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Introduction

Neurotensin (NT) is a 13-amino-acid peptide originally iso-
lated in 1973 from bovine hypothalami.1 This neuropeptide is
found in the central nervous system (CNS), as well as in the
gastrointestinal tract. However, this review will focus on the
CNS effects of NT. Like many other neuropeptides, NT acts
as a neuromodulator in the nervous system where the close
association between NT and dopamine (DA) systems has
been well documented (for review, see Binder et al2). The
neuromodulation of DA transmission by NT raises the possi-
bility that the neurotensinergic system could be implicated in
diseases where the common determinant is a deregulation of
DAergic transmission, such as schizophrenia, drug abuse and
Parkinson’s disease.2 In this review, we will attempt to pro-
vide a summary of current knowledge about NT with special
emphasis on the evidence suggesting its implication in CNS
diseases.

Biosynthesis, maturation, release and degradation 
of NT

Like all neuropeptides, NT is synthesized as part of a larger
inactive precursor that also contains neuromedin N (NN), a 6-
amino-acid NT-related peptide.3,4 In the rat, the NT/NN pre-
cursor consists of 169 amino acid residues4 containing 4 pairs
of dibasic residues (Lys-Arg). The endoproteolytic processing
of this precursor at pairs of basic residues is mediated by
members of the prohormone convertase (PC) family.5 The ma-
jor PC involved in this process in the brain is likely to be PC2,
because its expression colocalizes with all regions immunore-
active for NT.6,7 Although expression of PC1 and PC5A in the
brain is more limited, these endoproteolytic enzymes also
have the capacity to process the NT/NN precursor6,8,9 and
could contribute to the regional differences observed in the
relative proportions of NT and NN among brain structures.10

Once processed as an active peptide, NT is stored in dense-
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The peptide neurotensin has been studied for more than 30 years. Although it is widely distributed in the central and peripheral nervous
systems, neurotensin has been more intensely studied with regard to its interactions with the central dopamine system. A number of
claims have been made regarding its possible implication in many diseases of the central nervous system, including schizophrenia. In
this review, we describe briefly the basic biology of this neuropeptide, and then we consider the strengths and the weaknesses of the
data that suggest a role for neurotensin in schizophrenia, drug abuse, Parkinson’s disease, pain, central control of blood pressure, eating
disorders, cancer, neurodegenerative disorders and inflammation.

Le peptide neurotensine est l’objet d’études depuis plus de 30 ans. La neurotensine est largement distribuée dans les systèmes nerveux
central et périphérique, mais ses interactions avec le système de neurotransmission dopaminergique central ont été les plus étudiées.
On a formulé plusieurs suggestions quant à son intervention dans diverses maladies du système nerveux central, telles que la schizo-
phrénie. Dans cette revue de la littérature, nous débutons par une brève description de la biologie de ce neuropeptide, puis nous exa-
minons les forces et les faiblesses des données relatives aux implications de la neurotensine dans la schizophrénie, la dépendance aux
drogues, la maladie de Parkinson, la douleur, le contrôle central de la pression artérielle, les troubles de l’alimentation, le cancer, les
maladies neurodégénératives et l’inflammation.
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core vesicles11,12 and released in a calcium-dependent
manner.13–15 NT transmission is terminated primarily by
cleavage of NT in the C-terminal hexapeptide sequence that
accounts for the biological activity of the peptide.16 Several
endopeptidases belonging to the family of metallopeptidases
have also been shown to contribute to the physiological inac-
tivation of NT, such as neutral endopeptidase 24.11
(EC3.4.24.11),17 angiotensin-converting enzyme,18 endopepti-
dase 24.15 (EC3.4.24.15)19 and endopeptidase 24.16
(EC3.4.24.16).20 However, endopeptidase 24.16 is considered
the main endopeptidase contributor to the inactivation of NT,
because it is expressed ubiquitously.21–23

NT localization in the CNS

NT-producing neurons and their projections are widely distrib-
uted in the CNS, which explains the wide range of effects of
this peptide. In the rat brain, a number of NT-containing neural
circuits have been suggested (Fig. 1): (1) from cells in the central
nucleus of the amygdala to the bed of the stria terminalis,24 to
the substantia nigra pars compacta,25 to the substantia nigra
pars reticulata,26 to the ventromedial nucleus of the hypothala-
mus;27 (2) from the hippocampus projecting through the cingu-
late cortex to the frontal cortex;28 (3) from the arcuate and
paraventricular nuclei of the hypothalamus to the neuro-
intermediate lobe of the pituitary gland;29 (4) from cells in the
ventral tegmental area (VTA) to the nucleus accumbens, the di-
agonal band of Broca, the prefrontal cortex and the amyg-
dala;30,31 (5) from cells in the endopyriform nucleus and prepyri-
form cortex to the anterior olfactory nucleus, the nucleus of the

diagonal band of Broca and the dorsomedial thalamic nu-
cleus;32,33 (6) from cells in the periaqueductal grey matter (PAG),
the parabrachial nucleus and the nucleus of the solitary tract to
the nucleus raphe magnus;34 (7) from cells in the preoptic region
and the rostral part of the lateral hypothalamus, the rostral part
of the lateral septum, the bed nucleus of the stria terminalis, the
ventromedial ventral pallidum, the dorsal raphe nucleus and
the diagonal band of Broca to the VTA;35 (8) from the subiculum
to the mammillary bodies;36 (9) from the dorsal lateral portion
of the bed nucleus of the stria terminalis to the parabrachial nu-
cleus;37 (10) from the striatum to the substantia nigra pars retic-
ulata;38 and (11) from the central nucleus of the amygdala and
the bed nucleus of the stria terminalis to the retrorubral field.39

In addition to neurotensinergic pathways to and from the VTA,
high concentrations of NT have also been observed in regions
associated with DAergic projections, such as the caudate nu-
cleus, globus pallidus and putamen40,41 (for a review, see Binder
et al2). At the spinal cord level, NT-containing cells have been
found in the substantia gelatinosa.41

Pharmacology of NT receptors

Both central and peripheral actions of NT depend on recogni-
tion of the peptide by specific receptors at the plasma mem-
brane of target cells. Three different NT receptors, referred to
as NTS1, NTS2 and NTS3/sortilin, have been cloned so far42

(for review, see Hermans and Maloteaux43 and Mazella44).
NTS1 and NTS2 belong to the G-protein-coupled receptor su-
perfamily45–48 and were initially distinguished pharmacologi-
cally on the basis of their affinities for NT and their differen-
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Fig. 1: Sagittal representation of neurotensinergic pathways in the rodent brain. BST = bed nucleus of the stria terminalis; dBB = diagonal
band of Broca; DR = dorsal raphe nucleus; GP = globus pallidus; hip = hippocampus; hyp = hypothalamus; LS = lateral septum; MB = mamil-
lary bodies; n. solitary tract = nucleus of the solitary tract; PAG = periacqueductal grey; PB = parabrachial nucleus; PFC = prefrontal cortex;
RMg = raphe magnus nucleus; RRF = retrorubral field; SNc = substantia nigra pars compacta; SNr substantia nigra pars reticulata; sub =
subiculum; TD = dorsal thalamic nucleus; VP = ventral pallidum; VTA = ventral tegmental area.
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tial sensitivity to the histamine antagonist levocabastine.49

Indeed, the type 1 NT receptor is often referred to as the
high-affinity binding site (Kd = 0.1–0.3 nmol/L) and is insen-
sitive to levocabastine.49 In rat brain, NTS1 transcripts are lo-
cated primarily in neurons from the septum, substantia nigra,
VTA, zona incerta, suprachiasmatic nucleus, as well as
prefrontal, entorhinal and retrosplenial cortices.50,51 NTS1-
containing nerve terminals were seen by immunohistochemi-
cal studies in the caudate putamen, bed nucleus of the stria
terminalis, olfactory tubercle, as well as the lateral septum,
amygdala, lateral habenula and nucleus accumbens.52,53

NTS1 is functionally coupled to the phospholipase C and
the inositol phosphate (IP) signalling cascade (for review, see
Vincent et al42 and Hermans and Maloteaux43). Other possible
signalling could occur through activation of cyclic guanosine
monophosphate (cGMP), cyclic adenosine monophosphate
(cAMP), arachidonic acid production,54,55 mitogen-activated
protein (MAP) kinase phosphorylation56–58 and inhibition of
Akt activity.59 NTS1 undergoes agonist-dependent internal-
ization when exposed to its natural agonist NT. This phe-
nomenon is well documented in neurons and in NTS1-
expressing cell lines (for review, see Beaudet et al,60 and also
Hermans et al,61 Vandenbulcke et al62 and Nguyen et al63). The
effects mediated by NTS1 are usually blocked by its selective
nonpeptide antagonist SR48692,64 or by the broad-spectrum
antagonist SR142948A65 that recognizes both NTS1 and NTS2.
The generation of mice lacking NTS1 receptors66,67 has al-
lowed the attribution to NTS1 of the hypothermic, impaired
motor coordination and gastrointestinal motility effects of
NT. A role for NTS1 in analgesia has also been suggested,68,69

but this is still controversial.66

The NT type 2 receptor (NTS2) has a lower affinity for NT
(Kd = 3–10 nmol/L) than NTS1 and is sensitive to levocabas-
tine. Unlike its high-affinity counterpart, NTS2 expression is
more diffusely distributed throughout the brain. In the rat
brain, high densities of NTS2 mRNA and protein were detected
in many regions documented to receive a dense neurotensiner-
gic innervation, such as the bed nucleus of the stria terminalis,
olfactory bulb, substantia nigra, VTA and PAG.70–72 However,
some of the highest concentrations of NTS2 receptors were
found in areas devoid of neurotensinergic inputs such as the
cerebral cortex, hippocampus and cerebellum,72 suggesting that
endogenous ligands other than NT may activate this receptor.73

At the cellular level, NTS2 expression was initially detected in
both neurons70,74 and astrocytes,70,75,76 although recent immuno-
staining experiments have reported signal only in neurons
throughout the brain,72 a puzzling observation.

The pharmacological and signalling properties of NTS2 are
still controversial. In particular, it is unclear whether NT acts as
an agonist, inverse agonist or antagonist at this site. Depending
upon the species from which the NTS2 was isolated47 and the
cell system used to evaluate signalling (oocytes, Chinese ham-
ster ovary cells, COS-7 cells and HEK293 cells), different results
have been reported. The only common result is the agonist ac-
tion of SR48692,74,77–80 which was originally described as an an-
tagonist with a higher affinity for NTS1 than NTS2 receptors.64,

In addition, both NT and levocabastine exert a species-
dependent agonist (mouse)47 or antagonist (human) profile.78,79

Indeed, in cell lines expressing human NTS2, SR48692 activated
Ca2+ mobilization or IP formation, whereas both NT and levo-
cabastine antagonized this response. The species-dependent
pharmacological properties of NTS2 could be linked to differ-
ences in the constitutive activity of this ghrelin-family recep-
tor.79,81 The most convincing data supporting an agonist role of
NT at rodent and human NTS2 receptors is the ability of NT to
produce ligand-induced internalization of receptor–ligand
complexes.80,82,83 This internalization of NTS2 is apparently asso-
ciated with activation of extracellular signal–regulated kinases
1/2 (ERK1/2) but not Ca2+ mobilization.83

The type 3 NT receptor (NTS3), which was originally iden-
tified as the intracellular sorting protein sortilin, is unique
among neuropeptide receptors in that it is a single transmem-
brane domain receptor of the type I family.84 NTS3/sortilin,
like NTS1, binds NT with high affinity once converted to its
mature form upon cleavage by furin.85 This receptor is found
in neurons, glia and adipocytes.76,86,87 In the rat brain, regions
expressing both high levels of NTS3/sortilin mRNA and pro-
tein include the piriform cortex, hippocampus, islands of
Calleja, medial and lateral septal nuclei, amygdaloid nuclei,
thalamic nuclei, supraoptic nucleus, substantia nigra and
Purkinje cell layer of the cerebellar cortex.88 NTS3/sortilin has
the ability to bind a variety of other ligands in addition to NT,
such as the receptor-associated protein (RAP)89,90 and lipopro-
tein lipase (LpL).91 It is thus possible that NTS3/sortilin also
subserves non-NT-related functions in the mammalian CNS.
To date, very little is known about the physiological role of
the NTS3/sortilin receptor. The strongest evidence that NTS3
can behave as a true NT receptor lies in the recent demonstra-
tion that this protein may be involved in the NT-induced mi-
gration of human microglial cells via the stimulation of both
MAP and phosphatidylinositol (PI)3-kinase-dependent path-
ways.92 NTS3/sortilin may also be involved in the growth of
certain cancer cell lines93 and in the modulation of NT sig-
nalling via mediation of NT uptake and degradation.86,94,95

In closing, let us mention that a candidate fourth NT recep-
tor has been proposed, although little is currently known
about its physiological relevance. This receptor, named
SorLA/LR11, is, like NTS3, a single transmembrane domain
receptor of the type 1 family.96 In the CNS this receptor is ex-
pressed in neurons,97 but its role in the effects of NT remains
to be determined. It has been suggested that it regulates the
processing of the amyloid precursor protein.98

Major physiological roles of NT in the CNS

In this review, we focus our attention on the roles of NT in the
CNS. However, it is important to point out that this peptide is
also highly expressed peripherally where it acts as a modula-
tor of the gastrointestinal and cardiovascular systems.99–102

Action of NT on the DA system

Neurotensinergic innervation of DAergic neurons

There is strong anatomical evidence for the interaction
between NT and the DAergic system. Midbrain DAergic



neurons located in the VTA, substantia nigra and retrorubral
field are densely innervated by NT-containing axons.35,41 The
origin of the NT plexus that innervates DA neurons is not
fully established, but some of the neurotensinergic input to
the VTA originates from the lateral preoptic area and the ros-
tral part of the lateral hypothalamus.35 The origins of the neu-
rotensinergic fibres innervating the substantia nigra and
retrorubral field remain controversial.

Effect of NT on DAergic neuron firing rate
and DA release

NT increases the firing rate of mesencephalic DAergic neu-
rons and has a depolarizing effect, at least in part via NTS1
activation.103–105 This increase in firing rate is Ca2+-dependent
and requires IP3 receptor activation.106 Because NT modulates
the activity of DAergic neurons, it is thus not surprising that
NT also modulates DA release. NT has been shown to modu-
late DA release from striatal, nucleus accumbens and retinal
slices.107–110 Depending on the experimental model, and the
brain area where it is injected, NT can induce an increase or a
decrease in DA release. Using electrochemical detection and
a carbon fibre electrode, NT, when applied intracerebroven-
tricularly, was found to increase DA levels in the nucleus ac-
cumbens.111 However, using microdialysis, perfusion of NT in
the nucleus accumbens was found to lead to a local decrease
in DA release by a γ-aminobutyric acid-A (GABAA)-receptor-
dependent mechanism.112 Moreover, microdialysis of antibod-
ies against NT in the cerebral ventricles leads to an increase
in DA release in the nucleus accumbens.113 NT could also act
to facilitate DA release in the accumbens by decreasing the
ability of the dopamine D2 receptor (D2R) to mediate presy-
naptic inhibition at DAergic axon terminals.114 Finally, NT in-
jected in the VTA causes an increase in DA release in the nu-
cleus accumbens.115 This is likely to be explained by the
ability of NT to increase the firing rate of DAergic neurons.
However, the possible contribution of a decrease in somato-
dendritic autoreceptor function remains to be evaluated.

Regulation of DA receptor function

In addition to its action on the excitability of DAergic neurons,
NT can also act to regulate the function of DA receptors. In-
deed, there is biochemical and electrophysiological evidence
suggesting an interaction with D2R. First, binding experiments
showed that NT induces a modest decrease in the affinity of
D2R for its agonists.116–119 In-vivo and in-vitro studies showed
that NT increases the dissociation constant (Kd) of D2R with-
out affecting Bmax. These results suggest that the function of
D2R receptors is affected by NT, but the number of functional
receptors remains unchanged.120–124 The interaction between NT
and D2R was also measured by evaluating DA release in the
striatum. Perfusion of NT in this region decreases the ability of
DA agonists to inhibit basal DA levels, an observation that is
compatible with the existence of some functional interaction
between NT and D2R. However, whether this interaction oc-
curs directly on DAergic axon terminals is unclear.125 Modifica-
tion of D2R function by NT was also evaluated electrophysio-

logically. Indeed, patch clamp recordings suggest that NT and
D2R may regulate in an opposing fashion a similar potassium
conductance in DAergic neurons, thus providing a possible ex-
planation for an NT–D2R interaction:126 NT would increase cel-
lular excitability by inhibiting potassium channels, whereas a
D2 agonist would decrease excitability by activating the same
channels. According to such a model, NT would thus simply
prevent the D2 agonist from activating the potassium channels
by independently inhibiting them. However, extracellular
recordings of the firing of midbrain DAergic neurons showed
that NT is able to reduce the inhibitory effect of the D2R ago-
nist, even at concentrations of NT that do not increase fir-
ing.127–129 This observation argues against the idea that the inter-
action depends on the regulation of a common potassium
channel by the 2 receptors.

Action of NT on other neurotransmitter systems

In addition to its widely studied interaction with the DAergic
system, NT also affects other neurotransmitter systems.

Evidence for the effect of NT on cholinergic transmission 

In the CNS, cholinergic neurons are found in the midbrain,
striatum and magnocellular complex of the basal fore-
brain.130,131 There is evidence for the expression of NT receptors
by cholinergic neurons in the basal forebrain and also for neu-
rotensinergic innervation of this structure, suggesting a direct
modulation of these neurons by NT.132–134 Anatomical data also
suggest that some cholinergic neurons may be modulated in-
directly by NT. For example, an indirect modulation of cholin-
ergic neurons is mediated by NT receptors located on DAer-
gic neurons innervating the striatum.135 The effect of NT on
acetylcholine (ACh) release was also studied, and it was
shown that NT increases K+-evoked ACh release in striatal
brain slices.136 However, a contradictory result has been ob-
tained by in-vivo microdialysis in the striatum, where no ef-
fect of NT on ACh release was detected.137 The effect of NT on
ACh release in the cortex also seems to be complex. It was re-
ported that NT depresses ACh release in frontal cortex slices,
has no effect in the occipital cortex and has a potentiating ef-
fect in the parietal cortex.138 Electrophysiological experiments
showed that in cholinergic neurons of the basal forebrain
magnocellular complex, NT produces depolarization and
rhythmic bursting.139–141 The same result has been obtained in
cholinergic neurons of the medial septum and vertical limb of
the diagonal band nuclei.142 NT-induced excitation has been
associated in nucleus basalis of Meynert cholinergic neurons
with a reduction in inwardly rectifying K+ conductances.143

Effect of NT on serotonergic neurotransmission

There are anatomical data suggesting an interaction between
NT and serotonergic neurons. Indeed, neurons of the rostral
part of the raphe synthesize NT, whereas NT receptors are
widely expressed in most of the raphe.72,144–146 Much of the raphe
nuclei also receives significant neurotensinergic innerva-
tion.147,148 There is physiological evidence for the presence of

St-Gelais et al

232 Rev Psychiatr Neurosci 2006;31(4)



Neurotensin in CNS pathophysiology

J Psychiatry Neurosci 2006;31(4) 233

NTS1 on serotonergic neurons. Indeed, a subpopulation of
serotonergic neurons located in the nucleus raphe magnus and
in the dorsal raphe respond to NT by an increase in their firing
rate, an effect that is blocked by SR48692.149,150 The functional
role of NT in the raphe remains to be determined, but it may
participate in the modulation of some of the known functions
of the serotonergic system including nociception,151 sleep–
wakefulness cycle regulation152 and stress-related responses.153

Effect of NT on GABAergic neurotransmission

The activity of GABAergic neurons evaluated either by mea-
suring firing rate or by sampling extracellular GABA can be in-
creased by NT in the hippocampus, striatum, prefrontal cortex
and globus pallidus.137,154–156 Other studies have shown that NT
decreases GABA release both in the substantia nigra and the
ventral thalamus by a D2R-dependent mechanism.157 These ef-
fects were counteracted by SR48692, suggesting that they were
mediated by NTS1. Such an increase in GABA release could
result in a number of indirect effects. For example, NT-
mediated GABA release in the striatopallidal pathway inhibits
pallidal GABAergic neurons projecting to the subthalamic nu-
cleus, resulting ultimately in an increase in glutamate release.158

Effect of NT on glutamate neurons

NT increases glutamate release in some brain regions, such as
the striatum, globus pallidus, frontal cortex and the substantia
nigra.157–160 Considering that an excess of glutamate can induce
excitotoxicity within the context of conditions such as stroke,
Alzheimer’s disease and Parkinson’s disease, it is interesting to
note that NT can enhance glutamate excitotoxicity in both mes-
encephalic and cortical neurons.161,162 In addition to enhancing
glutamate release, NT can modify the function of glutamate re-
ceptors. Indeed, NT amplifies N-methyl-D-aspartate (NMDA)-
mediated signals by a protein kinase C (PKC)-dependent mech-
anism.162 It is well known that stimulation of the NMDA
receptor mediates glutamate-induced excitotocixity, leading to
apoptotic cell death or necrosis.163,164 NT can increase the num-
ber of apoptotic cells induced by glutamate exposure.162

Neuroendocrine effects of NT

One of the major central functions of NT is to regulate neu-
roendocrine systems (for review, see Rostene and Alexan-
der165). A number of essential nuclei implicated in hormone
secretion and regulation, such as the arcuate nucleus, the par-
vocellular division of the paraventricular nucleus and the
periventricular nucleus of the hypothalamus, as well as the
pituitary, receive neurotensinergic projections and express
NT binding sites.29,166 NT influences neurons that synthesize
and secrete gonadotropin-releasing hormone, somatostatin
and corticotrophin-releasing factor (CRF).167 In addition to
neurotensinergic projections arriving from other regions, NT
is synthesized in some hypothalamic secretory cells located
for the most part in the arcuate and paraventricular nu-
clei.168,169 It appears that NT produced locally contributes to
the regulation of the release of some neuromodulators and

hormones such as CRF, galanin, enkephalin, cholecystokinin
and growth hormone–releasing hormone170–172 and could thus
be implicated in stress-related functions. Compatible with
this, long-term delivery of SR48692 to the paraventricular nu-
cleus of the hypothalamus attenuated stress-induced eleva-
tions of the release of corticosterone and adrenocorticotropic
hormone (ACTH).173 In addition, there is a mutual regulation
between NT and neuroendocrine systems, because androgen,
estrogen, glucocorticoid and thyroid hormone affect NT syn-
thesis in the hypothalamus and anterior pituitary.174–177

Action on non-neuronal cells

In addition to its action on neurons, NT has been reported to
affect glial cells such as astrocytes and microglia. Evidence for
the effects of NT on astrocytes is provided by the fact that
these cells express NT-binding sites in many brain areas such
as the midbrain, cortex, striatum, brain stem and spinal
cord.178 The subtype of NT receptor expressed by these cells is
presently unclear. A functional study of cultured VTA astro-
cytes showed that the calcium increase induced by NT was
partly sensitive to SR48692 and was not mimicked by the
NTS2 agonist levocabastine.179 This result suggests that astro-
cytes express NTS1 but also that another undefined receptor
could be present on these cells. Other studies, using embry-
onic rat midbrain and postnatal cerebral cortex cell cultures,
showed that NTS2 was expressed by a subpopulation of glial
cells and that NTS2 expression was increased in reactive as-
trocytes.75,76,174 Compatible with the idea that NT receptors are
expressed by a subpopulation of astrocytes, it was reported
that whereas NT-induced intracellular Ca2+ mobilization can
be detected in about 30% of primary mesencephalic astro-
cytes, this response is absent from purified adherent astro-
cytes from the same region.106 Single-cell reverse transcription-
polymerase chain reaction (RT-PCR) experiments from
acutely dissociated astrocytes, as well as double in situ hy-
bridization experiments at different developmental time
points, would be useful to clarify the expression pattern of NT
receptors in astrocyte subpopulations. The physiological role
of NT receptors in astrocytes remains largely unknown. How-
ever, because there are increasing data suggesting the involve-
ment of astrocyte-derived messengers in regulating neuronal
activity and synaptic transmission,180,181 future work is re-
quired to directly investigate the hypothesis that NT induces
the release of chemical messengers from astrocytes, thus indi-
rectly regulating neurons in the mesencephalon or other
structures. Interestingly, it was shown recently that although
NT-induced Ca2+ mobilization in astrocytes is not necessary
for the excitatory effect of NT on midbrain DAergic neurons
in culture, this excitation is enhanced when neurons are
grown together with NT-responsive astrocytes.106

Finally, NT also affects the activity of microglial cells. More
specifically, NT elicits the migration of a microglial cell line
by an NTS3-dependent process. It was also shown that
ERK1/2 and PI3-kinase intracellular pathways are implicated
in this effect.92 Such results suggest that NT plays a role in cel-
lular responses to inflammation or brain lesion, because mi-
croglia motility is very important for these processes.



Role of NT in schizophrenia?

On the basis of a growing literature suggesting the existence
of anatomical and physiological interactions between NT and
the mesolimbic DA system, Charles Nemeroff published an
influential paper 25 years ago entitled “Neurotensin: Per-
chance an endogenous neuroleptic?”182 This much-cited paper
introduced the bold suggestion that NT could act to inhibit
DA neurotransmission, in much the same way as antipsy-
chotic (or neuroleptic) drugs. Nemeroff also proposed that
perhaps schizophrenia symptoms result in part from a deficit
in brain NT, leading to excessive DA neurotransmission.
Here we will briefly reconsider this hypothesis and ask
whether there are sufficient data to support it.

First, what is the evidence supporting an intimate relation
between DA and NT? As stated previously, NT is indeed
found to be abundantly expressed in the ventral midbrain in
an intricate network of thin fibres. In addition, NT-binding
sites and NT receptors are expressed in high numbers by DA
neurons. These basic observations certainly are in agreement
with the idea that NT is a key regulator of the DA system.
However, it is important to remember that NT is also abun-
dant in a number of additional nuclei in the brain and, unless
a deficit in NT was restricted to the ventral midbrain or to the
regions receiving the densest DA projections, a disease impli-
cating a decrease in NT would be expected to be accompa-
nied by a large variety of symptoms not restricted to those
found in schizophrenia.

A first argument in favour of the role of NT as an endoge-
nous antipsychotic-like compound is that animal studies have
shown quite convincingly that injections of NT in the VTA or
in projection areas such as the nucleus accumbens cause effects
that are similar to those of single administration of antipsy-
chotic drugs. For example, when injected in the VTA, both NT
and antipsychotic drugs increase the firing rate of DA
neurons.103,183 Similarly, both NT (indirectly) and antipsychotics
(directly) inhibit D2R function when injected in the nucleus ac-
cumbens.114,116–119,121,122,124,125 At the behavioural level, both agents
cause sedative-like effects and muscle relaxation, as well as hy-
pothermia and vacuous chewing movements (for review, see
Dobner et al184 and Kinkead and Nemeroff185). Dissimilarities
have also been reported, so it would be fair to conclude that
the match is not perfect. However, some of the reported differ-
ences could be dose related. For example, at low doses NT
may decrease D2 receptor function, thus leading to a partial
disinhibition of DA signalling. However, at higher doses, NT
apparently has additional effects that are unrelated to a de-
crease in D2 receptor function. For example, it directly depolar-
izes DA neurons by activating cationic channels, an effect that
antipsychotic drugs do not have.186

A second and arguably the most direct argument for a role
of NT in schizophrenia is that a number of published studies,
all of them emanating from Nemeroff and collaborators, re-
port that cerebrospinal fluid (CSF) NT levels are lower in a
subgroup of subjects with schizophrenia than in controls.187–193

What in fact has been observed is that CSF NT levels are
lower in a subgroup of nonmedicated patients with schizo-
phrenia who are most severely affected, with an inverse corre-

lation between symptom severity and NT levels. In addition,
in some of the studies, a partial normalization of CSF NT lev-
els was noted in response to antipsychotic drug treatment, al-
though there was no correlation between recovery of NT lev-
els and extent of improvement of symptoms.189 It should also
be noted that in one postmortem study, an increase in cortical
NT levels was detected in patients with schizophrenia.194 Al-
though the finding of reduced CSF NT levels appears to be a
reproducible observation, no reports replicating this work
have yet to come from other laboratories. The results have to
be interpreted with caution. First, all the data come from CSF
measurements, and the relation between CSF and brain NT
levels is unclear, in part because part of the signal could re-
flect spinal cord levels of NT. Second, the finding of reduced
CSF NT levels is limited to a subgroup of patients; group
comparisons have failed to find an overall decrease in CSF NT
levels when all patients were considered. Finally, although
the hypothesis of a link between compromised brain NT and
schizophrenia is attractive, an alternative hypothesis is that
NT levels are lower in some nonspecific manner in the most
severely affected nonmedicated patients because of a general-
ized decrease in cognitive activity. If this is true, then perhaps
the CSF and brain levels of a number of markers of neuronal
activity will be found to be lower in the most severely affected
patients. Antipsychotic drug treatment would then act indi-
rectly to increase NT levels by promoting partial recovery of
cognitive activity by reducing positive symptoms.

But then again, the possibility that antipsychotic drugs act
at least in part by restoring brain NT levels is not unreason-
able, because most antipsychotic drugs have been reported to
increase the expression of NT mRNA in the ventral and dor-
sal striatum195–198 (but see Mijnster et al199). If this hypothesis is
correct, then one would expect that NT receptor antagonists
could actually have negative effects on the symptoms of pa-
tients with schizophrenia. Although NT receptor antagonists
have been explored for many years by pharmaceutical com-
panies, to date, the results of only 1 clinical trial reporting the
effect of an NT receptor antagonist (SR48692) on schizophre-
nia have been published. In that report, no significant effect
of the antagonist was found.200 On the basis of the original hy-
pothesis of an NT deficit in schizophrenia, some have pro-
posed that NT receptor agonists hold more promise as poten-
tial antipsychotic drugs.201–204 A limited number of such
agonists have been developed, and some are reportedly able
to cross the blood–brain barrier.205–209 No clinical trial using
such agonists in the treatment of schizophrenia has yet been
reported, but animal studies have shown that NT or some of
these systemically active agonists can display an antipsy-
chotic-like profile.201–203,205,209–214 For example, a number of ani-
mal studies, many of which have studied the pre-pulse inhi-
bition (PPI) of the startle reflex as a model of sensorimotor
gating deficits in schizophrenia, have confirmed possible
links between NT and DA in such schizophrenia-relevant
paradigms. Injection of NT in the nucleus accumbens, but not
in the VTA, reduces the ability of amphetamine to perturb
PPI in the rat55,202,215 (but see Feifel et al216). This observation is
compatible with the idea stated above that NT acts in the DA
target structures to reduce DA signalling. In addition, a cen-
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trally active NT agonist administered subcutaneously pro-
duced a similar effect55,217 (but see Rompre218 for a psycho-
timulant-like effect of centrally administered NT, suggesting
that at certain doses NT could also act to enhance DA-
dependent behaviours). Although not tested in a PPI para-
digm, a recently developed NTS1 ligand, KH28, was re-
ported to reduce amphetamine-induced hyperlocomotion.214

Compatible with the idea that a deficit in NT could influence
PPI, the NT receptor antagonist SR142948A prevented the
ability of the antipsychotic haloperidol to reduce isolation-
rearing-induced perturbation of PPI.219 Finally, PPI is dis-
rupted in NT-knockout mice.220 Such results, though far from
proving a link between NT and schizophrenia, nonetheless
can be taken as arguing in favour of the biological plausibil-
ity of this hypothesis.

Beyond clinical trials with NT agonists, it will not be easy
to pursue further in human patients the hypothesis of a link
between NT and schizophrenia. There is currently no ap-
proach to measuring brain NT levels in living humans, and
no association between schizophrenia and mutations or poly-
morphisms in NT or NT receptor genes has been reported.221

Implication of NT in drug abuse? 

A possible implication of NT in drug abuse has been studied
for close to 25 years.222 The primary drive for this hypothesis
is based on the similarities between some of the effects of NT
and of psychostimulant drugs. This work has been somewhat
controversial, in large part because the effect of NT depends
on many parameters such as the dose used, the injection pro-
cedure and localization, as well as the experimental model or
species used. As mentioned in previous sections, injection of
NT in the nucleus accumbens tends to reduce some be-
havioural effects of psychostimulant drugs. However, the
psychostimulant-like actions of NT occur when the peptide is
injected in the VTA.223 For example, intra-VTA injections of
NT in the rat increase locomotor activity and elevate DA re-
lease in the nucleus accumbens.223–227 This is compatible with
the localization of excitatory NT receptors on VTA DA neu-
rons that give rise to the mesocorticolimbic pathway,228 as
mentioned previously. NT could thus produce psychostimu-
lant-like effects when injected in the VTA simply by enhanc-
ing the firing of DA neurons, leading to elevations of extra-
cellular DA in the nucleus accumbens. NT can also increase
the firing of substantia nigra DA neurons104 and cause an ele-
vation of glutamate levels in this structure.128,157

Moreover, NT presents other psychostimulant characteris-
tics. When injected in the rat VTA, NT acts as a primary rein-
forcer in the conditioned place preference paradigm229 and
can be self-administered.230 In rats, NT potentiates brain-
stimulation reward.231–234 When injected intracerebroventricu-
larly, NT also sensitizes rats to the locomotor-activating ef-
fects of amphetamine235 and increases the sensitivity of mice
to ethanol.236,237 Moreover, systemic administration of the NT
receptor antagonists SR48692 and SR142948A reduces sensiti-
zation to amphetamine, suggesting that endogenous NT
could play some role in this drug-induced long-term plastic-
ity.238–240 Whether NT specifically in the VTA is critically in-

volved is less clear. In fact, psychostimulants such as cocaine
and amphetamine cause an increase in NT mRNA expression
in the striatum and the nucleus accumbens,241–244 areas where
NT has been shown to decrease the effects of psychostimu-
lants. Interestingly, an increase in NT immunoreactivity after
methamphetamine or cocaine administration has also been
reported in the substantia nigra,245,246 but no data are available
for the VTA. Amphetamine and metamphetamine also in-
crease NT levels in the medial prefrontal cortex.247 Finally, it
should be noted that rhesus monkeys can reportedly not be
trained to self-administer the centrally active NT receptor ag-
onist NT69L intracerebroventricularly.248 In addition, NT re-
duces bar pressing for food rewards.249 Together, these results
nonetheless suggest that NT may play a role in the effects of
psychostimulants, but the mechanism involved is unclear.

If the major cellular mechanism of the psychostimulant ef-
fect of NT is increased DA neuron firing, an open question is
the specific mechanism involved. As stated previously, NT
can activate cationic channels and inhibit potassium chan-
nels, thus directly depolarizing DA neurons. This could per-
haps be sufficient to explain the increase in firing rate. How-
ever, inhibition of somatodendritic D2 autoreceptors by NT
could also be involved. Experiments directly addressing this
issue are required.

A final and obviously critical question is whether NT is in-
volved in direct drug effects or drug addiction mechanisms
in humans. Currently, very few data have been published. In
one study, no association was found between a polymor-
phism in the proneurotensin gene and alcohol dependence in
a Finnish population.250 In summary, although accumulating
animal research argues in favour of the implication of NT in
drug abuse mechanisms, essentially no data are available in
humans. The possibility of using NT receptor ligands as pos-
sible pharmacological tools to treat drug addiction205 can thus
be considered promising but perhaps a bit premature.

Implication of NT in Parkinson’s disease?

Parkinson’s disease (PD) results from a progressive loss of ni-
grostriatal DAergic neurons. The decrease in striatal DAergic
innervation due to this loss is responsible for motor distur-
bances characteristic of the disease such as akinesia, muscular
rigidity and tremor. The close relation between NT and the
DAergic system suggests that NT could be associated with PD.

Numerous studies have tried to determine whether PD is as-
sociated with changes in the neurotensinergic system. Biochem-
ical and histological studies of brain tissues from patients who
died from PD showed a decrease in the number of NT-binding
sites in the substantia nigra, VTA, caudate nucleus, putamen
and globus pallidus compared with healthy subjects.251–254 Using
in situ hybridization, it was also possible to show more specifi-
cally that NTS1 mRNA was decreased in the substantia nigra of
subjects with parkinsonism.255 PD can be partly mimicked in an-
imal models by destroying the nigrostriatal pathway using
toxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
(MPTP) or 6-hydroxydopamine (6-OHDA). In these PD animal
models, there is a decrease in the number of NT-binding sites in
the striatum and substantia nigra.228,256–258 In the substantia nigra,



the decrease in the number of NT-binding sites is surely the re-
sult of the loss of DAergic neurons that express NT receptors.
However, the interpretation of the decrease in NT-binding sites
in the striatum is not that straightforward. Indeed, contradic-
tory results concerning the exact localization (presynaptic or
postsynaptic) of NT receptors have been obtained in the stria-
tum. In some studies, it was reported that almost all NT recep-
tors within the striatum were located on DAergic terminals,259,260

whereas others reported that NT receptors were mostly ex-
pressed by striatal intrinsic neurons.29,256,261 Another study
showed that the decrease in NT receptors in the monkey stria-
tum treated with MPTP is smaller than the decrease in DA con-
centration, suggesting only a partial localization of NT recep-
tors on nigrostriatal projections.257 The same result was obtained
comparing the presence of NT receptors and the DA content in
postmortem brain tissues from patients with PD.251,254 The de-
crease in striatal NT-binding sites may not be only due to the
loss of NT receptors on DAergic neurons but could also be the
result of an effect on striatal neurons themselves. More anatom-
ical studies should be done to determine whether NT receptors
expressed by striatal medium spiny neurons are specifically de-
creased in PD.

In addition to the quantification of NT-binding sites, the
concentration of tissue NT has also been measured in order
to determine changes induced by PD on the neurotensinergic
system. It has been shown that plasma NT concentration is
higher in patients with parkinsonism compared with control
patients and also higher in untreated patients compared with
levodopa-treated patients.262 Studies of postmortem brains
further showed that NT levels remain unchanged in PD com-
pared with healthy subjects in the caudate nucleus, putamen
and globus pallidus, while they were higher in the substantia
nigra compacta and reticulata263,264 and decreased in the hip-
pocampus.264 Whether the increase in NT concentration in the
substantia nigra is causally related to PD or whether it results
indirectly from the loss of DA neurons or from drug therapy
is not easy to determine. Indeed, because most patients with
PD are subjected to drug therapy, it is difficult to evaluate
plasma NT concentration in nonmedicated patients. How-
ever, it is interesting to compare PD to incidental Lewy body
disease. The presence of Lewy bodies in the brain is corre-
lated with substantia nigra cell death, even if the decrease is
smaller than in PD,265,266 and is considered to represent the PD
presymptomatic phase.267 These patients do not show any
pathological symptoms and so do not receive medication. In-
terestingly, there is an increase in NT content in the post-
mortem brain of patients with Lewy body disease, even
though the effect is not as large as in PD.268 At the very least,
this finding suggests that the increase in NT in PD is proba-
bly not secondary to pharmacotherapy.

NT levels were also measured in PD animal models and,
surprisingly, the opposite results have been obtained. In 6-
OHDA-lesioned rats, NT-immunoreactivity is increased in
the striatum and globus pallidus, whereas no change occurs
in the substantia nigra.269,270 In MPTP-lesioned monkeys, no
change in NT concentration was found in the striatum.271 In
this same model, a previous study did not show any change
in NT in the substantia nigra and striatum.272

Although the relation between NT and PD has not been
fully elucidated, one can speculate that the increase in NT
levels observed in the human brain with PD is the result of
an adaptive mechanism in reaction to the loss of NT recep-
tors and DAergic neurons. This increase in NT concentration
could represent an attempt of the system to increase DAergic
drive by stimulating the remaining NT receptors on DAergic
neurons. Within this context, an obvious question is whether
NT agonists could be useful as adjunctive treatment of PD.
Some studies have indeed shown that exogenous NT can dis-
play antiparkinsonian properties in 6-OHDA-lesioned ani-
mals. In fact, intracerebroventricular administration of NT or
some of its analogues results in attenuation of muscular
rigidity and tremors observed in these animals.273,274 In addi-
tion, in 6-OHDA-lesioned rats, the NT agonist NT-69L has an
antiparkinson-like effect, because it blocks rotating behaviour
induced by D-amphetamine and apomorphine.275 The exact
mechanism of this NT-induced antiparkinson-like effect has
not yet been determined. Based on the previously mentioned
ability of NT to decrease D2R receptor function in the stria-
tum, the use of NT receptor antagonists in the treatment of
PD has also been considered. Administration of the NTS1 an-
tagonist SR48692 has been shown to enhance striatal DAergic
transmission.125 However, a clinical trial with SR48692 in pa-
tients with PD showed no improvement of symptoms.276

In conclusion, although no data are currently available to
support a direct, causal role of NT in PD, some interesting
correlative evidence has been obtained and some promising
recent studies on animal models support the potential role of
NT agonists in the symptomatic treatment of PD.

Implication of NT in pain mechanisms?

The implication of NT in analgesia has been studied for
many years.277 A high density of NT receptors is present
throughout the PAG and the rostral ventromedial medulla,
2 structures implicated in descending nociceptive cir-
cuits.52,151,278,279 NT has analgesic effects that are naloxone inde-
pendent and consequently not dependent on opioids.280

The antinociceptive effect of NT has been reported after injec-
tion of the peptide in many brain areas, as well as intracister-
nally,281 intrathecally,282 intracerebroventricularly283 or directly
in areas rich in NT innervation such as the amygdala, medial
preoptic area, thalamus, PAG and nucleus raphe magnus.284

The location of the injection site can modify the intensity of
the response to NT. Indeed, when injected in the central part
of the amygdala, NT induces analgesia and increases hot-
plate response latency more effectively than if injected intra-
cerebroventricularly.285 Compatible with the possible implica-
tion of endogenous NT in pain suppression mechanisms, a
microdialysis study showed that NT is endogenously re-
leased in the PAG in mice after unilateral hindpaw inflam-
mation using Complete Freund’s Adjuvant.286

Analgesic effects of NT have been widely reported, but in
most of these studies relatively high concentrations of NT
were used. Studies performed using lower, perhaps more
physiological, concentrations suggest that NT may actually in-
duce hyperalgesia instead of analgesia. Such a phenomenon is
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observed when picomolar range concentrations (0.03–
0.3 pmol/L) of NT are injected in the rostral ventromedial
medulla, although injections at higher doses in the same nu-
cleus induce analgesia.284,287–289 In addition, infusion of SR48692
in the rostral ventromedial medulla or intraperitoneal injec-
tion of this compound facilitates analgesia, therefore suggest-
ing a hyperalgesia function for endogenous NT.287,289,290

Both NTS1 and NTS2 appear to be implicated in NT-
induced analgesia. The first studies of NT receptor subtypes
mediating analgesia showed that the analgesic effect of NT
was mediated by a subtype of receptor that is pharmacologi-
cally distinct from the previously characterized high-affinity
levocabastine-insensitive receptor and low-affinity
levocabastine-sensitive receptors.291,292 Different results were
obtained when suitable antagonists for the different receptors
became available. Indeed, SR48692, a relatively selective an-
tagonist of NTS1 when used at low doses, had no effect on
NT-induced analgesia, which suggested that another NT re-
ceptor subtype, presumably NTS2, was responsible for the
phenomenon.293 A subsequent study showed that levocabas-
tine, an NTS2 agonist, displays an analgesic effect.294 How-
ever, another study showed that SR48692 inhibits NT-
induced analgesia with complex multiphasic dose–response
characteristics,289 suggesting the implication of more than one
NT receptor subtype. A recent study also argues for the im-
plication of NTS1, in addition to NTS2, in the analgesic effect
of NT.69 Indeed, it was shown using the tail-flick test that, in
addition to NT, the 2 NTS2 agonists levocabastine and JMV-
431 both induce an antinociceptive response. However, the
antinociceptive effect of NT was partly abolished by co-
administration of SR48692, suggesting that, in addition to
NTS2, NTS1 also plays a modest role. Using NTS1-knockout
mice, it was also possible to show that this receptor indeed
plays a role in at least some kinds of painful stimuli, because
these mice present a defect in NT-induced analgesia in the
hot-plate test,68 whereas no modification occurs in another
nociceptive test, such as the phenyl-p-benzoquinone (PBQ)-
induced writhings.66 Concerning hyperalgesia, it has been
shown that endogenous NT facilitates visceral pain response,
because in NT-knockout mice and in SR48692-treated rats
there is attenuation of visceral nociception.290 The fact that
both NTS1 and NTS2 are implicated in the central role of NT
in pain control is compatible with the fact that both receptors
are expressed in the PAG and raphe nuclei.72,151

Taken together, the published data are thus compatible with
a role of NT in pain mechanisms. Further evaluation of the pos-
sible use of NT agonists or antagonists as analgesic compounds
thus seems warranted. Compatible with this, the NT analogue
NT69L has been reported to cause a rapid and persistent an-
tinociceptive effect as determined by the hot-plate test.295

Possible implication of NT in other diseases

NT is widely distributed in the brain and is known to affect
many neurotransmitter systems. Growing evidence suggests
that NT is associated with different pathologies in addition
to those directly related to the DAergic system discussed up
to now.

Implication of NT in the central control of blood pressure

Hypotension was the first reported physiological effect of
NT.1 A possible role of this peptide in hypertension would
thus not be surprising. In anesthetized rats, NT injected in-
tracerebroventricularly induces hypotension, whereas a
smaller decrease in blood pressure is observed in nonanes-
thetized rats.296,297 The NT receptor antagonist SR142948A is
more effective than SR48692 in blocking this effect.102 The nu-
cleus of the solitary tract plays an important role in the cen-
tral control of arterial pressure, because it receives signals
from baroreceptors and chemoreceptors of the cardiovascular
system. NT injected into the nucleus of the solitary tract
causes a decrease in blood pressure.298,299 NT69, an NT recep-
tor agonist that crosses the blood–brain barrier, induces hy-
potension.248 The opposite results were reported with con-
scious rats, in which an intracerebroventricular injection of
NT induces hypertension.300–302 The results obtained in these
different studies are thus conflicting, and the cause of this
discrepancy remains unknown. However, we can speculate
that differences in the site of injection or in anesthesia may
account for this. Nonetheless, the results presented here are
clearly compatible with some role for NT in central regula-
tion of blood pressure. In addition to these results obtained
using NT injections, it has been shown that in spontaneously
hypertensive rats, there is a decrease in NT concentrations in
many brain areas implicated in blood pressure regulation,
such as the hypothalamus, medulla oblongata, pons, pitu-
itary and spinal cord.303 Interestingly, suprachiasmatic nu-
cleus NT contents are greatly decreased in hypertensive pa-
tients compared with controls.304 The use of NT receptor
knockout mice would perhaps help to clarify the implication
of NT in arterial pressure, but changes in blood pressure
have apparently not yet been evaluated in such animals.

NT and eating disorders

Food intake is controlled in part centrally by the hypothala-
mus, which is the site of integration of multiple signals such
as hormones, neurotransmitters and peptides. Among them,
NT is known to reduce food intake. Indeed, NT injected in
the VTA or in the ventromedial part of the hypothamalus in-
duces a decrease in food intake.305,306 There are also changes in
NT expression in animals with eating disorders. Indeed, NT
expression is increased in the hypothalamus of anorexic ani-
mals.307 NT interacts with other food intake regulators such as
leptin, a hormone produced by adipose tissues that reduces
food intake. Administration of leptin increases hypothalamic
NT expression in healthy rats308 as well as in hypothalamic
cell lines in vitro.309 In addition, the NTS1 antagonist SR48692
appears to reverse leptin’s action on satiety.310 The expression
of NT is also downregulated in animal models lacking
leptin.311 Other evidence for a role of NT in food intake comes
from results obtained with NTS1-deficient mice (NTS1−/−),
which show a small increase in body weight compared with
control animals.66 Pharmacological studies also support a role
of NT in body weight homeostasis. The NT analogue NT69L
reduces body weight and food intake in healthy and obese



rats.312 These results are promising with regard to the possible
use of NT ligands as therapeutic drugs in eating disorders.

NT and cancer

NT expression arises early in embryonic development, and it
has been suggested that it could thus play a role in cell cycle
regulation.313,314 Compatible with this hypothesis, NT has been
associated with the progression and differentiation of tu-
mours in the periphery and central nervous systems.315 The
implication of NT in cancer has been studied extensively in
the periphery, where it has been shown that the size of some
colon or lung tumours increases in the presence of NT316,317 and
becomes smaller in the presence of the NTS1 antagonist
SR48692.317,318 The presence of NTS1 has been reported in hu-
man tumours of the ovary, pancreas and prostate and Ew-
ing’s sarcomas, as well as centrally in meningiomas and astro-
cytomas.315,319–321 The transcription of the NTS1 gene is also
apparently increased in human colonic adenomas.322 In divid-
ing human neuroblastoma (CHP 212) and murine neuroblas-
toma (N1E-115) cells, it has been reported that during pro-
longed NT agonist stimulation, NTS1 receptors are recycled to
the cell surface, thus allowing constant cell sensitization and
long-term activation of mitogen-activated protein kinases p42
and p44,323 which is compatible with a potential role in onco-
genic regulation.

A possible implication of NTS3 in cancer has also been ex-
plored. Indeed, NTS3 and NTS1 are present in almost all can-
cer cells from the prostate, pancreas and colon.58,93 However,
no data have yet shown the presence of NTS3 in central tu-
mours. Little is known about the signalling pathways acti-
vated by NTS3, but the receptor is present inside the cell in
close proximity to the nucleus.95 This characteristic gives NTS3
a good profile for being a candidate in mediating NT-induced
proliferative signals. Considering the strong evidence in
favour of a role of NT in peripheral tumours, it would seem
that additional efforts should be directed toward a better com-
prehension of the role of NT in cancers of the CNS.

NT and neurodegenerative disorders and stroke

There is currently little evidence for a role of endogenous
NT in neurodegenerative disorders or stroke. A possible im-
plication of NT in neurodegenerative disorders is nonethe-
less suggested by the finding that in the suprachiasmatic nu-
cleus of patients with Alzheimer’s disease, there is a
significant decrease in NT-containing neurons.324 Because of
the lack of conclusive evidence, it is nonetheless difficult to
know whether NT can directly contribute to neurodegenera-
tive diseases. However, NT enhances glutamate-induced ex-
citotoxicity through NTS1 activation, as suggested by the
blockade of this effect with SR48692.161 In sharp contrast, oth-
ers have suggested that NT reduces neuronal death and in-
farct volume in experimental ischemia models.325,326 This pro-
tective effect of NT could be partly explained by the ability
of this peptide to induce hypothermia, a condition that is
well known to be neuroprotective against ischemia-induced
central infarcts.327

NT and inflammation

Findings both in and outside the nervous systems have long
supported a role of NT in inflammation, acting as a proin-
flammatory cytokine. It was first described that peripheral NT
elicits inflammatory symptoms such as vasodilatation, en-
hanced vascular permeability, mast cell degranulation, and
enhancement of directional migration and phagocytosis of
neutrophils.328 NT was later shown to enhance the production
of interleukin-1 (IL-1) by activated alveolar macrophages.329 In
the gastrointestinal tract, a tissue rich in NTS1, NT has been
involved in the pathophysiology of colonic inflammation.330

NT is also known to stimulate IL-8 secretion and IL-8 gene ex-
pression in human colonocyte cells.331 Although NT is usually
thought to be proinflammatory, an opposite effect has been
recently described in chronic inflammatory damage induced
by dextran sodium sulfate in mice. In this model, NTS1 activa-
tion has been shown to stimulate intestinal wound healing
through a cyclooxygenase (COX)-2 dependent pathway.332

The first evidence for the involvement of NT in immune
responses in the CNS was provided by the finding that the
endotoxin lipopolysaccharide is able to induce the expression
of NT mRNA in corticotropin-releasing hormone neurons of
the paraventricular nucleus of the hypothalamus.333 On the
basis of this work, it has been speculated that NT may be re-
leased in the pituitary portal blood to trigger pituitary re-
sponses associated with mobilization of the immune system.
More recently, it has been shown that NT also induces ex-
pression of several cytokines/chemokines including IL-1 and
macrophage inflammatory protein (MIP)-2 in microglia cells,
which are otherwise known to express only the NTS3 recep-
tor,334 thus supporting the involvement of NTS3 in CNS in-
flammation. Finally, it is interesting to note that descending
inhibition and facilitation during peripheral inflammation are
due in part to inflammation-induced changes in the rostral
ventromedial medulla that involve NT and glutamate recep-
tors.335 In spite of the scarce evidence for a role for NT in CNS
inflammation, speculation has arisen about the possibility
that an NT proinflammatory stimulus acting through mi-
croglia cells could contribute to brain inflammation in degen-
erative diseases such as PD and Alzheimer’s diseases.

Future challenges and conclusions

Together, the results presented in this review demonstrate that
although endogenous NT has not been shown conclusively to
be causally involved in any one CNS disorder, there is a trail of
evidence arguing for its implication in many. Among those,
drug dependence, pain and cancer appear to be the most
promising. Future work using genetically modified animals,
gene downregulation strategies and new centrally active phar-
macological ligands should continue to advance our under-
standing of the role of NT in health and disease.
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