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Abstract
We study how the notions of importance of variables in Boolean functions as well as the sensitivities
of the functions to changes in these variables impact the dynamical behavior of Boolean networks.
The activity of a variable captures its influence on the output of the function and is a measure of that
variable's importance. The average sensitivity of a Boolean function captures the smoothness of the
function and is related to its internal homogeneity. In a random Boolean network, we show that the
expected average sensitivity determines the well-known critical transition curve. We also discuss
canalizing functions and the fact that the canalizing variables enjoy higher importance, as measured
by their activities, than the noncanalizing variables. Finally, we demonstrate the important role of
the average sensitivity in determining the dynamical behavior of a Boolean network.

Introduction.—Boolean networks are complex systems that were initially proposed as models
of genetic regulatory networks [1,2] but have since been used to model a range of complex
phenomena [3]. It is well known that the bias (internal homogeneity) as well as the number of
input variables (network connectivity) can modulate the order-disorder transition, with higher
homogeneity and lower connectivity leading to more ordered behavior. In addition, networks
constructed from functions belonging to various classes, such as canalizing functions [2] and
certain Post classes [4], can also exhibit a tendency toward ordered behavior.

In the original formulation [1], the connectivity is set to a constant K. However, it is also
possible to let it be random, chosen under various distributions [5,6], with mean connectivity
K. Another important parameter is the bias p of the random functions fi, which is the probability
that the function takes on the value 1. A random Boolean function with bias p can be generated
by flipping a p-biased coin 2K times and thus filling in the truth table. If p = 0.5, then the
function is said to be unbiased. By varying the parameters K and p, the network can be made
to undergo a dynamical phase transition. For example, in the case of unbiased functions, the
critical connectivity is K = 2, meaning that for K > 2, we observe chaotic behavior. In general,
for a given bias p, the critical connectivity is equal to Kc = [2p(1 − p)]−1 (Ref. [7]). Thus, if
K < Kc, perturbations die out and if K > Kc, the damage caused by a perturbation spreads
throughout the network over time. Strongly biased functions (when p is far away from 0.5) are
said to have a high degree of internal homogeneity [2] and are associated with increased order
in Boolean networks.

The bias of a Boolean function is, in a sense, a global parameter that can affect only the
Hamming weight (number of 1s in the truth table) of the function but is unable to capture any
of its local structure. For example, a Boolean function with the truth table (0101010101010101)
may have just as many 1s and 0s as a random unbiased function, but it has a very specific
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structure that plays a role in increasing order in a Boolean network. Of course, this example is
rather extreme, since the above function is a function of only one variable (K = 1), with the
other variables being fictitious. Thus, out of four variables, this one variable has all the
importance whereas the other three variables have no importance, as their values have no way
of altering the output of the function. There is reason to suppose that if we were to allow
gradations of this notion of importance, then functions in which few variables have high
importance and most other variables have low importance would play a similar role in eliciting
order from Boolean networks. In a sense, a network comprised of such types of functions,
despite possibly having a large actual connectivity, would exhibit a low virtual connectivity,
as most input variables in any given function would have very little say in what happens to the
function output.

The same phenomenon manifests itself in the class of so-called canalizing functions, which
are known to play a role in preventing chaotic behavior [1,2,8,9]. A canalizing function is one
in which at least one of the input variables (called canalizing variables) has one value that is
able to determine the value of the output of the function, regardless of the other variables. There
is also evidence that many control rules governing transcription of eukaryotic genes are
canalizing when viewed in the Boolean formalism [10]. Although we have not yet defined a
formal notion of the importance of variables, one would expect that the canalizing variables
exhibit higher importance than the noncanalizing variables.

The tools that we will use to study the relative importance of variables and the effects on the
behavior of Boolean networks are based on partial derivatives of Boolean functions, activities
of variables, and sensitivities of Boolean functions. We should mention in passing that much
of the discussion in this Letter can be formulated in terms of spectral methods or harmonic
analysis on the n cube.

Activities and sensitivities.—In a Boolean function, some variables have a greater influence
over the output of the function than other variables. To formalize this concept, let f: {0, 1}K

→ {0, 1} be a Boolean function of K variables x1, … , xK. Let
∂ f (x) ∕ ∂xj = f (x( j,0))⊕ f (x( j,1))

be the partial derivative of f with respect to xj, where ⊕ is addition modulo 2 (exclusive OR)
and x(j, k) = (x1, …,xj−1, K, xj+1,…,xK), k = 0, 1. Clearly, the partial derivative is a Boolean
function itself that specifies whether a change in the jth input causes a change in the original
function f. It should be noted that the Boolean derivative was recently used to develop a new
order parameter for the random Boolean network phase transition [11].

Now, the activity of variable xj in function f can be defined as
αj

f = 1

2K ∑
x∈{0,1}K

∂ f (x) ∕ ∂xj.

Note that although the vector x consists of K components (variables), the jth variable is fictitious
in ∂f(x)/∂xj. A variable xj is fictitious in f if f(x(j, 1)) for all x(j, 0) and x(j, 1). For a K-variable
Boolean function f, we can form its activity vector α f = α1

f , …, αK
f . It is easy to see that

0 ≤ αj
f ≤ 1, for any j = 1,…,K. In fact, we can consider αj

f  to be a probability that toggling
the jth input bit changes the function value, when the input vectors x are distributed uniformly
over {0, 1}K. Since we are in the binary setting, the activity is also the expectation of the partial
derivative with respect to the uniform distribution: αj

f = E ∂ f (x) ∕ ∂xj . Under an arbitrary

distribution, αj
f  is referred to as the influence of variable xj on the function f [12]. The influence

of variables was used in the context of genetic regulatory network modeling in [13].
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Another important quantity is the sensitivity of a Boolean function f, which measures how
sensitive the output of the function is to changes in the inputs (this was introduced in [14] under
the name of critical complexity). The sensitivity sf (x) of f on vector x is defined as the number
of Hamming neighbors of x on which the function value is different than on x (two vectors are
Hamming neighbors if they differ in only one component). That is,

S f (x) = ∣ {i ∈ 1, …, K : f (x⊕ei) ≠ f (x)} ∣

= ∑
i=1

K
χ f (x⊕ei) ≠ f (x) ,

where ei is the unit vector with 1 in the ith position and 0s everywhere else, and χ [A] is an
indicator function that is equal to one if and only if A is true. The average sensitivity sf is defined
by taking the expectation of sf (x) with respect to the distribution of x. It is easy to see that
under the uniform distribution, the average sensitivity is equal to the sum of the activities:

S f = E S f (x) = ∑
i=1

K
E χ f (x⊕ei) ≠ f (x) = ∑

i=1

K
αi

f .

Therefore, sf is a number between 0 and K.

Intuitively speaking, it seems that the average sensitivity of a function should be related to its
internal homogeneity. If a function is highly homogeneous, meaning that it has either many 1s
or many 0s, then it would be unlikely to change much between neighboring vectors on the K-
dimensional hypercube and hence, its average sensitivity should be low. On the other hand, a
function that is not homogeneous, with roughly equal numbers of 1s and 0s, should exhibit
high average sensitivity. These ideas are correct in the probabilistic sense.

Consider a random Boolean function with bias p. The truth table of such a function is a 2K-
length vector of independent and identically distributed Bernoulli (p) random variables.
Therefore, the probability that two Hamming neighbors are different is equal to 2p (1 − p),
since one can be 1 (with probability p) and the other 0 (with probability 1 − p), and vice versa.
Since this is the same for all Hamming neighbors, all expected activities should be equal. That
is, for each i = 1, …, K, E αj

f = 2p(1 − p), where the expectation is taken with respect to the
distribution of the truth table of the function f. Thus, the expectation of the average sensitivity
is E s f = Σi=1

K E αi
f = Σi=1

K 2p(1 − p) = K2p(1 − p). We can conclude that highly biased
functions (p far away from 0.5) are expected to have low average sensitivity. Similarly, an
unbiased function (p = 0.5) has expected average sensitivity equal to K/2. It is interesting to
note that in the context of random Boolean networks with connectivity K, the expected average
sensitivity determines the well-known critical transition curve with the Lyapunov exponent
[11] being the logarithm of the expected average sensitivity: λ = logE[sf].

Consider Fig. 1. We have generated all functions of K = 4 variables and generated a 2-
dimensional normalized histogram that shows the probability that, given a normalized
Hamming weight (ranging from 0 to 1), a randomly selected function has a particular average
sensitivity (ranging from 0 to 4). The thick black line shows the mean average sensitivity for
each Hamming weight. It is evident that the black line follows exactly the quadratic expression
given by K2p(1 − p).

Activities of variables in canalizing functions.— A function f is said to be canalizing if there
exists an i ∈ {1,…,K} and u, v ∈ {0, 1}, such that for all x1, … , xK ∈ {0, 1}, if xi = u then f
(x1,…,xK) = v. The input variable xi is called the canalizing variable with canalizing value u
and canalized value u. It is easy to show that a canalizing function f can be written either as
f (x1, …, xK ) = xi

q ∨ g(x1, …, xi−1, xi+1, …, xK ) or
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f (x1, …, xK ) = xi
q ∧ g(x1, …, xi−1, xi+1, …, xK ), where q ∈ {0, 1} and ⋁ and Λ denote

disjunction (OR) and conjunction (AND). Here, xi
1 = xi and xi

0 = xi
′, where xi

′ is the
complement or negation of xi. As we already mentioned, it should be expected that in canalizing
functions, the importance of canalizing variables is higher than that of noncanalizing variables.
This can indeed be shown by using activities.

To illustrate this point for the particular case of only one canalizing variable, we can consider
a random canalizing function of the form f(x1, …, xK) = x1 ⋁ g(x2, …, xK), where g is chosen
randomly from the set of all 22K−1 Boolean functions. Without loss of generality, we can
suppose that the first variable, x1, is a canalizing variable. Furthermore, the discussion for other
types of canalizing functions [e.g., f(x1, …, xK) = x1 Λ g(x2, …, xK)] would be nearly identical.
In order to characterize the activities of each of the variables, it suffices to examine only the
activity of x1 and x2, since it is clear that the activities of variables x2, … xK will be identical
in the probabilistic sense if g(x2, … xK is a random unbiased function. Note that activities are
themselves random variables by virtue of f being random. It is fairly straightforward to show
[15] that the expected activity of the canalizing variable x1 is equal to 1/2 whereas the expected
activity of x2 and each of the other variables is 1/4. The expected activity vector is then equal
to E α f = ( 12 , 1

4 , …, 1
4 ) and the expected average sensitivity is equal to

E s( f ) = 1
2 + 1

4
(K − 1) = (K + 1) ∕ 4. The situation for two or more canalizing variables is

analogous. The fact that networks comprised of canalizing functions exhibit more orderly
behavior relative to random networks with the same connectivity is consistent with our intuition
about lower virtual connectivity of canalizing networks in light of the above results. As random
unbiased networks are expected to have average sensitivity of K/2, these results also highlight
the importance of the average sensitivity as an order parameter for Boolean networks.

Dynamics of Boolean networks.—Our goal here is to show that the activities of the variables
of Boolean functions, and consequently their average sensitivities, can reflect the dynamical
behavior of the Boolean networks constructed from these functions. We expected that if in any
given function one activity is considerably higher than all the other activities, the network
should have a tendency toward ordered behavior. This should also be the case when all
functions are canalizing since, as discussed in the previous section, activities of canalizing
variables are expected to be larger than those of noncanalizing variables.

In order to study the dynamics of networks, we will use so-called Derrida curves [2,7]. These
are constructed as follows. Let x(1)1(t) and x(2)(t) be two randomly chosen states at some time
t. The normalized Hamming distance between them is ρ(t) = 1

N Σi=1
N (xi

(i)(t)⊕xi
(2)(t)). Given a

random Boolean network realization, let x(1)(t + 1) and x(t + 1) be the successor states of
x(1)(t), respectively. Similarly, let ρ(t + 1) be the Hamming distance between these successor
states. The Derrida curve consists of plotting ρ(t + 1) versus ρ(t) and averaging over many pairs
of states and random networks. If the network is operating in the chaotic regime, then small
Hamming distances tend to diverge and the Derrida curve lies above the main diagonal for
small initial Hamming distances. This also implies that small gene perturbations (i.e., nearby
states) tend to spread farther apart and networks are sensitive to initial conditions—a hallmark
of chaotic behavior. On the other hand, networks in the ordered regime exhibit convergence
for nearby states, with the Derrida curve lying below the main diagonal. The more the Derrida
curve lies above the main diagonal for small values of ρ(t), the more chaotic is the network.

We performed the following computer experiment. First, we generated a random Boolean
network B1 with N = 100 elements and K = 8 inputs per function such that for each random
function, seven of its variables had activity approximately 0.18 and one variable (chosen

Shmulevich and Kauffman Page 4

Phys Rev Lett. Author manuscript; available in PMC 2006 July 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



randomly) had activity 0.8. Consequently, the sample mean of the average sensitivities was
approximately equal to 2. The average bias of this network was approximately equal to 0.41,
which was computed by averaging over all normalized Hamming weights for the 100 functions.
Briefly, each function in B1 is generated as follows. We start off with f being a randomly
generated function with bias p1 [i.e., Bernoulli (p1)]. Then, if xj is the variable chosen to have
the high activity, then for each x(j,0), f(x(j,1)) = f(x(j,0)) with probability p2 and f(x(j,1)) ≠ f
(x(j,0)) with probablity 1 − p2. Parameters p1 and p2 can be used to control the relative
differences between the high activity and the rest of the activities.

As a next step, we generated another random Boolean network B2 with exactly the same bias.
The size of the network and connectivity were also kept the same. This was done in order to
control for possible confounding effects due to bias. This random network, however, was
generated purely randomly such that all expected activities were equal. Since the bias was
approximately p = 0.41, the expected activities were all equal to 2p(1 − p) = 0.4838 and the
average sensitivity was equal to 3.87.

Figure 2 shows the Derrida plots corresponding to the two networks, B1 and B2, shown as solid
and dashed plots, respectively. It is apparent that the network B1 exhibits more ordered behavior
than B2. It is important to note that the internal homogeneity, which in our case is equal for
both networks, fails to explain the relatively higher order observed in B1. It is also worth
mentioning that none of the functions in B1 turned out to be canalizing. The average
sensitivity,Bas stated above, was markedly different however: 2 for B1 and 3.87 for B2. Thus,
the average sensitivity, in this case, is a much B better indicator of the dynamical behavior than
the bias.

Let us briefly consider another example. Consider a network with K = 18 in which every gene
is governed by the function f(x1, … ,x18) = (x1 Λ x2) ⋁ (x3 Λ x4) ⋁ / ⋁ (x17 Λ x18). It is easy
to show that each of the 18 activities is approximately equal to 0.0501 and the average
sensitivity is approximately 0.0501 × 18 = 0.9010 (<1), implying the network is ordered. The
normalized Hamming weight of f is 0.9249. If we construct a random Boolean network with
K = 18 and bias p =0.9249, then K2p(1 − p) = 2.5001 (>1) and the network is chaotic. Thus,
we can have two networks with identical connectivity and internal homogeneity that lie on
opposite sides of the order-chaos boundary, with the average sensitivity reflecting this
difference.

Concluding remarks.—Our results suggest that the average sensitivity is a useful order
parameter in Boolean network models. In the purely random setting, the average sensitivity
coincides with the well-known critical transition curve, K2p(1 − p) . However, when network
functions are generated according to probability distributions that favor some variables relative
to others, as measured by the activities of the variables, or when functions are chosen randomly
from certain classes of functions (e.g., canalizing), we can use the average sensitivity to capture
the dynamical behavior of the network. Thus, we have an analytical method that allows us to
determine whether a specific network is ordered or chaotic without having to run computer
simulations that construct empirical Derrida curves. For example, given a concrete network,
we can compute the average sensitivity of each function and average these to obtain a single
number that reflects the regime in which the network operates.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIG. 1.
(color online). A 2-dimensional normalized histogram constructed by generating all Boolean
functions of K 4 variables and computing the number of functions with a given normalized
Hamming weight (which is the Hamming weight divided by 16) and with a given average
sensitivity. For each fixed Hamming weight, the histogram of average sensitivities is
normalized such that the sum is equal to 1, so that we can interpret each bar as a probability.
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FIG. 2.
(color online). Derrida curves corresponding to two different random Boolean networks, both
with N = 100 elements and K = 8 inputs in each Boolean function. The solid curve corresponds
to the case where one activity is much higher than all other activities, in each Boolean function.
The dashed curve corresponds to the case where all activities are equal. The internal
homogeneity for both networks is the same.
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