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Ziehl-Neelsen (ZN) staining for the diagnosis of tuberculosis (TB) is time-consuming and operator depen-
dent and lacks sensitivity. A new method is urgently needed. We investigated the potential of an electronic nose
(EN) (gas sensor array) comprising 14 conducting polymers to detect different Mycobacterium spp. and
Pseudomonas aeruginosa in the headspaces of cultures, spiked sputa, and sputum samples from 330 culture-
proven and human immunodeficiency virus-tested TB and non-TB patients. The data were analyzed using
principal-component analysis, discriminant function analysis, and artificial neural networks. The EN differ-
entiated between different Mycobacterium spp. and between mycobacteria and other lung pathogens both in
culture and in spiked sputum samples. The detection limit in culture and spiked sputa was found to be 1 � 104

mycobacteria ml�1. After training of the neural network with 196 sputum samples, 134 samples (55 M.
tuberculosis culture-positive samples and 79 culture-negative samples) were used to challenge the model. The
EN correctly predicted 89% of culture-positive patients; the six false negatives were the four ZN-negative and
two ZN-positive patients. The specificity and sensitivity of the described method were 91% and 89%, respec-
tively, compared to culture. At present, the reasons for the false negatives and false positives are unknown, but
they could well be due to the nonoptimized system used here. This study has shown the ability of an electronic
nose to detect M. tuberculosis in clinical specimens and opens the way to making this method a rapid and
automated system for the early diagnosis of respiratory infections.

The World Health Organization (WHO) has declared tu-
berculosis (TB) a global emergency. It is estimated that one-
third of the world’s population is infected with Mycobacterium
tuberculosis. An estimated 8 to 9 million new cases occur each
year, with 2 to 3 million deaths (4). The majority of these new
infections and deaths occur in developing countries. The hu-
man immunodeficiency virus (HIV) epidemic has massively
contributed to the worldwide tuberculosis problem.

The usual method of diagnosing TB in low-income countries
is by detection of acid-fast bacteria in sputum by direct micros-
copy. When done properly, 60 to 70% of all adults with pul-
monary TB can be identified using the Ziehl-Neelsen (ZN)
staining procedure, followed by microscopic examination (11,
19). However, in areas of endemicity, laboratories are often
overloaded with samples for smear examination. Therefore, a
new simple and rapid diagnostic test should directly replace
microscopy with similar specificity and sensitivity (19). In the
past, research was mainly focused on the development of either
antibody/antigen detection assays or the development of nu-
cleic acid amplification reactions.

Against this background, we have investigated the potential
of a gas sensor array (“electronic nose” [EN]) to detect M.
tuberculosis in culture and sputum. It is well known that smell

can be used to diagnose diseases, and it has been used by both
the Greeks and the Chinese since 2,000 BC (12). Electronic
nose is the colloquial name for an instrument made up of
chemical sensors combined with a pattern recognition system
(5). The reversible adsorption of volatile organic compounds
(VOCs) to the sensor surface leads to a change of physical
properties (conductivity, resistance, and frequency) of the sen-
sor, which is measured. The key function of an EN is to mimic
the human olfactory system by combining nonspecific gas sen-
sors with a pattern recognition system to analyze and charac-
terize complex odors without separation of the mixture into
individual components. In the EN, the human olfactory recep-
tors have their analogues in chemical sensors that produce an
electrical signal (similar to nerve cells). Each sensor within the
array is characterized by partial and overlapping specificities to
VOCs. Due to the partial and overlapping specificities, a
unique response curve is recorded during the measurement by
each sensor containing the vital information to allow discrim-
ination of the different samples. To describe this information,
the response curve is described by mathematical terms ex-
pressed as maximum absorption rate, desorption rate, maxi-
mum response (or divergence), and area under the response
curve. These mathematical terms are subsequently analyzed by
pattern recognition software. The pattern recognition software
corresponds to the cerebral cortex of the brain and is able to
classify and memorize odors (1, 18).

Electronic noses have been applied mainly in the food in-
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dustry to characterize the odors of beverages (2, 17) or olive oil
(7). More recently, researchers discovered the potential of
electronic noses as a diagnostic tool for the detection of My-
cobacterium bovis in badgers and cattle (3). A review of med-
ical applications is given elsewhere (15, 23).

The aim of this study was to investigate the potential of an
electronic nose to detect Mycobacterium tuberculosis and other
pathogens in both culture and patients’ sputa as a first step
toward simple breath analysis for the specific, rapid, and non-
invasive diagnosis of diverse lung infections.

MATERIALS AND METHODS

Liquid cultures. All bacteria (Mycobacterium tuberculosis, RIVM myc 4514;
Mycobacterium avium, RIVM myc 3875; Mycobacterium scrofulaceum, RIVM
myc 3442; and Pseudomonas aeruginosa, AMC 23123) were cultured in Middle-
brook 7H9 medium with oleic acid-albumin-dextrose-catalase enrichment. The
bacteria were incubated at 37°C until an optical density (420 nm) of 0.30 (�2 �
108 bacteria ml�1) was reached.

Sputum samples. The study was approved by the ethics committee of the
Academic Medical Center, Amsterdam, The Netherlands, and The Saint Francis
Hospital in Katete, Zambia. All subjects gave written permission for sputum
sampling after oral and written information was provided.

Sputum samples were collected from 280 patients with suspected TB either
from The Saint Francis Hospital in Katete, Zambia (n � 80), or from the WHO
Sputum Bank (n � 200) (through the WHO Specimen Bank). In addition,
sputum samples were collected at the Academic Medical Center, Amsterdam,
The Netherlands, from 7 patients with proven pneumonia (caused by Strepto-
coccus pneumoniae) and from 50 patients with proven non-TB (serving as neg-
ative controls). All patients were examined by chest X ray, and their sputum
samples were examined by ZN staining and liquid culture (either by BacT/
ALERT from bioMérieux, France, or by Bactec MGIT 960 from Becton Dicken-
son). Culture was used as the “gold standard” in this study as both inclusion and
exclusion criteria for TB. Furthermore, the HIV status and the smoking habits of
the suspected TB patients were investigated. The collected sputum samples were
stored at �70°C until the analysis was performed.

Spiked sputum samples. A pool of 25 sputum samples (each 1 ml) was made
from the above-mentioned non-TB patients (n � 50) for spiking purposes. The
sputum pool was spiked with various numbers of different bacterial isolates,
including M. tuberculosis, M. avium, and P. aeruginosa, as well as a mixture
(50:50) of M. tuberculosis and P. aeruginosa, which served as a mixed-infection
sample.

Sample preparation and headspace analysis. The liquid cultures were cooled
to 4°C and allowed to equilibrate for at least 20 min to minimize the loss of
volatiles during the transfer into smaller-headspace vials. Two milliliters of the
“cold” culture was transferred into a 5-ml-headspace vial (Macherey and Nagel,
United Kingdom) and immediately sealed with a silicon/Teflon crimp cap (Jaytee
Bioscience Ltd., United Kingdom). The headspace was allowed to equilibrate for
45 min at 37°C.

The frozen sputum samples were defrosted on ice to minimize the loss of
volatiles; 0.5 ml of “well-mixed” sputum was transferred into a sterile 5-ml-
headspace vial, mixed with 0.5 ml of a 1 M NaCl solution (4°C), and subsequently
sealed.

Spiked sputum samples were prepared by mixing 0.5 ml of non-TB sputa
(individual samples or a pool) with 0.5 ml of “cold and equilibrated” bacterial
suspension containing 1 M NaCl. Negative control samples were prepared by
mixing 0.5 ml of individual non-TB sputum samples with 0.5 ml of a 1 M NaCl
solution (4°C). All control samples were prepared in 5-ml-headspace vials as
described above. All sputum samples were incubated at 37°C for 330 min prior
to the headspace analysis. Two cycles of freezing and thawing had no influence
on the results (not shown).

Gas-sensing system and headspace sampling. For this study, an electronic
nose (Bloodhound BH-114; Bloodhound Sensors, Leeds, United Kingdom) that
employed 14 conducting polymers based on polyaniline was used. The sensor
unit automatically set two calibration points. The first was the baseline, which
was obtained when activated-carbon-filtered (Carbon Cap 150; Whatman) air
was passed over the sensor at a flow rate of 4 ml min�1. The second calibration
point was a reference point obtained from the headspace of a control sample vial
containing 9 ml of distilled water.

The interaction of the VOCs with the conducting polymer surface produced a
change in resistance over time, which was measured and subsequently displayed

on a computer screen for each sensor. The curve was similar to the classical
Langmuir adsorption curve. Two sensor parameters were selected to study the
sensor response: divergence (maximum response) and area under the response
curve. The sampling profile was set at 6 seconds of absorption and 14 seconds of
desorption for the analysis of liquid samples; for the analysis of spiked sputum,
we used 7 seconds of absorption and 21 seconds of desorption.

For the analysis of the unknown headspace, the sample vials were connected
to the electronic nose by inserting a needle into the headspaces of the sample
vials. The unknown headspace was passed over the sensor surface at a flow rate
of 20 ml min�1, which was automatically set by the sensor unit. Between each
pair of measurements, a time delay of 2 min was set. The individual samples in
each experiment were tested in a randomized, blinded fashion.

Data analysis. Principal-component analysis (PCA), discriminant function
analysis (DFA), and an artificial neural network (ANN) were applied to analyze
the multivariate data. The sensor response was normalized prior to the multi-
variate data analysis (except for the determination of the detection limit). To
perform these analyses Excel add-in software (XLstat version 3.4) was used. Two
sensor parameters, namely, the maximum response and the area under the
response curve (Langmuir adsorption spectrum), were used to perform the
analysis.

Principal-component analysis is a method aimed at reducing the amount of
data when there is a correlation present. The idea is to find principal components
(PC), which are linear combinations of the original variables (sensor responses)
describing each specimen. In other words, PCA projects the original data matrix
from a high-dimensional space into a lower-dimensional space (a three-dimen-
sional space or plane) without losing essential information (variance). The rela-
tionship between samples can be visualized by plotting individual principal com-
ponents against each other (13).

Discriminant function analysis is a supervised classification method aimed at
finding a formal decision boundary between classes. The idea is to find linear
discriminant functions (S1, S2, . . . , Sn), which are linear combinations of the
original variables. The classification model (DFA) was built on the first four PC,
which normally account for over 90% of the variance (information) of the
original data matrix. In each case, the DFA model was cross-validated as follows.
Data from individual samples (culture or sputum) were withheld, and a DFA
model was built on the remaining data set (training set). The data from the
withheld samples (testing set) were then inserted into the discriminant functions
and subsequently assigned to the class for which the centroid had the smallest
Euclidean distance to the unknown sample. The result could be visualized by
plotting the individual discriminant functions against each other (13).

Artificial neural networks are attempts to mimic the neurons in the human
brain and were used here for classification of sputum samples into TB and
non-TB. Such networks have a number of linked layers of artificial neurons,
including input, hidden, and output layers. The ANN is trained using a large
training set of sputum samples from suspected TB patients. In this study, a back
propagation network with a sigmoid transfer function was applied. During the
training period, the weights connecting individual neurons were adjusted so that
the error between output signal and target signal was minimized (13). The
performance of the ANN was evaluated using the test set of sputum samples.
Only the sputum samples from the suspected TB patients (n � 280) and from the
proven non-TB cases (n � 50) were included in the ANN analysis.

RESULTS

Specificity of the EN. The “smells” of three Mycobacterium
sp. cultures (M. tuberculosis, M. avium, and M. scrofulaceum)
and one Pseudomonas aeruginosa culture were analyzed and
compared to the “odor” of blank medium. The raw EN data
were analyzed by PCA (data not shown), followed by DFA.
The DFA model was built on the first four principal compo-
nents. Figure 1 shows the results of the DFA analysis. It was
possible to distinguish between the different bacterial
classes using the first two discriminant functions (S1 and S2).
The three different Mycobacterium spp. were grouped
closely together but still allowed discrimination (Fig. 1, top).
The DFA model was validated by the analysis of 15 “un-
known” samples. All unknown samples were correctly clas-
sified as either one of the three Mycobacterium spp., P.
aeruginosa, or blank medium.
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Similarly, when the negative pooled sputum samples were
spiked with M. tuberculosis, M. avium, P. aeruginosa, and a
mixture of M. tuberculosis and P. aeruginosa (at a final concen-
tration of 1 � 108 bacteria ml�1) and analyzed, it was possible
to distinguish between “unspiked” sputum and “spiked” spu-
tum samples (Fig. 1, bottom). Within the spiked sputum sam-
ples, a difference in smell was observable for the different
bacterial classes. The DFA model was validated by the analysis

of 10 unknown samples. All unknown samples were correctly
identified as unspiked sputum or spiked sputum. Within the
spiked sputum samples, all unknown samples were correctly
assigned to one of the four “subclusters” representing the
different bacterial classes (Fig. 1, bottom).

Analytical sensitivity of the EN. Six different concentrated
M. tuberculosis suspensions (1 � 103 mycobacteria ml�1 to 1 �
108 mycobacteria ml�1) were analyzed and compared to blank

FIG. 1. (Top) DFA analysis of liquid cultures of M. tuberculosis (12 samples), M. avium (12 samples), M. scrofulaceum (12 samples), and P.
aeruginosa (12 samples) and blank medium (12 samples). Cross-validation: 15 samples (3 from each group) were withheld from building the DFA
model but were subsequently assigned correctly once the model was built (encircled symbols). S1 and S2, discriminant functions 1 and 2. The
numbers in parentheses indicate the percentages of the data matrix described by the relevant functions. The circles were added by the authors.
(Bottom) DFA analysis of sputum samples spiked with M. tuberculosis (12 samples), M. avium (12 samples), P. aeruginosa (12 samples), mixed
infection (12 samples), and blank sputum (12 samples). Cross-validation: 10 samples (2 from each group) were withheld from building the DFA
model but were subsequently assigned correctly once the model was built (encircled symbols).
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medium. The raw EN data were analyzed by PCA (data not
shown), followed by DFA. The results of the DFA analysis
are shown in Fig. 2, top. The DFA model was validated by
the analysis of 14 “unknown” samples. Two out of 14 un-
known samples were incorrectly classified as blank medium
(Fig. 2, top). Both incorrectly classified samples belonged to
the group containing 1 � 103 mycobacteria ml�1. All other

unknown samples were correctly identified. Therefore, the
detection limit was determined to be as low as 1 � 104

mycobacteria ml�1.
The detection limit for M. tuberculosis in spiked pooled

sputum samples was also determined. For this purpose, a spu-
tum pool was divided into two parts. One part was spiked with
an M. tuberculosis suspension containing 1 � 104 mycobacteria

FIG. 2. (Top) Determination of the detection limit of the electronic nose for M. tuberculosis in liquid culture. Six different concentrations
ranging from 1 � 103 to 1 � 108 mycobacteria ml�1 were analyzed (seven samples for each concentration and seven blanks). Cross-validation:
14 samples (2 samples from each group) were withheld from building the DFA model. Samples containing more than 1 � 104 mycobacteria
ml�1 were correctly assigned (encircled symbols). In contrast, blank medium and samples containing 1 � 103 mycobacteria ml�1 could not
be distinguished from each other. (Bottom) Determination of the detection limit of the electronic nose for M. tuberculosis in spiked sputum.
The sputum was spiked with 1 � 104 mycobacteria ml�1. Twenty replicates were analyzed for each group. Cross-validation: 12 samples (4
samples from each group) were withheld from building the DFA model but were subsequently assigned correctly once the model was built
(encircled symbols).
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ml�1. The raw EN data were analyzed by PCA (data not
shown), followed by DFA. The bottom panel of Fig. 2 shows
that it was possible to distinguish between spiked and unspiked
samples. The DFA model was validated by the analysis of 12
“unknown” samples. All “unknown” samples were correctly
classified (Fig. 2, bottom). The variability within the unspiked
samples was higher than within the spiked samples.

Performance of the EN using clinical samples. The PCA
analysis of 50 positive control samples (i.e., the individual
non-TB sputum samples spiked with 108 M. tuberculosis cells
ml�1), 50 negative non-TB sputum samples from The Nether-
lands, and 280 clinical samples from Africa (Table 1) is shown
in Fig. 3. It was possible to obtain good discrimination between
TB and non-TB samples. As shown in Fig. 1, TB-negative
samples were found on the left-hand side, whereas TB positive
samples were on the right-hand side. Nevertheless, no com-
plete separation could be obtained, as indicated by the over-
lapping circles in Fig. 3. In both groups (TB positive and TB
negative), a subcluster could be identified. These subclusters
contained the samples of smoking patients. However, not all
smokers were present in this subcluster (89% were present).
Patients suffering from pneumonia formed a separate cluster.

After training the neural network with 196 of the original

samples (133 TB and 63 non-TB samples), the remaining 134
samples were used to validate the model. Among the 134 samples
were 55 culture-confirmed TB samples, of which 51 were ZN
positive and 4 were ZN negative. The results from the ANN
are summarized in Table 2. The neural network was able to
predict 49 TB-positive patients out of 55 correctly. Six sus-
pected TB culture-positive samples gave a false-negative re-
sult. Among these six false negatives were four ZN-negative
and two ZN-positive patients. Three of the four ZN-negative
false negatives were HIV positive, and one was a smoker.
Among the ZN-positive false negatives was one HIV-positive
patient, who was also a smoker.

The neural network was also able to predict 72 suspected
TB-negative patients correctly. Seven TB-negative patients
gave a false-positive result. One false-positive patient was HIV
positive and a smoker.

The sensitivity for the detection of culture-proven TB was
89% (95% confidence interval [CI], 80 to 97%), the specificity
was 91% (95% CI, 85 to 97%), and the positive and negative
predictive values were 88% (95% CI, 78 to 96%) and 92%
(95% CI, 86 to 98%), respectively.

FIG. 3. PCA plot showing the analysis of negative (Neg.) control samples (50 samples), positive (Pos.) control samples (50 samples), confirmed
pneumonia (7 samples), and clinical samples (92 samples, TB negative; 188 samples, TB positive). PC 1 and PC 2 are the first two principal
components; the numbers in parentheses represent the percentages of information described by each principal component (circles were added by
the authors).

TABLE 1. Details of patients that provided clinical samples,
showing TB status (culture), sex, HIV status, and smoking habits

Status Total no. % Males
(no.)

% HIV�

(no.) % Smokers

TB� 188 67.0 (126) 53.7 (101) 31.4 (59)
TB� 142 59.2 (84) 29.6 (42) 9.2 (13)

Total 330 63.6 (210) 43.3 (143) 21.8 (72)

TABLE 2. Performance of the electronic-nose–neural-network
system in comparison to culture

Status No. (%) with
culture-confirmed TB

No. (%) culture
TB negative Total

EN positive 49 (89.9) 7 (8.9) 56
EN negative 6 (10.9) 72 (91.1) 78

Total 55 (100) 79 (100) 134
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DISCUSSION

Current global TB control depends on the diagnosis of
cases, followed by adequate treatment. The available labo-
ratory methods for the detection of M. tuberculosis do not
fully meet the need in environments with high TB and HIV
prevalences (19).

This study showed that volatile detection through electronic-
nose technology is able to identify M. tuberculosis in both
cultures and sputum samples. It has long been established that
smell can be used to diagnose diseases, such as diabetes and
uremia (10, 20). Pavlou and Turner (15) and Pavlou et al. (14,
16) were among the first to apply electronic noses in medical
diagnostics. They showed that different bacteria, such as Heli-
cobacter pylori, E. coli, and M. tuberculosis, generate a unique
“smell” and can therefore be differentiated from each other,
allowing a diagnosis. Recently, the same EN used in this study
was shown to be able to diagnose M. bovis infection in badgers
and cattle (3).

Electronic-nose technology offers certain advantages, such
as a low detection limit (5 to 0.1 ppm) (21), cost- and time
effectiveness, robustness, simplicity, and operator indepen-
dence, in contrast to molecular or immunologically based as-
says. Therefore, we investigated the ability of an electronic
nose to detect Mycobacterium spp. and other lung pathogens in
culture and sputum. In this study, we showed that Mycobacte-
rium spp. and Pseudomonas aeruginosa emit characteristic
volatiles, allowing discrimination between the different bacte-
rial classes in both culture and sputum (Fig. 1). The intragroup
(class) variability is greater in sputum than in culture. The
reasons for this observation are not clear. The volatility of
molecules is influenced by parameters such as sample viscosity,
equilibrium temperature, and concentration (22). Since the
incubation parameters for liquid and sputum samples were
similar, we assume that the higher viscosity, the heterogeneity,
and/or a stronger background “smell” of sputum might be
responsible for the variability. As shown in Fig. 1, bottom, and
2, bottom, by adding M. tuberculosis to sputum, an additional
“odor” was introduced into the sample headspace, leading to a
reduced intragroup variability. This indicates that mycobacte-
ria release enough volatiles into the headspace, even in a
complex matrix (sputum), to allow a diagnosis at low concen-
trations (1 � 104 mycobacteria ml�1). This result is of extreme
importance for clinical diagnosis, where sputum is the usual
source for TB detection.

Electronic noses show a linear relationship between sensor
response and concentration (8). This concentration depen-
dency was exploited here to determine the detection limit (Fig.
2). This relationship might also reveal relevant clinical infor-
mation. For the treatment itself, it is not important how many
bacteria are present in sputum, but the number of bacteria
present greatly influences the infectiousness of patients. This
opens the possibility to predict not only the presence of TB,
but also the risk for patients to transmit the disease.

The sensitivity of the ZN stain compared to culture under
field conditions is at most 50 to 60% (19). With the method
presented, we achieved a specificity of 91% and a sensitivity of
89% compared to culture (Table 2). The electronic nose was
unable to detect four ZN-negative but culture-positive speci-
mens (false negatives). The bacterial loads in these four spec-

imens were most likely below the detection limit of the elec-
tronic nose under the current setup, but larger numbers of
ZN-negative but culture-positive specimens need to be tested.
The detection limit of the electronic nose for M. tuberculosis in
spiked sputum was 104 mycobacteria ml�1 (Fig. 2, top). How-
ever, the two remaining false-negative specimens had a posi-
tive ZN stain (1�) and should therefore contain enough my-
cobacteria to cause a sufficient sensor response. At present, we
do not know the reasons for either the false negatives or false
positives. They could well be due to the nonoptimized system
used here or to sample degradation during storage.

Clinical specimens are more diverse than spiked samples. It
is assumed that the viscosity, the background smell, and espe-
cially, the heterogeneity of sputa influence the outcome of the
analysis. Interestingly, smoking itself did not affect the analysis
in terms of diagnosing TB. However, not all smokers were
grouped in the subclusters shown in Fig. 3. The individual
smoking habits (number of cigarettes per day and last cigarette
before sample taking) could not be established. We assume
that certain smoke ingredients give rise to a slightly different
sensor response, allowing separation.

Seven cases of pneumonia were among the clinical speci-
mens. As shown in Fig. 3, they formed a separate cluster. This
indicates that the causative agent (in this case, S. pneumoniae)
for pneumonia generates a different volatile profile (smell)
than mycobacteria. This is of clinical importance, showing the
potential to differentiate between TB cases and cases of other
respiratory diseases.

To date, it is unknown which volatile compounds are respon-
sible for the sensor response. We assume that the response is
caused by the combined effects of (i) microbial metabolites and
(ii) volatile cellular compounds. In the past, many research
groups tried to identify volatile substances emitted from mi-
croorganism using gas chromatography or gas chromatogra-
phy-mass spectroscopy. Each Mycobacterium species synthe-
sizes a unique set of mycolic acids, among other substances,
which might allow discrimination between different Mycobac-
terium species (Fig. 1) (9). In contrast, Pseudomonas aeruginosa
emits sulfur compounds and esters (6).

The described method is not yet fully optimized for “field”
application. Nevertheless, it potentially fulfils all requirements
for a new diagnostic tool for TB (19), including robustness,
simplicity, sensitivity, and cost-effectiveness. Among many ad-
vantages are the simple sample preparation and its amenability
to automation. Together with an appropriate classification
model, this method has the potential to become a rapid and
automated system for the early diagnosis of respiratory dis-
eases through sputum or even breath analysis. It might also be
possible to improve or modify currently available sensors to-
ward specific M. tuberculosis markers, which would simplify the
optimization of such a system.
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