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ABSTRACT

I consider conformational spaces of tRNAphe de®ned
by sets of suboptimal structures from the perspec-
tive of small-world networks. Herein, the in¯uence
of modi®cations on typical small-world network
properties and the shape of energy landscapes is
discussed. Results indicate that natural modi®ca-
tions in¯uence the degree of local clustering and
mean path lengths far more than random or no
modi®cations. High frequencies in the thermo-
dynamic ensemble coincide with high numbers of
neighboring structures that one conformation can
adopt by one elementary move. Conformation
spaces indicate the existence of modular sub-
structures. It can be shown that modi®cations leave
the nature of small-world topology untouched
albeit natural modi®cations have a reasonable
enhancing and streamlining effect on the degree of
clustering and therefore on the substructures of the
conformational space.

INTRODUCTION

Structures of RNA molecules can be discussed at an empiric-
ally well established level of resolution known as secondary
structure, which addresses the topology of binary contacts that
arise from speci®c base pairings [Watson±Crick pairs (AU,
UA, GC, CG) and GU] instead of the geometry cast in terms of
coordinates and distances. While the driving force behind
secondary structure formation is the stacking of contiguous
base pairs, the formation of an energetically favorable
double-stranded region implies the simultaneous formation
of energetically unfavorable loops as well. These `frustrated'
energetics lead to vast combinatorics of helix and loop
arrangements, which span the structural repertoire of an
individual RNA sequence.

A secondary structure can be conveniently discretized as a
graph that represents a pattern of base pair contacts. Of
particular interest are secondary structures having minimal
free energy, which can be computed by dynamic programming
(1±4) as well as kinetically probable structures (5±7). Folding
paths of RNA structures are subject to the shape of the
underlying free-energy landscape. Theoretical calculations of
such landscapes predict cases that indicate low barrier heights
between local energy minima (8).

Algorithms capable of calculating suboptimal RNA (9,10)
were introduced in order to investigate statistical properties of
tRNA structures. As a result, base modi®cations considerably
sharpen the de®nition of the ground-state structure by
constraining energetically adjacent structures near to the
ground state (10).

Most recently, the conformational space of a simple lattice
polymer chain was mapped onto a network (11). In this
representation, conformations are connected if they are
compatible by a step out of a prede®ned elementary move
set of conformational changes. The geometric properties of the
network were found to be similar to those of small-world
networks. Networks that adopt this particular topology proved
to appear in a variety of real systems (12±17).

An initial regular graph can be manipulated by cutting
edges with a probability p, which are subsequently rewired
randomly (12). Thus, this regime interpolates between two
limiting cases of a regular graph (p = 0) and a random one
(p = 1). Formally de®ned, small-world networks are sparse
graphs that are much more highly clustered than equally
sparse random graphs (18). Furthermore, they provide average
shortest distances that increase logarithmically with the size of
the network as for random graphs (12). It was already found
that the appearance of small-world behavior is not a phase
transition but a crossover phenomenon that depends both on
the network size and the degree of disorder (19).

Since it was found that tRNA sequences and related sets of
suboptimal structures have uniform properties, I consider
the conformational spaces of a typical tRNA sequence,
Escherichia coli tRNAphe. In order to study the properties of
tRNAphe, the conformational spaces of the naturally modi®ed
and unmodi®ed sequences will be mapped onto networks.
Subsequently, the topology of these networks will be
investigated and results discussed.

MATERIALS AND METHODS

Secondary structures

A RNA sequence is denoted by a string | = (x1, x2, ¼, xn) of n
positions over the familiar nucleotide alphabet, xI Î A = {A, U,
G, C}. The bases x1 and xn are the nucleotides at the 5¢ and 3¢
ends, respectively. The usual representation (2,20) treats a
secondary structure S as a graph whose nodes represent
nucleotides at positions i = 1, ..., n of a RNA sequence of
length n. The set of edges connecting the nodes consists of two
disjointed subsets. One is common to all secondary structure
graphs, while the other is speci®c to each sequence. The
common set represents the covalent backbone connecting
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node i with node i + 1, "i = 1, ...,n ± 1. The sequence-speci®c
part consists of a set P of edges i ´ j, P = {i ´ j | i ¹ j and
j ¹ i + 1}, representing admissible hydrogen bonds between
the bases at positions i and j, such that (i) every edge in P
connects a node to, at most, one other node and (ii) the
pseudoknot constraint is met. The latter states that, if both i ´ j
and k ´ l are in P then i < k < j implies that i < l < j. Failure to
meet this constraint results in interactions that are considered
to be tertiary contacts (pseudoknots). A sequence s is called
compatible with a secondary structure S, whenever positions
that pair in the speci®cation of S [i ´ j Î P (s)] are occupied
by nucleotides that can actually pair with each other: i ´ j ®
[xi, xj] Î B = {AU, UA, GC, CG, GU, UG},"i ´ j Î P(s). In
other words, the set of admissible base pairs that we shall
consider consists of the Watson±Crick pairs {AU, UA, GC,
CG} and {GU, UG}. A sequence | speci®es a set of structures
S with which it is compatible, S(|) = {S0, S1, ¼, Sm} È {O},
where S0 is the minimum free energy (mfe) structure and
S1, ¼, Sm are suboptimal conformations ordered with respect
to their energy. O denotes the open chain conformation.

RNA folding algorithms

A single RNA sequence can adopt roughly Sn » n ±3/2 3 1.85n

(21), if n is the length of the RNA sequence. Thus, it is
computationally expensive to calculate all secondary struc-
tures and henceforth to set up the respective conformational
space. So, the set of conformations was restricted to
suboptimal structures within a certain energy range above
the mfe structure. These structures were computed with the
program RNAsubopt (10), which is part of the Vienna
RNA package (http: //www.tbi.univie.ac.at/~ivo/RNA/) (3).
Essentially, RNAsubopt extends the standard RNA folding
algorithm, which emphasizes dynamic programming by an
extended backtracking procedure. This admits the alternative
arrangement of secondary structure elements in conformations
that are within a certain energy range above the energy of the
energetically most stable structure.

In order to obtain and investigate structures that prove to
be local energy minima and saddle points, which connect
minima by a downhill walk starting from them, the program
Barriers was used (http: //www.tbi.univie.ac.at/~ivo/RNA/
Barriers/) (8). Taking the output of RNAsubopt, Barriers
starts to scan the vicinity of the mfe structure in order to
detect adjacent structures that might either be transient
structures on the way to other optima, local minima or saddle
points connecting them. This procedure is repeated for the
whole set of suboptimal structures. Energy barriers are
the energy difference between a local minima and its
saddle points.

Conformational space

The set S forms the conformational space GC (VC, EC), which
considers its structures as the set of vertices VC. The set of
undirected edges EC represents elementary moves between
conformations that are restricted to the formation, removal and
shift or ¯ip move of base pairs. Figure 1 gives a schematic
overview of these conformational changes. These can be
considered from the perspective of a base pair based metric.
Removal and formation of a base pair would cause a base pair
distance dbp = 1 since one base pair is immediately affected. A

shift or ¯ip move of base pairs would result in base pair
distance dbp = 2, since two base pairs have been changed in the
underlying conformation.

In this graph, the degree k of a vertex is the number of other
vertices to which it is linked. In other words, k represents the
number of adjacent structures that are reachable with one
elementary move from the given one.

The mean path length L from a vertex to any other vertex of
the graph is de®ned as the average of the path lengths to all
other vertices.

Another important quantity is the clustering coef®cient C(v)
of a vertex v. It measures the fraction of vertices connected to
v, which are also connected to each other. Thus, it is de®ned as
C(v) = 2n / kv (kv + 1), where n denotes the number of links
connecting the kv nearest neighbors of node v. In extension, the
mean clustering coef®cient C of the graph is de®ned as the
average of C(v) over all v.

Small-world networks

Growing amounts of empirical and theoretical data about the
topologies of large complex networks indicate the emergence
of several network types. Basically, these types are classi®ed
by the connectivity distribution P(k) of nodes. Exponential
networks are characterized by P(k), which peaks at an average
ákñ and decays exponentially. Prominent protagonists of this
type are the random graph model (22) and the small-world
model (12). Both lead to fairly homogeneous networks with
nodes comprising approximately the same number of links
k ~ ákñ (23), which is in clear contrast to currently highly
emphasized scale-free networks (23,24). A small-world graph

Figure 1. Elementary moves in the conformational space of RNA.
Secondary structures are shown in circle and corresponding bracket repre-
sentation. Base pairs that are going to change are indicated as bold in the
circular and shaded in the bracket representation. Base pairs after a move
are shown dot-dashed and light shaded. Removal and formation of a base
pair causes dbp = 1 as the base pair distance between the conformations,
since one base pair is immediately affected. A shift or ¯ip move of base
pairs results in base pair distance dbp = 2, since two base pairs have changed
the underlying conformations.
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adopts a sparse topology emphasizing mean path lengths L,
which prove to be at least equal to or greater than the
respective number of a random graph of equal length, i.e.
L > Lrandom. Moreover, small-world networks remain more
clustered than their random counterparts of equal size, i.e.
C @ Crandom (12). Demonstratively, small-world networks
provide relatively short mean path lengths by a logarithmic
dependency from the underlying network size (12).

Ravasz et al. considered the hierarchical architecture of
metabolic networks. In their investigation, they showed the
independence of the mean clustering coef®cient C from the
number of nodes. Furthermore, a considerable correlation with
the degree of nodes, was observed in metabolic networks of 43
organisms (25). These observations found their explanation by
considering small, highly integrated subnetworks that were
repeatedly assembled in higher order modules resembling a
kind of iterative and hierarchical structure. This intrinsic
organization of a hierarchy is characterized by a correlation of
the mean clustering coef®cient C and the corresponding
degree of a node, v, yielding C(v) ~ kv

±1 if kv is the degree of
node v (26).

Graph tools

Graph analysis tools were written in C++ using the LEDA
library of data types (27). PAJEK (the Slovene word for
spider), a program for large network analysis and visualiza-
tion, was used for the illustrations of graphs (28) (available at
http://vlado.fmf.uni-lj.si/pub/networks/pajek/).

tRNA sequences

It had already been found that tRNA sequences constitute
similar statistical properties (10). Hence, the E.coli tRNAphe

sequence (EMBL accession no. RF6280) was exemplarily
chosen as a typical protagonist of tRNAs from the compilation
of Sprinzl et al. (available at http://www.uni-bayreuth.de/
departments/biochemie/sprinzl/trna/) (29). Modi®cations of
bases are translated as suggested by Higgs (30). Some of these
still prevent the affected bases from pairing. Figure 2 gives a
schematic impression.

Sets of suboptimal structures within different energy ranges
above the respective minimum free energies at 37°C were
computed and conformational spaces thus obtained.

Figure 2. Secondary structure of tRNAphe (RF6280) and its sequences used throughout the analysis. The structure was obtained with the RNA fold algorithm.
Modi®ed bases are indicated in red.
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RESULTS

Small-world behavior strongly emphasizes the existence of
considerably short mean path lengths through the network and
predominantly a high local clustering of nodes.

Figure 3 considers these parameters of conformation spaces
set up with suboptimal structures within different energy
ranges above the respective minimum free energies.
Signi®cantly, mean path lengths, L, always signi®cantly
exceed the respective numbers of equal sized random

Figure 3. Total number of structures versus mean path length and mean clustering coef®cient of the underlying conformational space. Modi®ed and unmodi-
®ed sequences of E.coli tRNAphe were considered. Large symbols refer to these data points. Each data point refers to a conformation space set up with sub-
optimal structures within 3±14 kT (modi®ed sequence) and 3±11 kT (unmodi®ed sequence). Analogously, the respective numbers of random graphs of equal
size were plotted, to which the small symbols refer.
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networks with growing size of the conformation space.
Furthermore, L correlates well with the logarithm of the
number of nodes, L ~ log N, of the underlying network which
is typical for random graphs (31) as well as for small-world
networks (23). Obviously, these correlations only hold for a
suf®ciently large number of nodes in order to be statistically
signi®cant.

Regarding modi®cations, the correlation is qualitatively,
and roughly quantitatively, independent of the modi®cations
superimposed onto the tRNA sequence.

Considering mean clustering coef®cient, C, as the other
intrinsic parameter of small-world behavior, Figure 3 reveals
signi®cantly, that growing network sizes increase the
differences of C between conformation spaces and random

Figure 4. Connectivity distribution of the conformational spaces. Modi®ed and unmodi®ed sequences of E.coli tRNAphe were considered. Suboptimal
structures lie within 8±11 kT above the respective mfe. Connectivity numbers were binned and frequencies thus obtained.
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networks of equal size. Thus, another criterion of small-
worldedness is met by the conformation spaces of tRNA. This
observation is qualitatively independent of the modi®cation of
the tRNA. As an additional commonness, degrees of local
clustering feature independence of the intrinsic network sizes.
However, the conformational space of the modi®ed tRNA

tends to be signi®cantly more clustered than the respective
space of the unmodi®ed tRNA. Obviously, this is in clear
contrast to the distribution of the mean path length, L.

Figure 4 shows connectivity distributions of the conforma-
tional spaces under consideration. Regardless of the tRNA
modi®cations, the decaying connectivities remind to

Figure 5. Probability of a certain structure against arithmetic mean number of adjacent structures and arithmetic mean fraction of links, which point to
structures of lower energy. Conformational spaces of modi®ed and unmodi®ed sequences of E.coli tRNAphe set up by suboptimal structures within 11 kT were
considered.
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exponential distributions, which are typical for random graph
topology as well as for small-world networks. Obviously, the
shape of the curves depends on the number of nodes the
respective networks have. However, the different numbers of
nodes do not affect the exponential nature of the connectivity
distributions. Thus, the topology of networks is not subject to
the actual size of the network.

In a Boltzmann-weighted ensemble, the probability of the
ith suboptimal structure to occur is de®ned as

pi � eÿEi=kTP
i eÿEi=kT

; 1

where the sum over all suboptimal structures de®nes the
partition function.

Figure 5 shows correlations that are related to this ensemble
probability of structures. Interestingly, regardless of the
degree of modi®cation, all conformational spaces show a
positive power-law dependency of the probability of structures
to the arithmetic mean number of transitions to other
structures. In other words, the more probable (i.e. stable in
thermodynamic terms) the structure in the ensemble, the
higher the probability of ®nding it frequently in the vicinity of
other structures. In contrast, the more frequently one structure
occurs in the ensemble, the lower the probability of ®nding a
structure of lower energy in its vicinity, which is indicated by
its mean fractions. Since modi®ed bases are regarded as non-
pairing, a considerable number of conformations must not
occur, which shifts distributions of modi®ed sequences to
higher ensemble probabilities. Interestingly, power-law

exponents prove to be approximately the same for all
distributions. Again, modi®cations prevent conformations
from folding but leave the structure and size of the underlying
conformational spaces essentially unchanged (data not
shown).

The clustering coef®cient C(v) of a node v has already been
found to be independent of the current network's size.
However, quantitative numbers of C(v) depend on modi®ca-
tions. Figure 6 indicates another interesting correlation of C(v)
with the number of adjacent structures of one particular
structure, i.e. its degree kv. Recent contributions report the
emergence of hierarchical networks that exhibit the latter
one particularly. Regarding regions of higher connectivity
among structures, distributions re¯ect this dependency,
C(v) ~ kv

±1, which seems to be fairly independent from any
modi®cations. Furthermore, this correlation is shown to be
independent of the size of the conformational space (data not
shown).

DISCUSSION

Data of conformation spaces

It has already been mentioned that the total number of
structures estimated is tremendous. Thus, I only considered
cutouts of the respective conformational spaces, as the
complete knowledge of the whole structure space is not
necessary in order to comprehend its fundamental properties.
It was explicitly shown that modi®cations, as well as different
numbers of structures thus obtained, keep the fundamental
topology of the conformational space unaffected.

Figure 6. Dependence of the clustering coef®cient C(n) to the number of adjacent structures n. Escherichia coli tRNAphe. Conformational spaces of modi®ed
and unmodi®ed sequences of E.coli tRNAphe set up by suboptimal structures within 11 kT were considered.
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Structures were computed with energy parameters, which
were measured mainly at 37°C. In principle, conformational
spaces might also have been set up with structures calculated
at different temperatures. Many energetic parameters at
different temperatures are subject to approximation. Results
suggest, however, that there is no reason to expect altered
topologies of the conformational space due to temperature
changes.

Nature of small worlds

The topology of small-world networks uncovers nodes that
prove to be more highly linked than the average nodes. In
other works, these particular nodes were credited a special
role. This particular set of nodes was identi®ed as an
evolutionary `core' in metabolic networks (13,14). Similarly,
some protein domains were found to serve as starting points of

Figure 7. Barrier trees and merged landscape of the unmodi®ed and naturally modi®ed E.coli tRNAphe sequence. Scales of the barrier trees denote free
energy. Black dots characterize local minima, light gray ones denote saddle points. Numbers on each half of the ®gure refer to the same structures.
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proteome evolution (16). Obviously, highly linked structures
can be credited a similar role. They prove to be energetically
stable and frequently occur in the thermodynamic ensemble,
which denotes a local minimum in a reasonable number of
cases. Since these conformations show high numbers of
structures in their vicinity, they have to comprise a structural
and energetic disposition, which enables them to transit from
one structure to the other. However, it should also be kept in
mind that this observation is subject to the move set, which
essentially shapes the conformational space.

The most salient features of small-world topology in
conformational spaces of RNA is the high degree of local
clustering. Results indicate that natural modi®cations in¯u-
ence the degree of local clustering far more than no
modi®cations. The immediate result is a shift towards higher
values of mean clustering coef®cient C (Fig. 3). Thus, the
natural modi®cations have a subtle streamlining effect on the
shape of the conformational space.

To conclude, modi®cations leave the nature of small-world
topology untouched albeit natural modi®cations have a
reasonable enhancing and streamlining effect on the features
of this topology.

Energy landscapes

With the results obtained so far a comprehensive picture of
tRNA landscapes can be drawn. Modi®cations inhibit some
structures from folding. Thus, the conformational space of the
modi®ed sequence emerges more sparsely than the corres-
ponding unmodi®ed one. Henceforth, modi®cations also
prevent partly energetically unfavorable barriers leading to
energy minima, which might be traps for the folding process.
Thus, conformational spaces of unmodi®ed RNA sequences
show a sculptured landscape with considerably more possi-
bilities to slow the folding process by getting trapped
preferentially in an energetically unfavorable energy mini-
mum (Fig. 7). The barrier tree of the unmodi®ed conformation
space displays this observation very signi®cantly. Obviously,
a large number of local minima are connected by considerably
low barrier heights. The probability that the folding process
stops in a particular minimum in this smooth landscape
depends essentially on the barrier heights. Thus, a lot of
different folding funnels emerge. Focusing on conformational
spaces that were shaped with the aid of modi®cations, the
topology is quantitatively modi®ed but remains qualitatively
unaltered. Figure 7 summarizes the results of this study. Since
the folding opportunities and transitions between them are
substantially limited, certain folding funnels emerge and lead
more frequently to distinct kinetically favorable structures.
Considering stochastic simulations of tRNA conformation
spaces, they frequently prove to be the biologically
meaningful ones (5).

This observation coincides with an increased degree of
connectivity and local clustering, which enhances the rele-
vance of folding funnels and focuses the mean number of steps
through the conformational space. Mean clustering coef®cient
opens the possibility of treating the whole conformational
space from a hierarchical perspective. Basically, concepts that
yield the inverse correlation of the mean clustering coef®cient
to the degree of a particular node, C(v) ~ kv

±1, consider the set
up of networks from an iterative or hierarchical point of view.
This network architecture is made of numerous small, highly

integrated modules, which themselves are assembled into
larger higher order modules. Thus, the small ones are less
integrated but clearly distinguishable from the higher order
formation. This idea of generating a network could be repeated
several times ending up in a constantly less cohesive topology
that still emphasizes separable lower order modules. This
model might be directly relevant to these investigations. In
this sense, modules might be set up by local similar
substructures of the RNA that are easily convertible to each
other by simple elementary moves. Highly connected nodes in
the conformational space, mainly local minima, would be
structures that interconnect such substructural modules along
a path of elementary moves. Hence, they describe neuralgic
points on the folding paths towards other substructural
modules. Saddle points that essentially connect local minima
might be those points of these folding paths which peak at
highest energy.

The idea that modi®cations help to streamline the under-
lying conformational space by sharpening small-world
properties, i.e. C, ®ts the picture perfectly. Thus, modi®cations
are the key to enhancing the clustered structure of the
conformational space as well as its set up by substructural
modules.
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