still form a base pair;
that base pair is a consensus mutation supporting the predicted
consensus helix. In addition to the graphical representation a
text output is displayed that describes the structural alignment
in numerical form [number of base pairs, number of consensus
base pair changes, number of mismatches, consensus base
pairing probability and mutual information content (see
Systems and Methods) per helical position]. (ii) The second
representation, produced by the programDrawStructure, is

similar to that one might draw by hand (see for example Fig.
The backbone distances in loops and in helices are identi
Two drawing modes for loops are available. With the fir
mode (see Fig. 6A and B) the two halves of each internal lo
bridge identical distances; thus the two helices connected b
loop are collinear, which diminishes the chance for overlap
structural regions. With the second mode (see Fig. 6C) loo
are drawn as equiangular polygons. Overlap of helical regio
may be avoided by user interaction; each helix is selectable
the mouse and might be rotated upon the upstream lo
(iii) The third representation, plotted byCircles, is a circular
graph with the nucleotides as edges and base pairs conne
by arcs (see for example Fig. 7). If chemical or enzyma
mapping data are available the accessibility of nucleotid
might be marked by small triangles. Furthermore, the user m
store a file describing the consensus structure, useful as in
to further drawing programs likenaview(46; program available as
part of the mfold package, 14),RnaViz(47),XRNA(48) or others.

Steps VI and VII.Steps III–VII are integrated into the tool
cs_dp(Fig. 3). According to the file names given in the projec
file (produced bycs_make; see step I and Fig. 2),cs_dploads
the file with the aligned sequences and the files containing
individual base pair probability matrices. The gaps from th
alignment are introduced into the matrices resulting in t
homologous base pairing matrices (step III). After summati
and weighting (step IV)cs_dpshows on the screen the individua
dot plots as well as the consensus dot plot (see Figs 3 and 4
a single frame. In a second frame the alignment of t
sequences is shown. The major advantage of the graphical
interface (GUI) ofcs_dpis that the position of the base pair
from the dot plots is coupled with the position of the corre
sponding nucleotides in the alignment (step VII). For examp
pointing with the mouse to a consensus base pair highlig
these base pairs in the alignment with a color from white to r
according to the individual base pairing probabilities (se
Fig. 3); pointing to a base pair of a selected sequence hi
lights the corresponding 5′ and 3′ nucleotide in the alignment
in blue and red, respectively (see Fig. 4A); pointing to a ba
paired nucleotide in the alignment changes the color of t
corresponding base pair in the dot plot from green or blue
cyan. A selected region of a single sequence, which neighb
a gap, might be moved with the mouse towards the gap, and
plot and consensus dot plot are updated correspondingly (s
VI). A gap might be inserted or removed from a selecte
sequence by a button press. All these functions of the G
might be necessary to align structural elements in differe
sequences that were misaligned by the pure sequence-orie
alignment tool in step II.

EXAMPLE

Eukaryotic histone gene transcripts do not acquire poly(
tails; instead the histone mRNAs terminate with a hairpin-lik
stem–loop structure and a short conserved sequence. T
signals are recognized by a small nuclear RNA–prote
complex (snRNP) containing the U7 RNA, which has a leng
of ~60 nt. U7 RNA interacts with the pre-mRNA by forming
base pairs with the 3′ sequences. This leads to 3′-end
processing to yield the histone mRNA (for reviews see 49,5
We have selected U7 RNA to demonstrate the functional

Σk 1=
M Σk 1=

M
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and use of the toolConStruct. The small size of U7 allows full
dot plots and alignments to be shown and not only sections
thereof; the tool, however, is neither restricted to such short
sequences nor to such small sets of RNA as used for that
example (see Discussion).

From the EMBL databank (51) at least 26 U7 RNA
sequences were available (see also 52). To keep the siz
output small and to avoid a bias towardsXenopussequences
we selected only 12 sequences from three groups (Amphib
Mammalia and Echinozoa): three sequences fromXenopus

Figure 3. Overlay of base pairing matrices withcs_dp. This major tool ofConStructperforms steps III–VII of the algorithm (see text and Fig. 1): a project fi
might be opened (see menu bar, top left), which contains the file name of the aligned sequences, the file names of the corresponding base pair matricnd their
weight values (see Fig. 2). During loading of the aligned sequences the gaps from the alignment are introduced into the appropriate matrices (see Fig.1, step III);
this allows for later loading of different alignments. The base pairing probabilities from the individual base pairing matrices are shown as green dots in the dot plot
(center); base pairing probabilities of the selected sequence are shown as blue dots. Conserved base pair probabilities (step IV) are shown in whiteo red color
proportional to their probability. Gaps from the alignment are shown as light blue bars; gaps in the selected sequence are shown in white (not done). Te buttons
in the right border of the dot plot frame and in the top border of the alignment frame allow the user to zoom in/out of the dot plot, to shift to the left orht a
selected sequence region from the selected sequence, and to insert/remove a gap. The mouse cursor points to the homologous base pair at position 6; this pair
is highlighted with reddish color (proportional to the individual base pairing probability) in the alignment (bottom) for all sequences. The sequence mmu7 was
selected (note the blue sequence name in the alignment and the blue dots in the dot plot) and its region44AC45, selected by mouse clicks on the 5′ and 3′ nucleotide,
respectively, might be moved in the 3′ direction either for one position by pressing the double-arrowed button with the right mouse button or by moving that
in the alignment directly with the left mouse button up to three positions.
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borealis(34), one fromXenopus laevis(35), two fromHomo
sapiens(36,37), two fromMus musculus(38,39) and four from
Psammechinus miliaris(sea urchin) (40). The weights of the
individual sequences were set accordingly; base pair matrices
were calculated byRNAfold at 25°C for Amphibia and
Echinozoa and at 37°C for Mammalia (see Fig. 2).

At first the overlay of base pairing matrices was done
without an alignment of the sequences; i.e. only the lengths of
the sequences were adjusted by gaps at the 3′-end. The result is
shown in Figure 4A. As was already obvious from the base
pairing matrices of the individual sequences (plots not shown),
all sequences, with the exception of xb6711_768, prefer, near
their 3′-end, a structure with either a long hairpin or a stem–
loop with up to three helices. Because of the missing alignment
the structural elements are shifted in parallel between the
different sequences. Obviously the structural diversity is much
higher at the 5′- than at the 3′-end.

Next, the sequences were aligned with the help ofClustAlX
(43) using default parameters. The overlay of base pairing
matrices, after introduction of the gaps from the alignment, is
shown in Figure 4B. As expected the alignment improves the
overlay of helices (compare Fig. 4A and B). However, as is
obvious from the parallel shift in the different stem–loops near
the 3′-end (see position of mouse cursor in Fig. 4B), the alignment
is far from optimal in terms of a structural alignment. This
might be due to a ‘failure’ of the cluster alignment: the

sequences in each group are aligned quite well but the th
groups show no alignment. In other words, the similarities
each group are from ~80 to >90%, whereas in between
groups the similarities are only from ~60 down to near 20%

Lastly, the structural alignment was optimized by hand usi
the GUI provided bycs_dp. In the following we will describe
only the optimizations performed for aligning the 3′ stem–loop
(compare Fig. 4B with 3). In theXenopussequences an additiona
gap was introduced at position 52 and the region from nt 47
to the 3′-end was shifted by 11 positions downstream. The g
is necessary to compensate for the bulge loop present in
urchin 3′ stem–loop; the shift moves the 3′ sequence of the
Xenopushelix on top of the urchin 3′ stem–loop. Similarly, in
the mammalian sequences a gap was added at position 58
the region from nt 52 up to the 3′-end was shifted by six positions
downstream. In total the alignment was increased in seque
length by one position (the gap mentioned above) and regio
between groups, but not in a group, were shifted. Because
alignment between groups had only a marginal basis,
optimization had nearly no effect on the consensus seque
but a dramatic effect on the overlay of structural elemen
i.e. the mean base pairing probability of the consensus str
ture increased from 0.04 to 0.38 per base pair. In the termi
part of the 3′ helix the base pairing probability increased from
0.04 to 0.66; compare the tiny reddish dots in Figure 4B wi
the large red dots in Figure 3. For a comparison with comparat

Figure 4. Overlay of base pairing matrices withcs_dp. (A) The sequences were not aligned; only gaps were added to the 3′-ends to make all sequences equal i
length. The mouse cursor points to base pair 56:37 of the sequence mmu7; at that position a base pair exists only in mmu7, as is seen from the highligin the
alignment (bottom). (B) The sequences were aligned byClustAl(43). The mouse cursor points to base pair 58:38 [identical to 56:37 in (A)] of the sequence m
at that position a base pair exists in all mammalian sequences, as is seen from the highlighting in the alignment (bottom).
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sequence analysis, the mutual information content of the base
pairs in the alignment was checked (27–30). The interdependence
of the nucleotides in the helical regions (31) has only a very
low significance, mostly due to the low number of sequences.
Only after taking all U7 sequences from the database (this
sums up to a total of 26 sequences mainly by adding the
remaining sequences from the twoXenopusclusters; 34,35) the
interdependence of the nucleotides in the helical regions
reachesχ2 significance levels of up to 0.99 (see Supplementary
Material, Table S1). Both numerical evaluations, base pairing
probability and information content, are displayed in a separate,
printable text window (not shown).

From the consensus dot plot (see the red dots in Fig. 3) a
consensus structure was extracted; a representation of this
structure might be shown in three different styles, as given in
Figures 5–7.

Figure 5 shows the first representation of the consensus
structure in terms of an alignment overlayed by the structural
features. According to the coloring scheme of the line marked
‘Cons(ensus) struct(ure)’ a significant helical region is the
proximal part of the 3′ stem–loop: it consists of a 9 bp contiguous
helix in Xenopus, a 10–11 bp contiguous helix in Mammalia
and up to 14 bp interrupted at least by a bulge loop (position
63) in Psammechinus. The hairpin loop consists of 3–7 nt; in
mouse the loop has the sequence of an extra-stable tetraloop
(22).

In the 5′-region the structure, if any consensus structure
exists, is much less conserved: inXenopusand Mammalia it
consists of two small hairpins; inPsammechinusonly the
second hairpin is possible. There are, however, further possible
structural alignments that do not differ significantly in probability
from the given alignment. Neither these nor the shown alignment
are substantiated by significant numbers of consensus base pair
changes.

Figures 6 and 7 show standard representations of the optimal
consensus structure with the sequence of mmu7. In both cases

the lines connecting base pairs are colored from white to
proportional to the consensus base pairing probability; t
color code should help the user to interpret the reliability
individual parts of the consensus structure (53). The first rep
sentation is a spider-like graph and the second a circular gra

DISCUSSION

We have presented here a tool for prediction of conserv
secondary structure of a set of homologous RNAs. The too
based on thermodynamic prediction of the RNA structu
distributions but should allow even the inexperienced user
combine the information from thermodynamics with the info
mation from sequence alignment in an intuitive way.

The simple generation and handling of all that informatio
driven by a GUI, is demonstrated with U7 RNA. The obtaine
result is in line with the literature (49,50). Briefly, the 3′-region
of U7 forms a thermodynamically stable stem–loop structu
while there is no common structure in the 5′-region, which has
to interact with the histone pre-mRNA.

Despite the example, which shows the use ofConStructfor a
very short RNA and only a few sequences,ConStructhas only
a few limitations in that respect:RNAfold’s computational and
storage effort isO( ) andO( ), respectively, for each of the
M sequences with individual sequence lengthsnk; with cs_dp
the memory requirement isO(M × N2) and the computational
effort to move a subsequence of lengthn, which is usually
much smaller than the alignment lengthN, is O(M × n2). In
summary, the requirements allow for easy handling of at le
20 sequences of lengths up to 1000 nt. For example, us
ConStruct, the consensus structure prediction for PrP mRNA
was done with 23 sequences and an aligned sequence leng
~800 nt (19), for the hepatitis B virus post-transcription
regulatory element with 30 sequences and a length of ~630
(54), for U3 snRNAs with 36 sequences and a length

Figure 5. ConStructAlign. The alignment of Figure 3 including the consensus structure is shown color coded: regions in light green are non-base paired; r
white, orange, or light pink are base paired (white ‘base pairs’ contradict the consensus base pair, light pink base pairs show consensus base pair changes); in the
two lines labeled ‘Cons. struct.’ the consensus structure is shown with increasing base pairing probabilities from white to red. The regions forminga consensus
helix are marked either by small characters or with the bracket notation; for example, the regions nt 40–49 and nt 54–63 are base paired with each othnd both
are marked ‘d’.

nk
3

nk
2
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~340 nt, and for plant 7SL RNAs with 18 sequences and a
length of ~330 nt (55).

ConStructneeds only a few sequences, much less than are
necessary for comparative/phylogenetic structure prediction,
to produce a quite convincing consensus structure. Trivially,
with energy minimization one needs only a single sequence to
get a result, and any further different but homologous sequence
adds information to the consensus dot plot and structure. How
many sequences are necessary for a certain problem depends
on the result of the energy minimization, on the quality of the
alignment, and on the diversity of the sequences, but we are not
able to give a qualified rule for the sequence number. For the
U7 RNAs, for example, 12 or even fewer sequences were suffi-
cient to come up with a consensus structure, but statistical
significance was reached with only about twice as many
sequences.

On the other hand, any structure prediction algorithm based
on thermodynamics will fail when a (sub)structure depends
significantly on non-standard base pairings, for which thermo-
dynamic parameters are not known. For example,ConStruct
predicts for domain IV of plant 7SL RNAs a stem–loop of
12 conventional stacks (55), whereas the model based on
phylogeny predicts a stem–loop of 13 stacks including four
G·A base pairs (56). For plant sequences, however, both
models are not supported statistically (see Supplementary
Material, Table S5).

csRNAfold, like basicRNAfold, allows the user to restrict the
calculated structures; i.e. specific constraints may be used
force the formation of certain base pairs or the pairing
certain bases, or to prohibit the pairing of certain base
Furthermore, the user may allow for additional pairings lik
G·A pairs. These features were used neither with the exam
on U7 RNA nor in any of the examples in the Supplementa
Material. This might be useful, however, in the case of excelle
mapping data or an already proven consensus structure
shown in the work of Gaspin and Westhof (57,58).

Hofackeret al. (20) use a similar procedure as described he
in their programalidot; the main difference is their use of only
optimal (minimum free energy) structures instead of the ba
pairing probability matrices. Their approach reduces the CP
and storage demand and allows the handling of sequence
the range ~10 000–20 000 nt, but loses any information fro
suboptimal conformations. For example, the predicted struct
distribution ofXenopussequence xb13081_38 is dominated b
a thermodynamically optimal Y-shaped structure with ba
pairings of the 3′- with the 5′-end (note the green dots in the
upper right corner of the matrix in Fig. 3; the single pairin
probability is up to 0.85). The first suboptimal structure
however, coincides with and contributes a single pairin
probability of up to 0.13 to the consensus structure. Th
taking into account suboptimal structures or the structu
distribution should improve the quality and accuracy of th
prediction, as already mentioned by Hofackeret al. (20) in

Figure 6. DrawStructure. The consensus structure, as extracted from the consensus dot plot of Figure 3, is depicted with colored lines connecting base
color from white to red shows increasing probability of base pairing. With the mouse the helix 40–49/54–63 was selected [note the red ‘backbone’ in (A)] and will
be bent by ~15° (note the red line pointed to by the mouse). After releasing the mouse button that helix is bent accordingly (B). In (A) and (B) bulge and internal
loops are drawn in such a way that neighboring helices are collinear; in (C) loops are drawn as equiangular polygons.
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their discussion. In addition, a thermodynamic structure
prediction for sequences of lengths above a few thousand
nucleotides which ignores any kinetic influences is not recom-
mended by us, and will only come up with small stable
substructures but not with a total structure. Furthermore,alidot
does not allow for interactive modifications of the sequence
alignment, a feature that is usually necessary to obtain the
consensus structure. This is shown convincingly with the U7
RNAs (for further examples see Supplementary Material).

ConStruct predicts conserved secondary but not tertiary
structure because neither the backtrack in step V nor the basic
RNAfoldare able to handle tertiary interactions. This limitation
might be overcome by using an energy minimization algorithm
that takes into account pseudoknot or other loop–loop interactions
[like those published recently by Stormo’s (59) and Eddy’s
(60) groups]; as a consequence, however, the CPU and storage
demand would increase toM × N6 andM × N4, respectively,

which would make a tool likeConStructnon-operable on
todays workstations. An alternative would be to use a heuris
algorithm that allows for prediction of tertiary structure, fo
example those from Pleij’s group (61–63).

SUPPLEMENTARY MATERIAL

See Supplementary Material available in NAR Online.
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