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A recent theoretical emphasis on complex interactions within
neural systems underlying consciousness has been accompanied by
proposals for the quantitative characterization of these interac-
tions. In this article, we distinguish key aspects of consciousness
that are amenable to quantitative measurement from those that
are not. We carry out a formal analysis of the strengths and
limitations of three quantitative measures of dynamical complexity
in the neural systems underlying consciousness: neural complexity,
information integration, and causal density. We find that no single
measure fully captures the multidimensional complexity of these
systems, and all of these measures have practical limitations. Our
analysis suggests guidelines for the specification of alternative
measures which, in combination, may improve the quantitative
characterization of conscious neural systems. Given that some
aspects of consciousness are likely to resist quantification alto-
gether, we conclude that a satisfactory theory is likely to be one
that combines both qualitative and quantitative elements.

complexity | differentiation | dynamic core | integration

Any scientific study of consciousness is based on the premise
that phenomenal experience is entailed by neuronal activity
in the brain. Given this premise, an adequate theory of con-
sciousness must be consistent with physics and with evolutionary
principles. Nonphysical or dualistic forces or processes must be
excluded, and neural mechanisms of consciousness must emerge
ontogenetically and provide adaptive advantage to a species via
the ongoing exchange of signals among brains, bodies, and
environments. Ideally, a theory of consciousness should propose
neural mechanisms that account for its various features, which
range from the multimodal characteristics of conscious scenes to
the emergence of a first-person perspective (1, 2). An adequate
theory should also consider whether certain of these features are
susceptible to a quantitative analysis. In this regard, a funda-
mental property of conscious scenes is that they are both
differentiated (reflecting the discriminatory capability of con-
sciousness; i.e., every conscious scene is one among a vast
repertoire of different possible conscious scenes) and also
integrated (reflecting the unity of conscious experience; every
conscious scene is experienced “all of a piece”) (1, 3). In this
article, we summarize a theoretical framework (1) provided by
the theory of neuronal group selection (TNGS), which is con-
sistent with these requirements (1, 4-6). We then extend this
framework by considering the strengths and limitations of
several formal measures that have been proposed to characterize
the balance between differentiation and integration in the
complex neuronal dynamics responsible for consciousness (1, 3,
7). We refer to this balance as the “relevant complexity” of the
system.

According to the TNGS, the brain is a selectional system and
not an instructional system like a computer. During the devel-
opment and behavior of an organism, vast numbers of variant
neuronal circuits are generated. These constitute complex rep-
ertoires from which circuits shaped by the constraints of value
systems are selected to assure adaptive behavior of the organism.
In this context, “value” refers to the positive or negative salience
of an event for the organism, as determined by evolution and
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learning. Value is mediated by diffuse ascending neural path-
ways originating, for example, in dopaminergic, catecholamin-
ergic, and cholinergic brainstem nuclei. Spatiotemporal coordi-
nation of the neural activity underlying these selectional events
is achieved mainly by a process of reentry. Reentry is the
dynamic recursive exchange of signals across massively parallel
axonal systems that reciprocally link maps and nuclei in the brain.

The TNGS proposes that consciousness is entailed by exten-
sive reentrant interactions among neuronal populations in the
thalamocortical system, the so-called dynamic core (1, 3, 7-10).
These interactions, which support high-dimensional discrimina-
tions among states of the dynamic core, confer selective advan-
tages on the organisms possessing them by linking current
perceptual categorization to value-dependent memory. The high
dimensionality of these discriminations is proposed to be a direct
consequence of the rich complexity of the participating neural
repertoires. A key claim of the TNGS is that conscious qualia are
these high-dimensional discriminations (1, 9). Just as conscious
scenes are both differentiated and integrated at the phenomenal
level to yield high-dimensional discriminations, so too are the
reentrant dynamics of their underlying neural mechanisms dif-
ferentiated and integrated. Useful measures of the relevant
complexity of the neural systems underlying consciousness
should therefore reflect this dynamic balance in the activity of
the dynamic core.

To be useful, a quantitative measure should satisfy several
constraints. Inasmuch as conscious experience is engendered by
physical neuronal operations within the brain, a suitable measure
should reflect the fact that consciousness is a dynamic process
(11), not a thing or a capacity. This point is particularly important
in light of the observation that conscious systems are embodied
and bodies are embedded in and act within environments.
Conscious scenes arise ultimately from transactions between
organisms and environments, and these transactions are funda-
mentally processes. This characterization does not, however,
exclude “off-line” conscious scenes, for example those experi-
enced during dreaming, reverie, abstract thought, planning, or
imagery. A suitable measure should also take account of causal
interactions within a neural system and between a neural system
and its surroundings, i.e., bodies and environments. Finally, to be
of practical use, a suitable measure should also be computable
for systems composed of large numbers of neuronal elements.

The ability to assess quantifiable aspects of consciousness at
the neural level without first-person report would be useful for
the assessment of depth of anesthesia (12) as well as in the
analysis of various neurological and psychiatric disorders (13).
Application of quantitative measures may also contribute to
comparative studies of consciousness. The attribution of con-
scious states to non-human animals is made difficult by their
inability verbally to report the contents of their putative con-
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Table 1. Thirteen features of consciousness that require
theoretical explanation

1 Consciousness is accompanied by irregular, low-amplitude, fast
(12-70 Hz) electrical brain activity.
2 Consciousness is associated with activity within the

thalamocortical complex (the “dynamic core”), which is
modulated by activity in subcortical areas.

3 Consciousness involves distributed cortical activity related to
conscious contents.

4 Conscious scenes are unitary.

5 Conscious scenes occur serially; only one conscious scene is
experienced at a time.

6 Conscious scenes are metastable and reflect rapidly adaptive

discriminations in perception and memory. According to the
TNGS, qualia are the discriminations entailed by the
underlying neural activity.

7 Conscious scenes comprise a wide multimodal range of
contents and involve multimodal sensory binding.
8 Conscious scenes have a focus/fringe structure; focal conscious
contents are modulated by attention.
9 Consciousness is subjective and private and is often attributed
to an experiencing “self.”
10 Conscious experience is reportable by humans, verbally and
nonverbally.
1 Consciousness accompanies various forms of learning. Even

implicit learning initially requires consciousness of stimuli
from which regularities are unconsciously developed.

12 Conscious scenes have an allocentric character. They show
intentionality, yet are shaped by egocentric frameworks.
13 Consciousness is a necessary aspect of decision making and

adaptive planning.

Items 1-6 are in one degree or another susceptible to characterization by
quantitative measurement. Items 7-13 are more readily understood through
logical and qualitative analyses.

sciousness (14). A quantitative measure of relevant complexity
might provide one criterion for assessing the relative degree of
consciousness in such non-human animals (15).

Obviously, the quantitative characterization of relevant com-
plexity can only constitute one aspect of a scientific theory of
consciousness. This observation holds at both the neural level
and the level of phenomenal experience. At the neural level, no
single measure could adequately describe the complexity of the
underlying brain system (this would be akin, for example, to
claiming that the complex state of the economy could be
described by the gross domestic product alone). At the phenom-
enal level, conscious scenes have many diverse features (1, 14),
several of which do not appear to be quantifiable by a single
measure (see Table 1). These features include subjectivity, the
attribution of conscious experience to a self, and intentionality,
which reflects the observation that consciousness is largely about
events and objects. A critical issue nevertheless remains: how can
measurable aspects of the neural underpinnings of consciousness
be characterized?

Measuring Relevant Complexity

In this article, we critically examine three proposed measures of
the relevant complexity of conscious neural systems: neural
complexity, Cy; information integration, ®; and a new measure,
causal density, cd (16—19). To our knowledge, these are the only
extant measures that explicitly attempt to quantify the balance
between integration and differentiation exhibited by a neural
system. Although these and related measures might also be
applicable to nonneural systems, we are concerned in the main
with neural systems only. In our analysis of these measures, we
investigate how well the constraints of process-orientation, cau-
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sality, and computability are satisfied. We exclude from detailed
consideration properties of neuronal dynamics, such as syn-
chrony (20), for which explicit measures that can be associated
with relevant complexity have not been proposed. Moreover, we
do not consider several theoretical perspectives that share many
common features with the dynamic core hypothesis (1) but which
are not explicitly concerned with quantitative measures of
complex dynamics. They include the notions of “coalitions” of
neurons (21), global negatively entropic brain states (22), the
“global workspace” (23), and association of perceptual events
with the coalescence of a “macroscopic pool” of mesoscopic
“wave packets” of neural activity (24).

Neural Complexity. Neural complexity expresses the extent to
which a system is both dynamically segregated, so that small
subsets of the system tend to behave independently, and dynam-
ically integrated, so that large subsets of the system tend to
behave coherently (3, 7, 16). A practical algorithm for the
computation of neural complexity is provided in ref. 16; see also
Neural Complexity in Supporting Text, which is published as
supporting information on the PNAS web site. In brief, the
neural complexity, Cy, of a system X composed of n elements is
equal to the sum of the average mutual information across all
bipartitions of the system (16). The mutual information between
two subsets A and B, defined by a single bipartition, measures the
uncertainty about A that is accounted for by the state of B. It is
calculated as MI(4;B) = H(A) + H(B) — H(AB), where H is the
informational entropy, i.e., the overall degree of statistical
independence. Under Gaussian assumptions, the entropy of the
system, H(X), or the entropy of any subset of the system, can be
calculated analytically from the covariance matrix COV(X)
relating the responses of the elements of the system.

The covariance matrix COV(X) can in turn be calculated
analytically from the system’s connectivity matrix Cj(X), assum-
ing linear system dynamics and activation of network elements
by uncorrelated noise (16). Alternatively, COV(X) can be de-
rived empirically on the basis of the recorded activity of a
network over a specific time period. In this case, Cy reflects the
explicit exchange of signals that takes place either within the
isolated system or in a behaving system during interaction with
an external environment as an embedded and embodied neural
network (25). The concept of neural complexity has been
extended to characterize the selectional responses of neural
systems to inputs in terms of “matching” complexity, which is
calculated as the total neural complexity of a neural system X
when the input is present, minus the intrinsic complexity of X
and minus the complexity that is directly attributable to the
input (26).

Precise calculation of Cy requires the evaluation of mutual
information across all possible bipartitions, which can become
computationally prohibitive for large systems. There is, however,
a tractable approximation to Cy, which, instead of considering
all possible bipartitions of a system, considers only those that
divide the system into sets comprising one single element and all
of the remaining elements (see ref. 27 and Neural Complexity in
Supporting Text). A disadvantage of Cy and its approximation is
that they do not reflect causal interactions because Cy is based
on mutual information, which is a symmetric quantity.

Information Integration, ®. This measure has been proposed as a
way to quantify the total amount of information that a conscious
system can integrate (18). The theory in which ® is proposed as
the central element, the information integration theory of
consciousness (18), makes the claim that consciousness corre-
sponds to the capacity of a system to integrate information and
that @ measures this capacity: “experience, that is, information
integration, is a fundamental quantity, just as mass, charge, or
energy are. It follows that any physical system has subjective
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experience to the extent that it is capable of integrating infor-
mation” (18). ® is defined in (18) as the “effective information”
across the informational “weakest link” of a system, the so-called
“minimum information bipartition” (see refs. 17 and 18 and
Information Integration in Supporting Text). Effective informa-
tion is calculated as the mutual information across a partition in
the case where outputs from one subset have maximum entropy,
and the minimum information bipartition is that partition of the
system for which the effective information is lowest.

Inasmuch as ® was explicitly formulated to measure con-
sciousness as a capacity as opposed to a process, two features are
critical: (i) determining ® depends on replacing the outputs of
all possible subsets of a system with uncorrelated noise, so that
each set of outputs has maximum entropy (i.e., reflecting all
possible activity patterns), and (if) the effective information
across the majority of partitions is significant only insofar as it
helps determine which partition is the minimum information
bipartition; the value of ® depends only on the effective infor-
mation across the minimum information bipartition. The focus
on capacity leads to the counterintuitive prediction (18) that a
brain with a high value of ® but displaying no activity at all would
be conscious.

Unlike Cy, ® reflects causal interactions because @ is based
on effective information, which is a directional version of mutual
information that relies on the replacement of the outputs of
different subsets of the studied system with maximum entropy
signals. However, ® cannot be measured for any nontrivial
real-world system, for two reasons. First, it is infeasible to replace
the outputs of arbitrary subsets of complex real neural systems
with uncorrelated noise. Second, the evaluation of ® requires the
calculation of effective information across each bipartition of a
system, and there is a factorial growth in the number of partitions
that must be examined as the size of the network increases, i.e.,
as with Cy, the number of partitions grows approximately as n”
for networks of size n. Although the possibility of confronting
this issue has been discussed (17), absent an effective approxi-
mation, the evaluation of ® is computationally infeasible for
large networks.

In contrast to neural complexity Cy and causal density cd (19),
@ has been proposed as an adequate measure of the “quantity
of consciousness” generated by a system, such that systems with
sufficiently high values of ® would necessarily be conscious (18).
It is therefore critical for the information integration theory of
consciousness that high values of ® should not be obtained from
arbitrary nonconscious systems. However, we here show analyt-
ically that, even for a trivially simple network, ® may grow
without bound as a function of network size.

Consider a fully connected Hopfield-type network (28) with
synaptic weights from the j-th neuron (j = 1, .. ., n) to the i-th
neuron (i = 1, .. ., n) defined by C;; = 2/, so that network activity
is updated according to:

S -1 ifx<0
xi(t+1)= > 2f(x;(t)), where f(x) = {+1 ifz ; 0}, [1]
j=1

and where each variable x;(¢) describes the (integer value) state
of the i-th neuron at time ¢. Consider now a (k, n—k) bipartition,
A|B, of the network, i.e., a subset 4 with k neurons and a subset
B with n—k neurons. The effective information EI(4 — B) is
given by EI(4 — B) = H(A) + H(B) — H(AB) under conditions
in which outputs from A4 are replaced by uncorrelated noise, as
specified by the definition of ® (18). As we show in detail
in Information Integration in Supporting Text, for the network in
Eq. 1:

EI(4 — B) = k bits. [2]
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Similarly, EI(B — A) is equal to n—k bits, which implies that:
EI(4 < B) = EI(4 —B) + EI(B >A) = n bits.  [3]

Because Eq. 3 does not depend on k, the effective information
across every bipartition is the same. It is easy to check that the
effective information across every bipartition of a subset of m
neurons (m < n) is equal to m (see Information Integration in
Supporting Text). Therefore, the information integration value
for the complete network is given by:

@ = n bits. [4]

The above result implies that for any value of ® associated with
a presumably conscious neural system, there exists a simple
Hopfield-type network that has an equivalent or greater ®,
which leads, by a key assumption of the information integration
theory of consciousness (18), to the conclusion that this network
is conscious.

Given this assumption (18), it also seems critical for the
applicability of the information integration theory of conscious-
ness that any measured value of ® not be dependent on arbitrary
choices made by an observer. However, any quantitative mea-
sure of relevant complexity, including Cy, ®, and cd, will vary
according to the variables chosen to characterize the system.
With regard to both ® and Cy, any measured value involves the
calculation of informational entropy, which requires the identi-
fication of a repertoire of states to which probabilities of
occurrence can be assigned. For complex neural systems, the
identification of such a repertoire depends on arbitrary choices
for the reason that such systems can be described by many
different variables, such as transmembrane potentials, action
potentials, and local field potentials. The repertoire of states
corresponding to each variable or to any combination of vari-
ables will, in general, be different, and therefore, the corre-
sponding values for entropy will also be different. Furthermore,
the variables describing complex neural systems are usually
continuous (even an action potential is a continuous event if the
voltage spike is plotted on a submillisecond time scale), which
implies a further dependency on the observer in the specification
of the units in which a given variable is measured. As with the
choice of variables, this dependency on measurement units
applies equally to Cy, @, and cd. In Information Integration in
Supporting Text, we show that a simple continuous system
consisting of two coupled oscillators can generate an arbitrary,
even infinite, value for ® depending on the measurement units
selected by the observer.

Causal Density. A balance between dynamical integration and
differentiation is likely to involve dense networks of causal
interactions among neuronal elements. Causal density, cd, is a
measure of causal interactivity that captures dynamical hetero-
geneity among network elements (differentiation) as well as
their global dynamical integration (see ref. 19 and Causal Density
in Supporting Text). Specifically, cd is a measure of the fraction
of interactions among neuronal elements that are causally
significant. It can be calculated by applying “Granger causality”
(29), a statistical concept of causality that is based on prediction:
If a signal x; causes a signal x,, then past values of x; should
contain information that helps predict x, above and beyond the
information contained in past values of x, alone. In practice,
Granger causality can be tested in the context of multivariate
linear regression models relating the activities of the elements of
the system (30).

To illustrate Granger causality, suppose that the temporal
dynamics of two time series, x1(¢) and x»(¢) (both of length 7)), can
be described by a bivariate autoregressive model:
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x(t) = EAll,jxl(t -Jj)+ EAlz,sz(f —J) T Eqt)
j=1 j=1

xo(t) = 2A21,jxl(t —j)+ EAzz,sz(t —J) T Ext), [5]

j=1 j=1

where p is the maximum number of lagged observations included
in the model (the model order, p < T), the matrix 4 contains the
coefficients of the model [i.e., the contributions of each lagged
observation to the predicted values of x;(¢) and x,(¢)] and E; and
E, are the residuals (prediction errors) for each time series. If the
variance of E; (or E») is reduced by the inclusion of the x, (or xy)
terms in the first (or second) equation, then it is said that x, (or
x1) “Granger-causes” x; (or x2). In other words, x, Granger-
causes x; if the coefficients in A, are jointly significantly
different from zero. This relationship can be tested by perform-
ing an F test of the null hypothesis that 4, = 0, given
assumptions of covariance stationarity on x; and x,. The mag-
nitude of a Granger causality interaction can be estimated by the
logarithm of the corresponding F statistic (31). For present
purposes, it is important to note that this concept can be readily
extended to the n variable case, where n > 2, by estimating an
n variable autoregressive model. In this case, x, Granger-causes
x; if lagged observations of x, help predict x; when lagged
observations of all other variables x3, . . ., x,, are also taken into
account.

Following a Granger causality analysis, the causal density of a
system can be calculated as:

cd =a/nn — 1), [6]

where a is the total number of significant causal interactions and
n(n — 1) is the total number of directed edges in a fully con-
nected network with » nodes, excluding self-connections. High
causal density indicates that elements within a system are both
globally coordinated in their activity (to be useful for predicting
each other’s activity) and at the same time dynamically distinct
(reflecting the fact that different elements contribute in differ-
ent ways to these predictions).

Causal density is inherently a measure of process. It cannot be
inferred from network anatomy alone but must be calculated on
the basis of explicit time series representing the dynamic activ-
ities of network elements. Because causal density is based on a
well established statistical interpretation of causality, it incor-
porates causal interactions by design. We emphasize that the
value of cd for a system depends on all causal interactions within
the system and not just on those interactions across a single
bipartition, as is the case for ®.

A practical problem with the determination of causal density
is that multivariate regression models become difficult to esti-
mate accurately as the number of variables (i.e., network ele-
ments) increases. For a network of n elements, the total number
of parameters in the corresponding multivariate model grows as
pn?, and the number of parameters to be estimated for any single
time series grows linearly (as pn), where p is the model order (see
Eq. 5). We note that these dependencies are much lower than the
factorial dependency associated with ® and Cy and therefore
may be more readily circumvented. One possible approach may
involve the use of Bayesian methods for limiting the number of
model parameters via the introduction of prior constraints on
significant interactions (32). In neural systems, such prior con-
straints may be derived, for example, on the basis of known
neuroanatomy or by anatomically based clustering procedures.

From the above analyses, we conclude that although existing
formal measures may have heuristic value in highlighting the
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need to characterize differentiation and integration in the
dynamic core, they remain inadequate in varying degrees. Cy can
reflect process, can be computed for large systems in approxi-
mation, but does not capture causal interactions. ® captures
causal interactions, but is a measure of capacity not process, is
infeasible to compute in neural systems of nontrivial size, and
can be shown to grow without bound even for certain simple
networks. cd reflects all causal interactions within a system and
is explicitly a measure of process, but it also may be difficult to
compute for large systems.

The existence of quantitative measures of relevant complexity,
however preliminary they may be, raises the important issue of
identifying the ranges of values that would be consistent with
consciousness. As we have mentioned, all of the measures
analyzed above are necessarily based on an exogenously selected
repertoire of variables and of units of measurement for these
variables. This dependency emphasizes the requirement that any
proposed quantitative measure of consciousness be embedded in
a qualitative brain theory to justify and inform such exogenous
selections. These selections having been made, it may then
become possible to define a measurement scale (33) for a
proposed measure of relevant complexity by establishing a value
for a known conscious system (for example, an awake human)
and a value for a known nonconscious system (for example, the
same human during dreamless sleep).

Dimensions of Relevant Complexity

In addition to analyzing whether a proposed measure satisfies
the constraints of process-orientation, causality, and computa-
bility, it is important to consider further whether any one
measure could be sufficient to assess the relevant complexity of
a conscious neural system. We suggest that characterizing the
relevant complexity of such a system will require a multidimen-
sional analysis of transactions within the thalamocortical core.
Such a multidimensional analysis is in turn likely to require the
simultaneous application of multiple formal measures. For
example, we can identify three distinct dimensions along which
the relevant complexity of a conscious neural system is likely to
vary: spatial complexity, temporal complexity, and recursive
complexity. The salience of these dimensions can be seen, as
described below, by their correspondence to aspects of phenom-
enal experience. Although reference to these dimensions may
not fully exhaust the relevant complexity of any conscious neural
system, they may provide guidelines for the development of
useful quantitative measures.

Before describing further the above dimensions of relevant
complexity, it is important to distinguish the space incorporating
these dimensions from the proposed concept of a multidimen-
sional “qualia space” (3). Qualia space is a high-dimensional
space in which the axes reflect dimensions on which phenome-
nally experienced conscious scenes are discriminated (e.g., color,
shape, smell, touch, proprioception, etc.). The concept of qualia
space reflects the observation that conscious scenes consist of
enormously informative discriminations among a vast repertoire
of possible experiences. By contrast, the dimensions along which
relevant complexity can be measured reflect the activity of the
physical machinery, mainly in the dynamic core, which entails
these phenomenal discriminations. Therefore, although each
dimension of relevant complexity bears on aspects of phenom-
enal experience, there is no necessary one-to-one correspon-
dence between dimensions of relevant complexity and dimen-
sions of qualia space.

Spatial complexity reflects the balance between integration
and differentiation in the spatial domain. Not surprisingly,
existing measures of relevant complexity, such as Cy, ®, and cd,
have focused largely on spatial complexity. The spatial structure
of a conscious scene, which is most salient in the visual modality,
is both unified into a Gestalt and differentiated into individual
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features. At the neural level, it is well established that different
brain regions are specialized for different functions and that the
activities of these diverse regions must be globally coordinated
to yield coherent behavior. Thus, any theory of consciousness
that involves interactions among spatially distributed and func-
tionally segregated brain regions immediately faces the task of
characterizing spatial complexity.

Temporal complexity reflects the fact that consciousness
extends over time in several ways. For example, consciousness is
associated with the ordering of events into complex temporal
sequences. Musical and linguistic phrases, which require con-
sciousness for their full apprehension, are prototypical examples
of complex temporal sequences that cannot be reduced to simple
associative chains (34, 35). Other examples include the construc-
tion of an internal historical narrative based on episodic mem-
ories and the projection of such a narrative into a conditional
future (8). Conscious effort also appears to be required for the
initial learning of complex motor sequences (36), a notion
supported by neuroimaging studies showing widespread cortical
activation during early learning compared with activation during
expression of learned behavior (37-39).

Consciousness itself involves the generation of a subjective
“now” or “remembered present” (8). Empirical studies suggest
that it takes ~100 ms for sensory stimuli to be incorporated into
a conscious scene (40) and that neuronal “readiness potentials”
can appear several hundred milliseconds before reportable
awareness of intentions to act (41). Moreover, conscious scenes
subjectively attributed to a particular time can be influenced by
physical events happening after this time (42). In general, the
generation of each conscious scene involves the integration of
ongoing signals reflecting sensation and intention with those
reflecting a past history of value-dependent categorization,
learning, and memory.

The above observations are consistent with the notion that
conscious experiences are both differentiated over time (each
temporal component is distinct) and integrated over time (time
is experienced as a continuum, stretching from a definite past
toward an indeterminate future). Temporal complexity, there-
fore, parallels spatial complexity in reflecting the balance be-
tween differentiation and integration, but in the temporal do-
main. Accordingly, with suitable modification, some measures of
spatial complexity may also be applicable in the temporal
domain.

The notion of recursive complexity refers to the balance
between differentiation and integration across different levels of
description within a system. At the neural level, brains exhibit
rich organization at multiple levels of description, ranging from
molecular interactions within individual synapses, to the dynam-
ics of cortical microcircuits, to reentrant interactions among
functionally segregated brain regions. The phenomenal structure
of consciousness also appears to be recursive; for example, the
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individual features of conscious scenes are themselves Gestalts
and must therefore share organizational properties with the
conscious scene as a whole.

Recursive complexity is related to modular and hierarchical
structures within networks. Within brains, modular and hierar-
chical organization reflects constraints on the genetic encoding
of brain development (43) as well as anatomical constraints such
as the optimization of axonal lengths (44). Hierarchical organi-
zation may also serve functional roles, for example, in the
adaptive distribution of reentrant signals (45) and in providing
robustness of responses to perturbations (46). Hierarchical and
compositional structures may also relate to recursive relations at
the phenomenal level. An example is seen in the interactions of
heterogeneous elements to form new combinations in which
whole categories of things or sequences of events can be treated
as single elements in a higher-level construction based on
selection. This property of compositionality has been most
widely discussed in contexts concerned with syntactical charac-
teristics of human language and logical symbol systems (47, 48).

The various dimensions of relevant complexity discussed here
require different strategies for their quantitative characteriza-
tion. Although we have considered several presently available
candidate measures of the balance between differentiation and
integration in the spatial domain, measures appropriate for the
analysis of neural systems in the temporal (49, 50) and recursive
domain remain to be adequately specified.

Summary

Given that consciousness is a rich biological phenomenon, a
satisfactory neural theory of consciousness must avoid reduc-
tionistic excess. Excessive reductionism (51) can be revealed by
improper reification, for example by converting a dynamic
process into a static entity. It may propose the arbitrary agglom-
eration of different aspects of a system into a single common
character, and it may involve the improper quantification of such
an arbitrarily chosen character. According to these criteria, any
theory that identifies consciousness with a single measure is
likely to be excessively reductionistic and, as a result, limited in
its scope. We suggest that the development and simultaneous
application of multiple quantitative measures would more ap-
propriately characterize the relevant complexity of the neural
systems underlying consciousness. Even so, some aspects of
consciousness are likely to resist quantification altogether. An
adequate theory is therefore likely to be one that consists of a
combination of qualitative and quantitative elements. The
TNGS has been proposed with this in mind. It will be greatly
enhanced when practically calculable multidimensional mea-
sures of relevant complexity are formulated.

We thank Drs. John Iversen, Joseph Gally, Luis Bettencourt, Robert
Kozma, and Botond Szmatary for useful discussions. Financial support
was provided by the Neurosciences Research Foundation.

13. Laureys, S. (2005) in Progress in Brain Research (Elsevier Science, London),
Vol. 150.

14. Seth, A. K., Baars, B. J. & Edelman, D. B. (2005) Consciousness Cognit. 14,
119-139.

15. Edelman, D. B., Baars, B. J. & Seth, A. K. (2005) Consciousness Cognit. 14,
169-187.

16. Tononi, G., Sporns, O. & Edelman, G. M. (1994) Proc. Natl. Acad. Sci. USA
91, 5033-5037.

17. Tononi, G. & Sporns, O. (2003) BMC Neurosci. 4, 31.

18. Tononi, G. (2004) BMC Neurosci 5, 42.

19. Seth, A. K. (2005) Network: Computation in Neural Systems 16, 35-55.

20. Engel, A. K. & Singer, W. (2001) Trends Cognit. Sci. 5, 16-25.

21. Crick, F. & Koch, C. (2003) Nat. Neurosci. 6, 119-126.

22. John, E. R. (2001) Consciousness Cognit. 10, 184-213.

23. Baars, B.J. (1988) A Cognitive Theory of Consciousness (Cambridge Univ. Press,
New York).

24. Freeman, W. J. (2003) J. Integr. Neurosci. 2, 3-30.

PNAS | July 11,2006 | vol. 103 | no.28 | 10803

NEUROSCIENCE



SINPAS

10804 |

. Seth, A. K. & Edelman, G. M. (2004) Adapt. Behav. 12, 5-20.
. Tononi, G., Sporns, O. & Edelman, G. M. (1996) Proc. Natl. Acad. Sci. USA

93, 3422-3427.

. Tononi, G., Edelman, G. M. & Sporns, O. (1998) Trends Cognit. Sci. 2, 474—484.
. Hopfield, J. J. (1982) Proc. Natl. Acad. Sci. USA 719, 2554-2558.

. Granger, C. W. J. (1969) Econometrica 37, 424—438.

. Hamilton, J. D. (1994) Time Series Analysis (Princeton Univ. Press, Princeton, NJ).
. Geweke, J. (1982) J. Am. Stat. Assoc. 77, 304-313.

. Zellner, A. (1971) An Introduction to Bayesian Inference in Econometrics (Wiley,

New York).

. Stevens, S. S. (1946) Science 103, 677-680.
. Van Valin, R. D. (2001) An Introduction to Syntax (Cambridge Univ. Press,

Cambridge, U.K.).

. Lerdahl, F. & Jackendoff, R. (1983) A Generative Theory of Tonal Music (MIT

Press, Cambridge, MA).

. Schneider, W. & Shiffrin, R. M. (1977) Psychol. Rev. 84, 1-66.
. Jueptner, M., Stephan, K. M., Frith, C. D., Brooks, D. J., Frackowiak, R. S. &

Passingham, R. E. (1997) J. Neurophysiol. 77, 1313-1324.

. Jenkins, I. H., Brooks, D. J., Nixon, P. D., Frackowiak, R. S. & Passingham,

R. E. (1994) J. Neurosci. 14, 3775-3790.

www.pnas.org/cgi/doi/10.1073/pnas.0604347103

39.
40.

41.
. Bachmann, T. (1993) Psychophysiology of Visual Masking (Nova Science,

43
44,

45.

46.
47.

48.
49.

50.
51

Haier, R. J,, Siegel, B. V., Jr., MacLachlan, A., Soderling, E., Lottenberg, S. &
Buchsbaum, M. S. (1992) Brain Res. 570, 134-143.

Libet, B., Alberts, W. W., Wright, E. W., Jr., & Feinstein, B. (1967) Science 158,
1597-1600.

Libet, B. (1982) Hum. Neurobiol. 1, 235-242.

Commack, NY).

Geary, D. C. & Huffman, K. J. (2002) Psychol. Bull. 128, 667-698.
Chklovskii, D. B., Schikorski, T. & Stevens, C. F. (2002) Neuron 34,
341-347.

Seth, A. K., McKinstry, J. L., Edelman, G. M. & Krichmar, J. L. (2004) Cereb.
Cortex 14, 1185-1199.

Variano, E. A., McCoy, J. H. & Lipson, H. (2004) Phys. Rev. Lett. 92, 187701.
Pinker, S. (1994) The Language Instinct: How the Mind Creates Language
(William Morrow, New York).

Fodor, J. A. & Pylyshyn, Z. (1998) in Connections and Symbols, eds. Pinker, S.
& Mehler, J. (MIT Press, Cambridge, MA).

Costa, M., Goldberger, A. L. & Peng, C. K. (2002) Phys. Rev. Lett. 89, 068102.
Rajkovic, M. (2004) Phys. A (Amsterdam, Neth.) 340, 327-333.

Rose, S. (1997) Lifelines: Biology, Freedom, Determinism (Penguin, New York).

Seth et al.



