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The titan mutants of Arabidopsis exhibit striking defects in seed development. The defining feature is the presence of
abnormal endosperm with giant polyploid nuclei. Several TTN genes encode structural maintenance of chromosome
proteins (condensins and cohesins) required for chromosome function at mitosis. Another TTN gene product (TTN5) is
related to the ARL2 class of GTP-binding proteins. Here, we identify four additional TTN genes and present a general model
for the titan phenotype. TTN1 was cloned after two tagged alleles were identified through a large-scale screen of T-DNA
insertion lines. The predicted gene product is related to tubulin-folding cofactor D, which interacts with ARL2 in fission
yeast (Schizosaccharomyces pombe) and humans to regulate tubulin dynamics. We propose that TTN5 and TTN1 function in
a similar manner to regulate microtubule function in seed development. The titan phenotype can therefore result from
disruption of chromosome dynamics (ttn3, ttn7, and ttn8) or microtubule function (ttnl1 and ttn5). Three other genes have
been identified that affect endosperm nuclear morphology. TTN4 and TTN9 appear to encode plant-specific proteins of
unknown function. TTNG6 is related to the isopeptidase T class of deubiquitinating enzymes that recycle polyubiquitin chains
following protein degradation. Disruption of this gene may reduce the stability of the structural maintenance of chromosome
complex. Further analysis of the TITAN network should help to elucidate the regulation of microtubule function and

chromosome dynamics in seed development.

Seed development in Arabidopsis requires coordi-
nated differentiation of the embryo proper, suspen-
sor, endosperm tissue, and seed coat. Interactions
between these components have been explored in
part through the analysis of embryo-defective mu-
tants (Meinke, 1995). Some of these mutants have
provided insights into the maintenance of cellular
identity during seed development. Suspensor cell
identity has been examined in twin mutants (Vernon
and Meinke, 1994; Zhang and Somerville, 1997), mer-
istem identity explored in stm mutants (Long et al.,
1996), and cotyledon identity analyzed in lec mutants
(Meinke, 1992; Lotan et al., 1998). Embryo-defective
mutants have also been used to identify large num-
bers of genes with essential functions during seed
development (McElver et al., 2001). Gene products
identified to date include a variety of metabolic en-
zymes (Patton et al., 1998; Jang et al., 2000; Schrick et
al., 2000; Boisson et al., 2001; Lukowitz et al., 2001),
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transcription factors (Long et al., 1996; Hardtke and
Berleth, 1998; Li and Thomas, 1998; Lotan et al., 1998),
chloroplast and mitochondrial proteins (Tsugeki et al.,
1996; Uwer et al., 1998; Albert et al., 1999; Apuya et al.,
2001), and proteins required for vesicle trafficking
(Lauber et al., 1997; Assaad et al., 2001; Rojo et al.,
2001). These essential genes represent an important
subset of the minimal gene set needed to make a
functional plant.

Early endosperm development in Arabidopsis is
characterized by specialized patterns of nuclear divi-
sion, nuclear migration, and delayed cellularization
(Brown et al.,, 1999; Otegui and Staehelin, 2000;
Boisnard-Lorig et al., 2001; Olsen, 2001). Endosperm
identity is therefore modulated to some extent by
factors that regulate mitosis and cell division. The
TITAN genes described in this report play an impor-
tant role in this process of endosperm differentiation.
Genetic analysis of endosperm development in Ara-
bidopsis has focused in recent years on mutants with
defects in gene imprinting and inappropriate en-
dosperm development in the absence of fertilization
(Grossniklaus et al., 1998; Luo et al., 1999; Ohad et al.,
1999; Yadegari et al., 2000; Sorensen et al., 2001).
These studies have underscored the importance of
polycomb proteins and associated factors in regulat-
ing gene expression and nuclear division during
early stages of endosperm development.

Three titan mutants with striking defects in embryo
and endosperm development were originally de-
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scribed by Liu and Meinke (1998). These mutants are
characterized by dramatic enlargement of endosperm
nuclei (Fig. 1). Embryo phenotypes depend on the
locus involved: giant cells with enlarged nuclei (ttn1),
small cells arrested early in development (ttn2), or
viable cells that survive seed desiccation (ttn3). The
tagged ttn3 mutant is disrupted in a gene that encodes
a chromosome scaffold protein (SMC2) related to
structural maintenance of chromosome (SMC) pro-
teins in Saccharomyces cerevisiae, which are required for
normal chromosome function at mitosis (Liu et al.,
2002). The weak embryo phenotype appears to result
from expression of a duplicate gene with overlapping
functions. Another tagged mutant (tfn5) with a phe-
notype similar to ttnl was identified in a separate
collection of insertion lines (McElver et al., 2001). This
gene encodes a small GTP-binding protein (ARL2)
related to ADP ribosylation factors (McElver et al.,
2000). Related mutants (pilz) with large embryo cells
and defects in microtubule organization have also
been described by Mayer et al. (1999). Comparison of
map locations suggests that hal corresponds to ttn5
and that cho is ttnl.

To establish a more complete picture of TITAN
functions in seed development, we performed a for-
ward genetic screen for additional knockouts within
a large collection of insertion lines generated at Syn-
genta (McElver et al., 2001). This screen expanded the
total number of titans to include at least 17 mutants
defective in nine different genes. Two of these genes
encode SMC1 and SMC3 cohesins, which are known
to interact with condensins in other eukaryotes to
regulate chromosome dynamics (Liu et al., 2002). We
therefore have established a strong connection be-
tween loss of SMC function during seed develop-
ment and the appearance of a titan endosperm
phenotype.

We describe in this report the identification of four
additional TITAN genes represented by tagged mu-
tant alleles. One of these (TTN1) encodes a regulatory
protein known as tubulin-folding cofactor D, which
interacts with ARL2 in fission yeast (Schizosaccharo-
myces pombe; Radcliffe et al., 2000a, 2000b) and hu-
mans (Homo sapiens; Bhamidipati et al., 2000) to mod-
ulate microtubule dynamics. This discovery makes it
possible to explain much of the ttn1 phenotype (Liu
and Meinke, 1998), clarify the role of TTNS in seed
development (McElver et al., 2000), and explain the
loss of microtubules noted in pilz mutants (Mayer
et al., 1999). A second gene (I'TN6) encodes a deu-
biquitinating enzyme related to human isopepti-
dase T (Wilkinson, 1997). Knockouts in this gene
(AtUBP14) have recently been noted to result in em-
bryonic lethality (Doelling et al., 2001), but the titan
phenotype was not identified. The ftn6 mutant estab-
lishes a connection between TITAN protein networks
and the ubiquitin pathway. TTN4 corresponds to a
senescence-associated gene (SAGI18) that encodes a
novel protein (Weaver et al., 1998; Miller et al., 1999)
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with an unknown function in seed development. An-
other gene (TTN9) with a titan endosperm phenotype
also appears to encode a novel protein. These results
are consistent with a model in which titan abnormal-
ities result from disruption of either microtubule
function or chromosome dynamics during seed de-
velopment. The novel proteins may influence these
central pathways indirectly through mechanisms
unique to plants. Elucidation of additional TITAN
functions should provide further insights into the
regulation of mitosis and cytokinesis during en-
dosperm development and the complex network of
proteins required to differentiate endosperm from
other parts of the seed.

RESULTS
Isolation of Tagged titan Mutants

A forward genetic screen of T-DNA insertion lines
produced at Syngenta was performed to identify
tagged titan mutants amenable to gene isolation. This
project was part of a large-scale effort to isolate
tagged embryo-defective mutants and to identify es-
sential genes in Arabidopsis (McElver et al., 2001).
Two strategies were used to find titan mutants within
this collection: screening immature siliques from het-
erozygous plants for glassy seeds indicative of a titan
phenotype; and examining cleared seeds with No-
marski optics for the presence of enlarged en-
dosperm nucleoli (Liu and Meinke, 1998). The second
approach was generally reserved for tagged mutants
with flanking sequence information. Tagging status
was resolved by identifying mutant lines with a low

G

ttn1,5 ttn2,(4),7,8,9

ttn 6 ttn3

Figure 1. Phenotypic classes of titan mutants identified. Large black
dots represent enlarged nucleoli. Small dots in ttn3 endosperm cor-
respond to condensed mitotic chromosomes. Arrow indicates con-
tinued embryo development in ttn3 seeds. An intermediate embryo
phenotype is observed in ttn4 seeds late in development.
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Table I. Summary of titan mutants

Mutant Source Class® Linkage® Gene Putative Protein Function
ttni-1 Feldmann A NA At3g60740 Tubulin-folding cofactor D
ttn1-2 Syngenta A 103/103 At3g60740 Tubulin-folding cofactor D
ttni-3 Syngenta A 105/105 At3g60740 Tubulin-folding cofactor D
ttn2 Feldmann B NA Unknown Gene identity unknown
ttn3 Feldmann D 196/196 At5g62410 SMC2 condensin

ttn4 Syngenta B 123/123 At1g71190 SAG18; unknown function
ttn5-1 Syngenta A 206/206 At2g18390 ARL2 GTPase

ttn5-2 Lukowitz A NA At2g18390 ARL2 GTPase

ttn6-1 Syngenta C 126/126 At3g20625 Deubiquitinating enzyme
ttn6-2 Syngenta C NA At3g20625 Deubiquitinating enzyme
ttn6-3 Syngenta C 33/33 At3g20625 Deubiquitinating enzyme
ttn6-4 Syngenta C 102/102 At3g20625 Deubiquitinating enzyme
ttn7-1 Syngenta B 178/178 At2g27170 SMC3 cohesin

ttn7-2 Syngenta B 177177 At2g27170 SMC3 cohesin

ttn8-1 Syngenta B 170/170 At3g54670 SMCT1 cohesin

ttn8-2 Syngenta B 127,127 At3g54670 SMCT1 cohesin

ttn9 Syngenta B 103/103 At3g20070 Unknown function

? Phenotype class as defined in Figure 1.

b For tagged mutants, evidence of genetic linkage between T-DNA insert carrying resistance gene and

mutant locus. Nos. represent plants heterozygous for mutation/total resistant plants screened. NA, Not applicable because the mutant is not tagged.

ratio of resistant-to-sensitive seedlings, transplanting
resistant seedlings to soil, and looking for linkage
between the resistance gene and mutant phenotype
(McElver et al., 2001). Results of this insertional mu-
tagenesis project are summarized in Table I. Muta-
tions in at least nine different genes have been iden-
tified that result in a strong titan phenotype. These
mutants can be placed into four phenotypic classes as
illustrated in Figure 1. Additional mutants with vari-
able and intermediate titan phenotypes have also
been recovered.

Duplicate mutant alleles were expected to be found
given the large number of insertion lines screened.
Allelism was demonstrated through a combination of
genetic complementation tests and flanking sequence
information. The ethyl methanesulfonate-induced
ttn5-2 allele obtained from Wolfgang Lukowitz (Car-
negie Institution of Washington, Stanford, CA) was
confirmed by direct sequencing of amplified DNA
from heterozygotes (McElver et al., 2000). Allelism
between the untagged ttn6-2 allele and the complex
ttn6-3 insertion allele was established by crossing
heterozygotes. Approximately 22% of the 228 seeds
produced from ttn6-1 X ttn6-2 crosses and 26% of the
235 seeds produced from ttn6-1 X ttn6-3 crosses ap-
peared mutant. Similar crosses revealed allelism be-
tween ftnl-1 and ttn1-2. In contrast, ttn2 and ttn4
complemented when crossed, and the two genes
mapped to different chromosomal regions. Analysis
of F, plants produced from crosses with visible mark-
ers placed ttn4 near the bottom of chromosome 1. A
pilz mutant (pfi) with related phenotype has also been
mapped to this region (Mayer et al., 1999). The ge-
netic map position of ttn4, 12 <M below clv2 (180 F,
plants scored) and 15 cM above clv1 (190 F, plants), is
consistent with the physical location based on se-
quence analysis. A composite genetic and physical
map of TTN genes is shown in Figure 2.
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Phenotypic Characterization of titan Mutants

Three phenotypic classes of titan mutants were rec-
ognized by Liu and Meinke (1998). Differences were
found in embryo morphology, seed viability, chro-
mosome condensation, nucleolar appearance, and
endosperm nuclear migration. Screening of the Syn-
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Figure 2. Localization of TTN genes on a sequence-based chromo-
some map of Arabidopsis. Open rectangles correspond to centro-
meric regions as defined by genetic analysis (Arabidopsis Genome
Initiative, 2000). Numbers indicate the estimated length of each
chromosome in Megabases. The position of TTN2 was estimated
from genetic linkage data.
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Figure 3. Phenotypes of mutant seeds examined with Nomarski
optics. Embryo (E) and suspensor (S) cells, enlarged endosperm nu-
cleoli (arrows), and endosperm cytoplasmic masses (CM) are visible
in cleared mutant seeds from heterozygous siliques at the heart-to-
cotyledon stages of normal development. A, ttn4 embryo; B, ttn6-1
embryo; C, ttn1-2 embryo; D, wild-type embryo; E, ttn1-2 en-
dosperm; F, wild-type endosperm. Scale bar = 30 um.

genta collection yielded additional examples of the
ttnl (Fig. 1A) and ttn2 (Fig. 1B) classes. Another class
(ttn6) characterized by a globular arrested embryo
(Fig. 1C) was also identified. Our failure to recover
mutants with a ttn3 pattern (Fig. 1D) was not sur-
prising given the subtle embryo phenotype. Nomar-
ski images of ttnl, ttn4, and ttn6 seeds at the heart-
to-cotyledon stage of normal development are shown
in Figure 3.

The ttn6 phenotype was examined in most detail
because it defined a new titan class. Embryo cells
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often appeared rounded and disorganized. En-
dosperm cellularization was also disrupted. These
abnormalities were confirmed in sectioned material,
as shown in Figure 4. Table II documents develop-
mental changes observed in cleared mutant seeds
from tagged (ttn6-1) and untagged (ttn6-2) alleles.
Defects visible at the heart stage of normal develop-
ment included: increased size and reduced number
of endosperm nuclei and nucleoli; and developmen-
tal arrest of the embryo proper. Endosperm nuclear
enlargement was similar to that observed with other
titans (Liu and Meinke, 1998; McElver et al., 2000).
The average size of the embryo proper and largest
endosperm nucleolus increased somewhat following
the heart stage. A number of small nucleoli with a
diameter of 5 to 6 um were also found in the mutant
endosperm, and their size remained constant be-
tween the heart and cotyledon stages. This variability
in nuclear size within a single seed is a common
feature of titan mutants. Most ttn6 seeds at the heart
stage contained between 20 and 50 endosperm nu-
clei. This number did not increase later in develop-
ment and remained far below the number found in
wild-type seeds. Therefore, endosperm nuclear divi-
sion is completed at about the same time in mutant
and wild-type seeds.

The most common titan embryo phenotype in the
Syngenta collection was early lethality without dra-
matic cell enlargement (Fig. 1B). This pattern was
characteristic of knockouts in five different TTN
genes (Table I). Several of these mutants escaped our
initial screen for glassy seeds and were identified as
titans only after examination with Nomarski optics.
Mutant embryos contained a few small cells and
were often difficult to find in cleared seeds. Enlarge-
ment of endosperm nucleoli was pronounced but
somewhat variable. Cellularization of the endosperm
was also blocked. The ttn9 embryo, which contained
at most four small cells, was typical of this class and
resembled the cohesin (ttn7 and ttn8) knockouts de-
scribed by Liu et al. (2002). The ttn4 embryo was
larger and more vacuolated late in development and
therefore represented an intermediate class. In addi-
tion, embryo cells often accumulated wall thicken-
ings that resulted in birefringence when viewed
under Nomarski optics. These features are high-
lighted in Figure 5. Variations in titan seed pheno-
types observed within each mutant are summarized
in Table III. Typically, 10% to 20% of mutant seeds
with an arrested embryo failed to exhibit a titan
endosperm phenotype. The cellular basis for this
variation remains to be explained. Globular embryos
were found only in ttn6 seeds. The tagged ttnl-2
allele (Fig. 3C) exhibited a seed phenotype identical
to ttn1-1 (Liu and Meinke, 1998). Arrested embryos
were found in 84% of 100 cleared ttnl1-2 seeds exam-
ined (Table III). Fifty-six percent of these embryos
were composed of two cells (Fig. 3C). The remainder
contained a single large cell. Embryo cell enlarge-
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Figure 4. Light microscopy of ttn6-2 seeds. A
through C, Stained sections of mutant seeds at
the cotyledon stage of normal development. Ab-
normal cells of the embryo proper (E) and sus-
pensor (S) are visible. Enlarged endosperm nu-
clei (EN) and nucleoli (arrows) are present. The
image in B was rotated 90° counterclockwise.
The vacuolated cell (right) is part of the suspen-
sor. D, Wild-type embryo and cellularized en-
dosperm from a seed at the equivalent time in
development. Scale bar = 30 um.

ment in ttnl1-3 was similar. Over 90% of these em-
bryos contained two cells.

Molecular Identification of TTN1

We first attempted to isolate the TTN1 gene through
map-based cloning because the original ttn1-1 allele
from the Feldmann collection was not tagged. Map-
ping with visible markers placed ttn1 below tt5, close
to cer7 on chromosome 3 (Franzmann et al., 1995; Liu
and Meinke, 1998). Rare recombinants obtained from
crosses between ttnl-1 heterozygotes (Wassilewskija
[WS] ecotype) and tt5 or cer7 homozygotes (Ler
ecotype) were analyzed with a series of linked molec-
ular markers. From 1,852 F, plants examined, 119
crossovers between tt5 and ttnl were obtained. The
combined results, as summarized in Figure 6, enabled
us to localize ttn1 below cer7 and likely on bacterial
artificial chromosome (BAC) T4C21 within a region
spanned by markers T22D23T7 and F26K11sp6. One
gene in this region (T4C21.150) encodes a protein that
resembles tubulin-folding cofactor D. This gene be-
came a TTN1 candidate when we learned that ARL2
(TTN5) interacts with cofactor D to regulate microtu-

bule assembly in yeast and humans (Bhamidipati et
al., 2000; Radcliffe et al., 2000b). Two knockouts were
later found in the Syngenta collection of embryo de-
fectives. Allelism between these tagged mutants and
ttn1-1 was demonstrated through genetic complemen-
tation tests. Approximately 22% of the 510 seeds pro-
duced from reciprocal crosses between heterozygotes
were mutant. These results confirmed that TTN1 had
been identified.

TTN1 Resembles Tubulin-Folding Cofactor D

The predicted structure for TTN1 (At3g60740) is
shown in Figure 7. The gene is approximately 5.9 kb
in length, contains 16 introns based on AGI gene
models, and encodes a predicted protein of 1,249
amino acids. The ttn1-2 allele contains a T-DNA in-
sertion in exon 2 and lacks 12 bp around the insertion
site. The ttn1-3 allele has an insertion in intron 9 and
lacks 18 bp adjacent to the insertion site. The exis-
tence of two mutants with similar phenotypes and
defined insertions in the same gene provides confir-
mation of gene identity. The location of the mutation

Table Il. Analysis of ttn6 seeds at different stages of development

Diameter of Embryo Proper

Diameter of Largest
Endosperm Nucleolus

Allele Stage®
Average Range Average Range
um
ttn6-1 Heart 44 23-58 18 14-35
Linear cotyledon 52 32-64 21 12-41
Curled cotyledon 58 37-104 24 14-46
ttn6-2 Heart 40 30-51 14 9-20
Linear cotyledon 48 35-74 16 12-23
Curled cotyledon 69 69-108 23 14-32

? Developmental stage of normal seeds obtained from the same silique. No. of seeds analyzed:
ttn6-1: heart (24), linear cotyledon (47), and curled cotyledon (40); ttn6-2: heart (31), linear cotyledon
(38), and curled cotyledon (38). The diameter of a normal embryo cell is about 8 um, and that of an

endosperm nucleolus is 4 pm.
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Figure 5. Late phenotypes of ttn4 mutant embryos. A and B, Cell wall
thickenings appear as bright regions on the surface of the embryo
proper (E) and suspensor (S) in cleared seeds viewed with Nomarski
optics. C and D, Embryo cells become enlarged and distorted in
shape prior to seed desiccation. Scale bar = 30 um.

in ttn1-1 has not been determined but the strong
phenotype is consistent with a null allele.

From BLAST sequence analysis, TTN1 appears to
be a single copy gene in Arabidopsis. Expression has
been confirmed through identification of expressed
sequence tags (ESTs) from vegetative structures
(Asamizu et al., 2000), seedling hypocotyl (Newman
et al., 1994), roots (Asamizu et al., 2000), and seed-
lings exposed to salt stress (Gong et al., 2001).
BLASTP searches against all GenBank sequences re-
vealed a high level of sequence identity to cofactor D
from human (35% identity; e = 0.0), bovine (35%
identity; 0.0), fruit fly (Drosophila melanogaster; 31%

TITAN Gene Functions in Arabidopsis

identity; —148), Caenorhabditis elegans (26% identity;
—81), and S. pombe (27% identity; —48). A number of
conserved protein domains were found when these
sequences were compared. Results of this analysis
are presented in Figure 8. The high degree of se-
quence conservation observed in these domains is
consistent with a critical cellular function for this
protein in eukaryotes.

TTN6 (AtUBP14) Resembles Isopeptidase T

The predicted structure for TTN6 (At3g20625) is
shown in Figure 7. This gene model was compiled
from AGI sequence of two adjacent BACs (K10D20
and F3H11). The predicted gene is approximately 5.0
kb in length, contains 19 introns, and encodes a pre-
dicted protein of 797 amino acids. The protein se-
quence is based on the availability of a full-length
cDNA (AF302664). The ttn6-1 allele contains a large
deletion (approximately 2.7 kb) at the insertion site
that removes 10 exons coding for the C-terminal half
of the protein. The ttn6-4 allele has a smaller deletion
(approximately 0.4 kb) that eliminates exons 6 and 7.
The ttn6-3 allele appears to be tagged from genetic
evidence, but it contains a complex T-DNA insert
that remains to be resolved.

Twenty-seven deubiquitinating enzymes (DUBs) of
the ubiquitin-specific protease (UBP) class have been
identified in Arabidopsis (Yan et al., 2000). TTN6
(AtUBP14) is most similar in protein sequence to the
isopeptidase T class of enzymes (Wilkinson et al.,
1995) from human (49% identity; e = 0.0), mouse
(47% identity; 0.0), fruit fly (44% identity; 0.0), Dic-
tyostelium discoideum (UbpA; 40% identity; —180), C.
elegans (34% identity; —119), and S. cerevisiae (UBP14;
31% identity; —69). The most closely related protein
is derived from genomic sequencing of rice (Oryza
sativa; 65% identity; 0.0). Figure 9 illustrates con-
served protein domains identified by Pfam analysis
(Bateman et al., 2000): a zinc finger UBP domain,
ubiquitin carboxyl-terminal hydrolases (UCH)-1 do-
main with conserved “Cys” box, UBA domains, and
C-terminal UCH-2 domain with conserved “His”
box. The absence of an N-terminal extension in the

Table Ill. Phenotypic variation observed in mutant seeds
Percentage of Seeds Observed with Specified Mutant Phenotype

Mutant :‘)?a'nslie:edj Endosperm titan phenotype® Arrested embryo phenotype

Strong Moderate Weak Preglobular Globular NDP
ttn1-2 100 78 0 22 84 0 16
ttn1-3 100 67 9 24 96 0 4
ttn4 96 72 12 16 73 0 27
ttn6-1 100 81 14 5 28 70 2
ttn6-4 93 68 22 10 13 87 0
ttn9 100 73 14 13 50 0 50

2 Seeds with giant endosperm nucleoli were classified as strong, those with nucleoli of intermediate

sizes were called moderate, and those with smaller nucleoli were considered weak.

detected because the embryo was too small.

> ND, Not
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rice protein may reflect an incorrect gene model.
Sequence comparisons of these conserved motifs
have recently been published by Doelling et al.
(2001).

TTN4 and TTN9 Appear to Be Plant-Specific Proteins

Although the identities of TTN4 and TTN9 are each
based on analysis of a single mutant allele, the ge-
netic data summarized in Table I are consistent with
tagging, and both sides of each insert were recovered
and found to match a single locus. The isolation of
single mutant alleles in contrast to duplicate alleles
for other titans is also consistent with the small size of
these genes. T-DNA insertion sites and predicted
gene structures are presented in Figure 7. The TTN4
gene model predicted from the sequencing project
(Arabidopsis Genome Initiative, 2000) was confirmed
through isolation of a full-length cDNA. Two amino
acid differences identified were attributed to errors
in sequencing of the cDNA. The SAG18 partial cDNA
sequence (AF053063) described by Weaver et al.
(1998) in their screen for senescence-associated genes
corresponds to the 3’ end of the full-length transcript.
The T-DNA insert in ttn4 is located in the 3'-
untranslated region. The predicted protein product
contains 281 amino acids and lacks defined domains
and sequence similarity to known proteins. BLASTP
analysis revealed a related Arabidopsis gene
(F14F18.40) with 47% identity (e = —60) and a cor-
responding EST. A similar gene has also been iden-
tified in rice (BAB56093; 47% identity; e = —23). No
significant matches were found with any proteins
identified from other organisms. TTN9 appears to be
a single copy gene that is expressed in siliques based
on EST data. The predicted protein is 282 amino acids
in length and lacks known motifs. One BLASTP
match was identified in GenBank: an EST (AF325722;
32% identity; e = —10) from pistils of an apomictic
grass (Pennisetum ciliare). These results are consistent
with the conclusion that TTN9 and TTN4 are plant-
specific proteins of unknown function.
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Figure 6. Map-based localization of TTN7. The TTNT gene was
localized to BAC T4C21 on chromosome 3 by analyzing recombi-
nants produced from crosses with visible markers for the presence of
linked molecular markers as described in the text.
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Figure 7. Gene structures and T-DNA insertion sites for TTN1, TTNG6,
TTN4, and TTNY. Large black boxes designate exons, stippled boxes
are introns, striped rectangles correspond to untranslated regions,
and thin rectangles represent adjacent genomic DNA. Insertion sites
and associated deletions are shown above the predicted gene struc-
tures. Gene structures for TTN6 and TTN4 have been confirmed by
cDNA sequence analysis. Models for TTNT and TTN9 intron and
exon boundaries are based on the Arabidopsis Genome Initiative
(2000).

DISCUSSION

TITAN Proteins Have Diverse but Overlapping
Functions in Seed Development

We have identified two networks of TITAN proteins
in Arabidopsis that regulate endosperm nuclear divi-
sion and cellularization. A model illustrating the func-
tions of these proteins is presented in Figure 10. One
network involves chromosomal scaffold proteins
known as condensins (SMC2 and SMC4) and cohesins
(SMC1 and SMC3). These myosin-like ATPases play a
central role in chromosome condensation, sister chro-
matid cohesion, dosage compensation, and recombi-
nation repair (Hirano, 2000). The importance of SMC
proteins in endosperm development became apparent
when TTN3 was identified as an SMC2 condensin and
was later confirmed when additional titans were
found to be disrupted in SMC cohesins (Liu et al.,
2002). A second network of TITAN proteins involves
the regulation of microtubule assembly. To our knowl-
edge, the importance of this network in plants is de-
scribed for the first time in this report. The titan phe-
notype therefore can result from disruption of either
chromosomal proteins or cytoskeletal organization.
This conclusion is consistent with the contrasting
models of gene functions presented when titan mu-
tants were first identified (Liu and Meinke, 1998).

Two defining features of early endosperm devel-
opment in angiosperms are nuclear migration and
the suppression of phragmoplast formation follow-
ing nuclear division (Olsen, 2001). These processes
require appropriate coordination between cytoskel-
etal organization and cell-cycle progression. The
complex networks of TITAN proteins described here
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Figure 8. Conserved protein domains identified in tubulin-folding cofactor D. Each segment corresponds to a conserved
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sequences. Numbers mark the amino acid location within the protein. Species and GenBank accessions: Arabidopsis
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(Q10197).

perform an essential role in maintaining chromosome
structure and function throughout the cell cycle and
in regulating the establishment of the microtubule
arrays required for chromosome movement and
phragmoplast formation. TITAN proteins therefore
can be viewed as central mediators in processes that
help to distinguish endosperm tissue from adjacent
parts of the seed.

TTN1 and TTN5 Encode Proteins That Interact in
Yeast and Humans

Many proteins have been identified that regulate
microtubule dynamics in eukaryotes (Nogales, 2000).
The formation of a/p-tubulin heterodimers begins
with the appearance of chaperonin complexes and
proceeds through interactions with specialized fold-
ing cofactors (Tian et al., 1996; Radcliffe et al., 2000a).
Cofactor D associates with B-tubulin subunits and is
encoded by Alpl in S. pombe (Hirata et al., 1998) and
CIN1 (for chromosome instability) in S. cerevisiae
(Fleming et al., 2000). Loss of Alp1 activity is lethal
and results in abnormal mitoses, destruction of mi-
crotubule structures, and defects in cell division
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(Hirata et al., 1998). In contrast, CINI mutations are
not lethal (Stearns et al., 1990; Fleming et al., 2000). In
addition to modulating assembly of tubulin het-
erodimers, cofactor D functions as a GTP-activating
protein for hydrolysis of GTP by B-tubulin and sub-
sequent release of free heterodimers (Nogales, 2000).
Cofactor D can also interact with native tubulin, alter
the ratio of free subunits by sequestering B-tubulin
from GTP-bound heterodimers, and stimulate de-
struction of heterodimers (Bhamidipati et al., 2000;
Martin et al., 2000).

ARL2 interacts directly with human cofactor D in
culture, prevents degradation of tubulin het-
erodimers, and reduces the GTP-activating protein
activity of cofactor D in vitro (Bhamidipati et al.,
2000). Deletion of the ARL2 homolog in S. pombe
(Alp41) results in defects in cell division similar to
those found in cofactor mutants (Radcliffe et al.,
2000a, 2000b). Therefore, ARL2 (Alp41) and cofactor
D (Alpl) are essential proteins in fission yeast. The
subtle phenotype of CIN4 (ARL2) knockouts is con-
sistent with the nonessential role of tubulin cofactors
in budding yeast (Stearns et al., 1990; Fleming et al.,
2000).
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Nuclear and cytoskeletal defects observed in ttnl
and ttn5 seeds are consistent with known roles of
ARL2 and cofactor D in regulating microtubule dy-
namics in fission yeast and humans. Enlargement of
endosperm nuclei and nucleoli appears to result from
microtubule-associated defects in chromosome me-
chanics and cell plate formation coupled with contin-
ued progression through the cell cycle. Defects in mi-
crotubule organization have been documented with
fluorescence microscopy in the corresponding pilz mu-
tants (Mayer et al., 1999). The dramatic changes in
embryo cell morphology described here are consistent
with known functions of microtubules in plants. These
functions have been difficult to address from a genetic
perspective in Arabidopsis because of redundancy in
the tubulin gene family (Kopczak et al., 1992; Snustad
et al., 1992). Several mutants defective in microtubule
organization have nevertheless been identified, in-
cluding ton2/fass (Torres-Ruiz and Jurgens, 1994; Traas
etal., 1995), mor1 (Whittington et al., 2001), bot1 (Bichet
et al., 2001), zwi (Oppenheimer et al., 1997), and fra2/
AtKTN1 (Burk et al., 2001). Changes in cell morphol-
ogy have also been noted following exposure of roots
to microtubule inhibitors (Baskin et al., 1994). We de-
scribe here a genetic system for studying the conse-
quences of a dramatic loss of microtubule function,
demonstrate the importance of ARL2 and cofactor D
in seed development, and clarify the connection be-
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Figure 9. Conserved Pfam domains identified in TTN6 (UBP14)-
related proteins from different organisms. TTN6 contains all of the
protein domains expected for DUBs of the isopeptidase T class. Pfam
analysis (Bateman et al., 2000) revealed the presence of a zinc finger
UBP domain (ellipse), UCH-1 domain (diamond) with conserved
“Cys” box, two UBA domains (hexagons), and a C-terminal UCH-2
domain with conserved “His” box in the expected locations. Organ-
isms and GenBank accession numbers: A, Arabidopsis, TTN®,
AAG42755; B, rice, BAB17073; C, human, XP_006971; D, Mus
musculus, NP_038728; E, S. cerevisiae, UBP14, NP_009614; F, D.
discoideum, P54201; G, fruit fly, AAF47720.
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Figure 10. Model of TITAN gene functions in Arabidopsis. Nuclear
division in the developing endosperm requires at least two networks
of TITAN proteins. One modulates chromosome integrity through
scaffold proteins known as cohesins (SMC1 and SMC3) and con-
densins (SMC2). Another regulates microtubule assembly through
interactions between ARL2 and tubulin-folding cofactor D. Knock-
outs in AtSMCH4, protein targets of TTN6 activity, and cellular func-
tions of TTN4 and TTN9 remain to be identified.

tween ARL2 function and microtubule dynamics in
plants.

The Ubiquitin Pathway Is Linked to TITAN Functions

The ubiquitin pathway plays a key role in selective
degradation of proteins in eukaryotic cells (Hershko
and Ciechanover, 1998). Targeted proteins are mod-
ified through the formation of an isopeptide bond
between the C terminus of ubiquitin and the e-amino
group of Lys on the target protein (Naviglio et al.,
1998). DUBs are hydrolyzing proteases that process
primary ubiquitin gene products, edit the ubiquiti-
nation state of cellular proteins, and recycle ubiquitin
released following hydrolysis of proteins targeted for
destruction via the proteasome. Isopeptidase DUBs
have specificity for substrates containing e-amide
bonds to a side chain Lys (Wilkinson, 1997). Some
isopeptidases can also disassemble specific ubiquitin-
protein conjugates before proteolysis by the protea-
some. This process is thought to have either a regu-
latory function for essential proteins or a salvaging
function for incorrectly ubiquitinated proteins (Her-
shko and Ciechanover, 1998). Two general classes of
DUBs that differ in sequence and substrate specificity
have been identified: small UCH proteins and UBP
proteins with conserved Cys and His boxes (Wilkin-
son, 1997). These DUBs have the ability to cleave
ubiquitin linked to target proteins by either peptide
or isopeptide bonds. TTN6 (AtUBP14) is a large pro-
tein with unknown substrate specificity but charac-
teristic UBP domains.

A number of DUB genes have already been iden-
tified by mutation. These include fruit fly fat facets,
which is required for reproductive development and
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eye differentiation (Fischer-Vize et al., 1992) and is
thought to act by preventing degradation of its target
regulatory protein (Huang et al., 1995); S. cerevisiae
DOA4 and UBP3, which are required for a variety of
cellular processes including control of DNA replica-
tion (see Wilkinson, 1997) and regulation of gene
silencing (Moazed and Johnson, 1996); and D. discoi-
deum UbpA, which is required for normal develop-
ment but not for continued growth (Lindsey et al.,
1998; Chung and Baek, 1999). The UBP family of
Arabidopsis consists of at least 27 genes with the
conserved protein domains expected for catalytic ac-
tivity (Chandler et al., 1997; Rao-Naik et al., 2000;
Yan et al.,, 2000). Knockouts in two of these genes
(AtUBP1 and AtUBP2) exhibit increased sensitivity to
the amino acid analog canavanine, which can in-
crease the concentration of abnormal proteins pro-
duced during translation (Yan et al., 2000). Therefore,
these family members appear to function in the re-
moval of abnormal proteins from the cell. Although
substrate specificities and cellular localizations of
several Arabidopsis UPBs have been described
(Chandler et al., 1997; Rao-Naik et al., 2000), much
remains to be learned about the precise functions of
specific UBP proteins in Arabidopsis. Doelling et al.
(2001) recently described two allelic UBP14 (TTNG6)
knockouts that resulted in embryonic lethality at the
globular stage, demonstrated that mutant seeds ac-
cumulated multi-ubiquitin chains, consistent with a
defect in ubiquitin cycling, and found that Arabidop-
sis UBP14 complements the corresponding yeast mu-
tant. We demonstrate here the connection between
UBP14 function and a titan seed phenotype.

We propose two models to explain the relationship
between ubiquitin pathways and a titan phenotype.
These models are based on two observations: the
absence of dramatic cell enlargement in ttn6 em-
bryos, which suggests that a disruption of microtu-
bule function is not involved; and the connection
between chromosome stability and protein degrada-
tion recently established for the SSC1 cohesin of yeast
(Rao et al., 2001). According to the first model, accu-
mulation of free multiubiquitin chains enhances the
stability of a target protein that under normal circum-
stances modulates SMC function. An alternative
model is that TTN6 removes ubiquitin directly from
a target protein that influences chromosome dynam-
ics in wild-type seeds and the resulting accumulation
of this regulatory protein in mutant seeds is respon-
sible for the mutant phenotype. This model could
involve the same target protein as described for the
first model but a different mechanism for altering the
stability of this protein.

Embryo Phenotypes Reflect Differences in
TITAN Functions

The titan endosperm phenotype is consistent with
known functions of microtubules and SMC proteins
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in eukaryotes. Even the atypical tfn3 endosperm phe-
notype can be explained by the presence of a related
gene with overlapping functions. Differences ob-
served between titan embryo phenotypes, however,
are more problematic. Two questions remain to be
addressed: Why are giant cells found only in ttn1 and
ttn5 seeds; and why do nuclei in many titan embryos
fail to enlarge? With respect to the second question,
we propose that different cell-cycle checkpoints are
involved in the embryo and endosperm. Disruption
of the SMC complex in the embryo interferes with
essential cell functions and consequently results in
cell abortion. DNA replication and nuclear enlarge-
ment continue in the endosperm because cellulariza-
tion is not required. Disruption of the SMC complex
may also be the cause of abnormalities seen in ttn2
and ttn9 seeds, which have similar embryo pheno-
types. The intermediate ttn4 embryo phenotype is
intriguing because the wall thickenings seen late in
development are reminiscent of changes associated
with programmed cell death and differentiation of
tracheary elements (Fukuda, 2000; Roberts and Mc-
Cann, 2000). The most dramatic embryo phenotype
observed to date is the striking cell enlargement
found in ttnl and ttn5 seeds. The continuation of
DNA replication in these embryos indicates that the
SMC-related checkpoint is bypassed. The progressive
cell enlargement demonstrates that elimination of
ARL2-cofactor D-mediated regulation of microtubule
assembly is not immediately lethal. Whether a simi-
lar mechanism is used in the formation of giant feed-
ing cells exposed to root-knot nematodes (Niebel et
al., 1996) remains to be explored.

MATERIALS AND METHODS
Plant Materials and Growth Conditions

The ttn1-1, ttn2, and ttn3 mutants were generated through
Agrobacterium tumefaciens-mediated seed transformation of
the WS ecotype (Feldmann, 1991) and were identified and
maintained as described (Liu and Meinke, 1998). The ttn5-2
mutant was isolated by Wolfgang Lukowitz (Carnegie Insti-
tution of Washington) in the Landsberg erecta ecotype fol-
lowing seed mutagenesis with ethyl methanesulfonate
(McElver et al., 2000). The remaining titan mutants described
in this report were produced at Syngenta through A.
tumefaciens-mediated plant transformation of the Columbia
ecotype using the vacuum infiltration (Bechtold and Pelle-
tier, 1998) and floral dip (Clough and Bent, 1998) methods.
Seeds can be obtained through the Arabidopsis Biological
Resource Center. Details of plant transformation, vector de-
sign, and screening of insertion lines for seed defects are
presented in McElver et al. (2001). Additional information
on mutants defective in SMC genes (ttn3, ttn7, and ttn8) can
be found in Liu et al. (2002). Plants were grown in pots
containing a mixture of vermiculite, soil, and sand, placed in
a growth room at 24° = 2°C under fluorescent lights on 16-h
light/8-h dark cycles, and watered daily with a fertilizer
solution (Heath et al., 1986). Heterozygotes were identified
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by screening immature siliques for the presence of 25%
defective seeds following self pollination (Meinke, 1994).

Genetic and Phenotypic Characterization

T-DNA vectors used for transformation experiments
conferred resistance to kanamycin (ftn3), hygromycin
(ttn4), or Basta (ttnl-2, ttnl-3, ttn6-1, ttn6-3, ttn6-4, and
ttn9). Linkage between the T-DNA insert and mutant phe-
notype was demonstrated by transplanting resistant seed-
lings from selection plates to soil and scoring the resulting
plants for the presence of the seed mutation (McElver et al.,
2001). Mapping of ttn4 with visible markers was performed
as described by Franzmann et al. (1995). Complementation
tests were performed by crossing heterozygotes and scor-
ing the resulting siliques for 25% defective seeds with the
expected phenotype. Mutant seeds cleared for observations
were treated with Hoyer’s solution (Meinke, 1994) and
examined with a compound microscope (model E600; Ni-
kon, Tokyo) equipped with Nomarski optics. Images were
captured with a DXM1200 digital imaging system (Nikon).
Sections of embedded mutant seeds were prepared as
noted by Liu and Meinke (1998).

Map-Based Localization of TTN1

Crosses were made between ftnl heterozygotes (WS
ecotype) and either dis1, clv2, er, tt5 homozygotes or er, gl1,
cer7 homozygotes (Landsberg) to identify crossovers in the
vicinity of TTN1. Known RFLP markers (CD2-12 and
pCIT1210), cleaved-amplified polymorphic sequence
markers (IMK2 and IMK3), and SSLP markers (nga6) were
used to estimate the position of TTN1 on the physical map.
Eight cleaved-amplified polymorphic sequence markers
(TT5, T22D23T7, F26K11sp6, agll3, FUS6, 2A19E, ACS1,
and 2A19B) based on the BAC contig and genomic se-
quences in this region were then used to initiate a walk
toward the TTN1 gene. Sequence details, PCR primer se-
quences, cycling conditions, and information on restriction
enzymes used can be obtained upon request from the
authors.

TTN Gene Identification and Sequence Analysis

Plant sequences flanking T-DNA insertion sites in
tagged mutants were obtained through plasmid rescue or
thermal asymmetric interlaced-PCR and confirmed by di-
rect PCR sequencing using a combination of genome-
specific and T-DNA primers as described in detail by
McElver et al. (2001). The TTN4 full-length cDNA was
isolated and sequenced according to standard methods
(McElver et al., 2000). Sequence comparisons were per-
formed using the BLAST 2.0 algorithm (Altschul et al.,
1997) with default settings and the low complexity filter
removed. Conserved protein motifs were identified with
Pfam (Bateman et al., 2000) and were subjected to CLUST-
ALW (Thompson et al., 1994) and BLOCKS (Henikoff et
al., 1995) analyses through the Baylor College of Medicine
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(Houston; Smith et al., 1996; http://searchlauncher.bcm.
tmc.edu).
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