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Abstract

Pyruvate dehydrogenase (PDH) catalyzes the conver-

sion of pyruvate to acetyl-coenzyme A, which enters

into the Krebs cycle, providing adenosine triphosphate

(ATP) to the cell. PDH activity is under the control of

pyruvate dehydrogenase kinases (PDKs). Under hyp-

oxic conditions, conversion of pyruvate to lactate

occurs, a reaction catalyzed by lactate dehydrogenase

5 (LDH5). In cancer cells, however, pyruvate is trans-

formed to lactate occurs, regardless of the presence of

oxygen (aerobic glycolysis/Warburg effect). Although

hypoxic intratumoral conditions account for HIF1A

stabilization and induction of anaerobic metabolism,

recent data suggest that high pyruvate concentrations

also result in HIF1A stabilization independently of

hypoxia. In the present immunohistochemical study,

we provide evidence that the PDH/PDK pathway is

repressed in 73% of non small cell lung carcinomas,

which may be a key reason for HIF1A stabilization and

‘‘aerobic glycolysis.’’ However, about half of PDH-

deficient carcinomas are not able to switch on the

HIF pathway, and patients harboring these tumors

have an excellent postoperative outcome. A small

subgroup of clinically aggressive tumors maintains a

coherent PDH and HIF/LDH5 expression. In contrast

to cancer cells, fibroblasts in the tumor-supporting

stroma exhibit an intense PDH but reduced PDK1

expression favoring maximum PDH activity. This

means that stroma may use lactic acid produced by

tumor cells, preventing the creation of an intolerable

intratumoral acidic environment at the same time.
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Introduction

Pyruvate is the end product of glycolysis. Under aerobic

conditions, pyruvate enters the mitochondria, where it is

transformed to acetyl-coenzyme A (acetyl-CoA), produc-

ing dihydronicotinamide adenine dinucleotide (NADH) and

carbon dioxide. Acetyl-CoA subsequently enters into the Krebs

(citric acid) cycle, providing energy (adenosine triphosphate, or

ATP) to the cell. This reaction is catalyzed by the enzyme–

coenzyme complex pyruvate dehydrogenase (PDH) [1]. This

complex is composed of the E2 icosahedral 60-meric core

(digydrolipoamide acetyltransferase) bounded to the E1 pyru-

vate decarboxylase and the E3 dihydrolipoamide dehydroge-

nase components. E3 is held on the E2 core by monomeric

E3-binding proteins (E3BPs) [2–5]. PDH activity is under the

control of pyruvate dehydrogenase kinases (PDKs) 1 to 4,

which phosphorylate the E1 subunit of PDH and suppress

the catalysis of pyruvate to acetyl-CoA [6,7]. The activity of

PDK is regulated by the concentration of the metabolic prod-

ucts of pyruvate (NADH and acetyl-CoA).

Under hypoxic conditions or cell poisoning by inhibitors of

oxidative phosphorylation (i.e., barbiturates, carbon monoxide,

and cyanate), ATP production through glucose conversion to

pyruvate is guaranteed by continuous nicotinamide adenine

dinucleotide (NAD) production following conversion of pyruvate

to lactate, a reaction catalyzed by lactate dehydrogenase

5 (LDH5). This process is called anaerobic glycolysis [8]. In

cancer cells, however, pyruvate is abundantly transformed to

lactate, regardless of the presence of oxygen. This phenome-

non, known historically as the Warburg effect, is called aerobic

glycolysis [9]. The biologic basis of this intensified glycolysis

and shift of pyruvate transformation to lactate in cancer cells

is thought to be related to HIF1a, a key transcription factor

regulating the expression of glycolytic enzymes [10] Although

hypoxic HIF activation does not explain aerobic glycolysis,
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oncogenes can activate this pathway. Recently, Lu et al. [11]

showed that high pyruvate concentrations result in HIF1a

stabilization independently of hypoxia. This could provide

feedback to enhance normoxic induction.

In the present immunohistochemical study, we provide

evidence that the PDH/PDK pathway is repressed in a large

proportion of non small cell lung carcinomas (NSCLCs),

which may contribute to HIF1a stabilization, at least in a

subset of tumors. In contrast to cancer cells, the expres-

sion of PDH/PDHK enzymes was maintained in the fibro-

blasts of the cancer-supporting stroma. In particular, PDH

predominated, suggesting that stroma may have a key

role as a sump to help prevent excess acid accumulation in

the tumor.

Materials and Methods

Tissue samples from 101 surgically resected NSCLCs were

used for investigating the expression of PDH and PDK in

cancer cells and stroma. Autopsy samples from 10 appar-

ently normal lungs were also included. Of these 101 cases,

42 had been previously examined for hypoxic molecular

parameters in relation to prognosis [12–15]. Specimens

had been fixed in formalin and routinely processed to

paraffin wax.

PDH/PDK Immunohistochemistry

Staining for PDH and PDK1 was performed on 3-mm

paraffin sections mounted on poly-L-lysine–coated slides.

The A-213226 and A21325 mouse IgG2a monoclonal anti-

bodies (MoAb) raised against the E2/E3bp and E2 subunits

of human mitochondrial PDH (Molecular Probes, Inc.,

Eugene, OR) were used to detect PDH immunoreactivity.

These MoAbs recognize the presence of the PDH core

protein E2 and the E3-binding protein essential for the

binding of the E3 subunit to E2. This binding seems impor-

tant for the functionality of PDH [5]. Although assessment of

the E1 subunit would also be of interest, it is evident that

absence of E2 or E2/E3BP expression directly reflects low

PDH activity, which was the end point of the present immuno-

histochemical study. The concentration used was 1 mg/ml.

The C-20 goat polyclonal IgG antibody (Santa Cruz Bio-

technology, Santa Cruz, CA) reactive for human PDK1 was

used to stain samples for PDK at a concentration of 1 mg/ml.

A modified streptavidin technique was used for immuno-

histochemistry. Sections were deparaffinized and per-

oxidase was quenched with methanol and H2O2 3% for

15 minutes. Microwaving for antigen retrieval was used

(3 � 5 minutes). The primary antibodies were applied over-

night. Following washing with TBS, sections were incubated

with a secondary antibody (Kwik Kit, cat. no. 404050;

Thermo Shandon, Pittsburgh, PA) for 15 minutes and

washed in TBS. Kwik streptavidin peroxidase reagent was

applied for 15 minutes and sections were again washed in

TBS. The color was developed by 15-minute incubation with

DAB solution and sections were weakly counterstained with

hematoxylin. Normal lung tissues were used as positive

controls. Normal mouse (for A-213226) or goat (for C-20)

immunoglobulin G was substituted for primary antibodies at

a concentration where immunostaining of control slides gave

a faint cytoplasmic staining.

Other Immunohistochemistry

For forty-two of the tissue samples analyzed for PDH

reactivity, immunohistochemical data regarding hypoxia-

inducible factors (HIFs) 1a and 2a (MoAbs ESEE 122 and

EP190b, respectively; Oxford, UK), carbonic anhydrase-9

(CA9) catalyzing the hydration of carbon dioxide to carbonic

acid (MoAb M75; Prof. J Pastorec, Bratislava, Slovak Re-

public), lactate dehydrogenase-5 (LDH5) (polycloncal Ab

9002; Abcam UK, Cambridge, UK), lactate dehydrogenase-1

(LDH1; polyclonal Ab 9001; Abcam UK), and angiogenesis

(assessment of vascular density using the JC70 anti–CD31

MoAb) were available from previous studies [12–16]. Sur-

vival data were also available for these cases. PDH reac-

tivity was examined in parallel tissue sections cut from the

same tissue blocks used for previous immunohistochemistry

studies. Extensive reports on the methods used for staining,

assessment, and grouping have been previously published

[12–16].

Statistical Analysis

Statistical analyses and graphs were performed using

the GraphPad Prism 4 and the Instat 3.0 packages

(www.graphpad.com; San Diego, CA). The chi-square t-test,

the Fisher’s exact t-test, or the unpaired two-tailed t-test was

used for testing relationships between categorical tumor

variables, as appropriate. Linear regression analysis was

used to test the relationship between continuous variables.

Survival curves were plotted using the method of Kaplan and

Meier, and the log-rank test was used to determine statistical

differences between life tables. All P values are two-sided

and P < .05 was used for significance.

Results and Discussion

Normal Lung PDH/PDK1 Expression

PDH and PDK1 were expressed strongly and consistently

in the cytoplasm of normal bronchial and alveolar cells

(Figure 1, a and b). Immunostaining using the anti-E2 and

anti-E2/E3BP MoAbs showed overlapping results. Linear

regression analysis of the percentage of cells strongly react-

ing for these Abs showed potent statistical correlation

(P < .0001, r = 0.97).

Cancer Cell PDH/PDK Expression

The expression of PDH and PDK1 was examined com-

paratively in a series of 59 (of 101) tissues from NSCLC.

Both enzymes were not expressed in a large proportion of

cancer cells (Figure 1, c and e) and, when expressed, the

staining was weak. In the 59 cases analyzed, the percentage

of cells with strong PDH expression ranged from 0% to 90%

(median 10%). Lack of PDH expression was noted in 29/59

(49%) cases (negative cases), and strong expression in a
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minority (10–40%) of cancer cells (focal or sporadic expres-

sion; Figure 1d ) was noted in 14/59 (24%) cases (classified

as overall weak expression). These results are in full

accordance with previously published studies by Eboli and

Pasquini [17], where PDH levels are dramatically decreased

in skin carcinomas compared to normal epidermis and in

hepatomas compared to normal liver [18]. In our study,

strong expression in more than 50% of cancer cells within

tissue samples was observed in a minority of lung carci-

nomas (16/59; 27%) and these cases were considered as

bearing high PDH reactivity.

PDK1 expression was also reduced in cancer cells (range

0–90%, median 0%). In 34/59 (58%) cases, there was lack

of PDK1 expression (negative expression; Figure 1, f and g),

whereas strong expression of the enzyme in 10% to 40% of

cancer cells was noted in 7/59 (12%) cases (classified as

overall weak expression). In 18/59 (30%) cases, there was

strong PDK expression in > 50% of cancer cells, and these

were considered as bearing high PDK1 reactivity.

Linear regression analysis between the percentage of

cancer cells expressing PDH and PDK revealed a significant

direct association (P < .0001, r = 0.49). Table 1 shows the

categorical analysis of PDH and PDK expression. Low PDH

expression in cancer cells was accompanied by low PDK

expression in the vast majority of cases [27/29 (93%) cases].

In 10/59 (17%) cases, strong PDH/PDK expression was

noted, simulating the patterns of PDH/PDK expression ob-

served in normal lungs. In an additional 6/59 (10%) cases,

PDH activity was maintained, whereas PDK was sup-

pressed. These results show that downregulation of PDH

and PDK is a common event in lung cancer, whereas a

minority (27%) of cases maintain PDH expression.

There was no association of PDH/PDK expression with

TN stage, histology type (squamous cell cancerversus

adenocarcinoma), or histologic differentiation (data not

shown).

Cancer Cell PDH and HIF/LDH5 Expression

Defective PDH/PDK activity in cancer cells, as sug-

gested by the poor PDH/PDK expression in 73% of cases,

would result in an intense accumulation of pyruvate in the

cells and a severe deficit of aerobic acquisition of energy.

Anaerobic pathways of pyruvate metabolism to lactate could

therefore take over for energy acquisition. We therefore

analysed the expression of PDH in a series of 42 NSCLCs

previously extensively examined for various hypoxia/

metabolic parameters. We noted that lack of PDH expression

Figure 1. Expression patterns of PDH and PDK in normal lung and lung cancer. (a) Strong cytoplasmic expression of PDH in normal bronchi (thick arrows) and

adjacent stroma fibroblasts (thin arrows). (b) Intense PDH expression in the alveolar tissue (thick arrows). (c) Lack of PDH expression in a squamous cell lung

carcinoma (thin arrows) adjacent to PDH-positive alveolar tissue (thick arrows). (d) Focal PDH expression in cancer cells (black arrows). (e) Lack of PDH

expression in squamous cell lung cancer (thin arrows) in a background of tumor-supporting stroma exhibiting a strong PDH reactivity (thick arrows). Strong

expression of PDK in cancer cells (thin arrows) of a squamous cell carcinoma (f) and adenocarcinoma (g). Note the repression of PDK in the tumor-supporting

stroma (thick arrows).

Table 1. Association of PDH Reactivity with the Expression of PDK (n = 59).

PDK PDH P

Negative Weak High

Negative 22 6 6 .001

Weak 5 2 0

High 2 6 10
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was associated with HIF1a stabilization and/or LDH5 over-

expression in about half of PDH-deficient tumors, (Table 2).

Because of shortage of material and close association of

PDH with PDK, as shown above, PDK was not analysed in

this group.

LDH5 gene is transcriptionally regulated by HIF1a [19]

and, indeed, in a recent study, we noted a direct association

of HIF1a and LDH5 expression in NSCLC [14]. In a recent

experimental study, high pyruvate concentration induced

HIF1a stabilization, independently of hypoxia [11]. It is

plausible that in PDH-deficient tumors, HIF1a/LDH5 up-

regulation is a consequence of pyruvate accumulation. Such

an effect would allow the acquisition of energy through

pyruvate reduction to lactate. This, however, concerns about

half of PDH-deficient tumors, as 15/31 and 18/31 of such

tumors seemed not to switch on HIF1a and/or LDH5, respec-

tively. These later category of tumors, with an apparent

defective pyruvate metabolism (in both citric acid and lactate

production directions), were linked with an excellent post-

operative outcome in a series of 42 patients analyzed, for

which survival data were available (Figure 2).

Of interest, a direct association of high PDH expression

with HIF1a and LDH5 expression was noted, as all cases

maintaining normal PDH reactivity had also high HIF1a and

LDH5 expression. It would have been expected that intense

PDH activity and metabolism of pyruvate to acetyl-CoA

would compete for pyruvate and reduce pools that directly

regulate HIF. These cases may therefore maintain HIF by

hypoxia- or oncogene-mediated pathways. In any case,

tumors able to generate energy by aerobic and anaerobic

pathways may have an advantage in growth. However,

preservation of the E2 subunit does not necessarily predict

for PDH functionality as additional factors, such as PDK

overexpression, may suppress PDH activity, and these

cases may in fact bear an impaired aerobic metabolism.

In a previous study, we showed that, in contrast to

LDH5, LDH1 is expressed consistently in all normal tissues.

This expression is maintained or lost during neoplastic trans-

formation, whereas LDH5 is expressed preferentially in tumor

cells [16]. The cellular population of the tumor-supporting

stroma shows consistent LDH1 reactivity and LDH5 activity

in a small percentage of cases (in cases with stroma HIF1a

reactivity). LDH1 is less efficient than LDH5 in catalyzing the

conversion of pyruvate to lactate, and favors the conversion

of pyruvate to acetyl-CoA that enters into the citric acid

(Krebs) cycle. In the present study, no association of LDH1

with PDH and PDK1 was noted in cancer cells. The

consistent LDH1 expression in the tumor-related stroma

goes along with the strong PDH expression, further support-

ing the suggestion that tumoral stroma maintains strong

aerobic metabolism.

PDH/HIF/LDH5 Expression and Tumor Vasculature

Analysis of VD showed no differences between PDH/

HIF1a (or PDH/LDH5)–positive tumors and the remaining

of tumors (data not shown). In a previous study [20], we

proposed a classification of lung carcinoma vascularity

according to the ability of tumors to sustain inner vascula-

ture. High tumor angiogenic activity as assessed at the

tumor invading edge was not always followed by high inner

vascular density, so that highly angiogenic tumors were

divided in two groups of low and high vascular survival ability

(edvin scores 2 and 3, respectively; edvin: edge versus

inner). Tumors with low angiogenic activity at the invading

edge were classified as edvin 1. Analysis of the PDH/HIF

phenotype according to the edvin score showed that tumors

with simultaneously intensified PDH and HIF/LDH5 path-

ways were mainly of edvin 3 score, thus were tumors with

high angiogenic activity and high vascular survival ability

Table 2. Association of PDH Expression with HIF1a and HIF2a, LDH5, and

CA9 Expression (n = 42).

PDH P

Low High

HIF1a
Low 15 0 .003

High 16 11

HIF2a
Low 15 3 .29

High 16 8

LDH5

Low 18 0 .0008

High 13 11

CA9

Low 17 7 .79

High 14 4

Figure 2. Kaplan-Meier overall survival curves according to PDH expression,

stratified for HIF1a (a) and LDH5 expression (b) (n = 42). Note that cases with

contemporaneous defective metabolism in both aerobic (low PDH expres-

sion) and anaerobic (low HIF1a or low LDH5) directions had a particularly

favorable outcome.
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(tumors with dense vasculature throughout the tumoral

mass) (Table 3). It seems, therefore, that this subgroup of

tumors is less likely to be hypoxic. So concurrent PDH and

HIF1/LDH5 upregulation could occur due to genetic events

that switch on the entire cellular metabolism. Such tumors

with intensively upregulated aerobic and anaerobic meta-

bolic potential were linked with particularly poor prognosis

(Figure 2, a and b). It should be, however, kept in mind that

expression of the E2 subunit does not guarantee PDH

functionality, and that HIF1 overexpression in this latter

group may still be a cause of PDH inactivity.

PDH/PDK Expression in Cancer Cells Versus

Tumoral Stroma

Normal lung stroma fibroblasts were positive for both

PDH and PDK1. Results for the tumor stroma fibroblasts

showed a major difference for PDK1. Despite the intense

overall downregulation of PDH in cancer cells, fibroblasts in

the tumor-supporting stroma maintained an intense PDH

expression (Figure 1d ). This shows that tumoral stroma

maintains a high ability for aerobic pyruvate consumption.

HIF and LDH5 expression in tumor fibroblasts is only excep-

tionally present, whereas LDH1 isoenzyme (favoring aerobic

metabolism of pyruvate) is strongly expressed as previously

reported [14,16].

However, PDK1 expression was impressively down-

regulated in stroma fibroblasts compared to normal lung

(Figure 1e), suggesting that PDH activity was further facili-

tated by inactivation of the PDK-mediated negative regula-

tion on PDH. Although additional studies are required to

assess whether PDK2, PDK3, and PDK4 are also down-

regulated in the tumor-related stroma, the confirmation of

PDK1 suppression is important as preliminary data show that

PDK1, in contrast to PDK2 and PDK3, is not hypoxia-

regulated (unpublished data). It is suggested that PDK1

suppression in the tumor-related stroma is a result of a

paracrine tumor/fibroblast interaction and not a hypoxia-

related effect. These observations strongly suggest that

stroma fibroblasts maintain an exclusively aerobic metabo-

lism of pyruvate, preventing lactate formation from glucose.

This metabolic preference by the tumor-supporting stroma

could be a consequence of the high concentration of lactic

acid produced and extruded out of cancer cells, and could be

very useful for tumor survival to avoid self-destruction by

excessive acidosis. If tumor stroma, apart from providing a

structural skeleton, also provides buffering and metabolic

support to cancer cells, then drugs targeting the specific

features of the cancer-supporting stroma metabolism may

prove antitumorigenic and tumoricidal, which deserves fur-

ther investigation.

Conclusions

It is concluded that the majority of NSCLCs has a metabolic

deficit in the PDH expression regulation, the molecular basis

of which remains to be elucidated. Pyruvate intracellular

accumulation (due to intensively activated glycolytic path-

ways) [10,11] in the context of PDH downregulation, and not

hypoxia, may be an important factor for HIF1a stabilization,

with LDH5 overexpression and shift of the pyruvate metabo-

lism to lactate production. Defective PDH regulation may

be part of the explanation of cancer cell–specific ‘‘aerobic

glycolysis’’ phenomenon noted by Warburg [9]. However, a

large percentage of PDH-deficient carcinomas (50%) is not

able to switch on the HIF pathway and these tumors are

linked with an excellent postoperative outcome. A subgroup

of tumors (about 20% of NSCLC) shows a coherent intense

PDH and HIF/LDH5 presence, therefore sharing strong

aerobic and anaerobic metabolic abilities. Such tumors are

endowed with a particularly aggressive behaviour, which

leads to poor postoperative outcome. The biologic signifi-

cance of the fact that tumoral stroma, in contrast to cancer

cells, maintains a strictly aerobic metabolism with the likeli-

hood of maximal PDH function due to downregulation of

inhibitory kinase should be further studied as a mechanism

by which tumors deal with their acid load.
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