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We describe a method for predicting the structure of ��� class
proteins in the absence of information from homologous struc-
tures. The method is based on an associative memory model for
short to intermediate range in sequence contacts and a contact
potential for long range in sequence contacts. The coefficients in
the energy function are chosen to maximize the ratio of the folding
temperature to the glass transition temperature. We use the
resulting optimized model to predict the structure of three ���

protein domains ranging in length from 81 to 115 residues. The
resulting predictions align with low rms deviations to large por-
tions of the native state. We have also calculated the free energy
as a function of similarity to the native state for one of these three
domains, and we show that, as expected from the optimization
criteria, the free energy surface resembles a rough funnel to the
native state. Finally, we briefly demonstrate the effect of rough-
ness in the energy landscape on the dynamics.

The rapid expansion of the protein sequence databases
brought about by, among other things, the various genome

sequencing projects has intensified interest in the problem of
protein structure prediction. In recent years, there has been
much progress toward the goal of predicting protein structure
from sequence. Indeed, prediction is now almost routine for
sequences with a moderate degree of homology (typically 30–
50% sequence identity) to a protein of known structure (1).
When homologous structures are not available prediction is
more difficult, but even here, there has been much progress (2).
Following Anfinsen’s (3) thermodynamic hypothesis, algorithms
for ab initio prediction typically involve the minimization of some
model energy function. Although several energy functions (4–7)
have been successful in generating low-resolution structures
most suffer from an incomplete correlation between the energy
and the quality of the prediction (2, 8, 9).

Advancing in parallel with techniques for structure prediction
has been the theoretical understanding of the protein folding
reaction itself. The large number of degrees of freedom needed
to characterize a folding protein chain naturally leads to the
adoption of a statistical characterization of the protein energy
landscape (10). Such a characterization reveals that the ability of
a protein to reliably find its native state among the exponentially
large number of conformations is caused by the topography of
the landscape. Inter-residue contacts that appear in the native
state are, on average, more stabilizing than random contacts so
that both the energy and entropy drop as the protein approaches
the native state, and the landscape resembles a rough funnel.
Bryngelson and Wolynes (11) have termed this property of the
landscape the ‘‘principle of minimal frustration.’’ Model energy
functions for structure prediction must also be minimally frus-
trated, and for the same reason, to overcome the multiple
minima problem. This insight, that the essential physics of
folding is contained in the requirement of minimal frustration,
and not so much in the detailed form of the interaction poten-
tials, is at the heart of a fruitful interaction between analytical
models of the folding reaction and the development of practical
methods of structure prediction.

We have developed a series of models (7, 12–14) based on
associative memory energy functions. By formulating a quanti-
tative version of the principle of minimal frustration, we have
optimized the coefficients in our models to achieve a minimally
frustrated landscape and have shown that the resulting energy
function can successfully predict low-resolution structures in the
absence of homology information for �-helical proteins. More-
over, we are able to calculate the free energy as a function of
similarity to the native state and thereby quantify the success of
the optimization procedure in achieving a funneled landscape.
Here we further develop this approach and report the successful
ab initio prediction of ��� proteins.

The organization of this article is as follows. First, we describe
a number of changes we have made to the energy function and
the optimization procedure needed to adapt it to ��� structures.
We then describe the results of prediction runs on members of
the set of the proteins used to optimize the model and on three
��� proteins not related to any of the training proteins. Finally,
we discuss the full free energy surface of one of the test proteins
as a function of similarity to the native state, and we briefly
discuss the dynamics of the model.

Materials and Methods
Potential Function for ��� Structures. The structure prediction
protocol reported here is a modification of the one described in
detail in refs. 7, 9, and 14 and is based on the associative memory
energy functions first introduced by Friedrichs and Wolynes (12).
For completeness, we will briefly review the main features of the
earlier work. The energy of a protein conformation is a function
of the similarity of the set of pair distances associated with that
conformation to the aligned pair distances in a database of
known protein structures. For de novo protein prediction, the
database contains only proteins that are globally unrelated to the
target sequence.

We use a reduced representation of the chain consisting of C�,
C�, and O atoms. For short to intermediate sequence separations
the conformational energy is given by an associative memory
energy function: (VAM � ���

n �i�j
N �(Pi,Pj,Pi�

�,Pj�
�,(j � i),SSi�,

SSj�)�(rij � ri�j�
� ). The coefficients, �, weight the different types

of interactions and are functions of the chemical properties (P)
of the amino acids i and j, their sequence separation, the identity
of residues i� and j�, in the database protein � (13) and the
secondary structure, SSi� and SSj�, of the database residues. We
use a previously described sequence–structure alignment algo-
rithm to associate the ij and i�j� pairs (15). We use a four-letter
code for the amino acid properties, hydrophobic, polar, acid�
hydrophilic, and base, along with three sequence proximity
classes, short (j � i � 4), intermediate (5 � j � i � 12), and
tertiary (j � i � 13). In contrast to previous work we do not allow
the interaction between residues to depend on their order in the
chain and set �i,j,i�,j� � �j,i,j�,i�.

Abbreviations: AMC, associative memory and contact; CE, combinatorial extension; rmsd,
rms deviation.
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At large sequence separations the conformational energy is
given by a simple contact potential with the form:

Vlong�Pi, Pj, rij� � �
k�1

5

Ck�N���Pi, Pj, k�Uk�rij�, [1]

where the U(rij) are designed to approximate square-well
potentials about the distance ranges 4.5–6.5 Å, 6.5–8.5 Å,
8.5–10.5 Å, 10.5–12.5 Å, and 12.5–15.0 Å. To increase the
discriminatory power of the tertiary potential, we have increased
the number of wells since our earlier work (14). Ck(N) is a scaling
term that accounts for the variation in the number of contacts
in each of the five wells in native protein structures of N residues
in length. It has the form akN�(1.0 	 bkN). The values of the
parameters are given in Table 1.

The formation of �-stranded structures critically depends on the
stabilization from interstrand hydrogen bonding, a feature absent
from helical proteins. For this reason, we have added several new
patterns of interactions to our previous hydrogen bond term:

V�ij�HB � ��HB��i 	 j��exp���rij
ON 	 
rON��2

2
NO
2 	

�rij
OH 	 
rOH��2

2
HO
2 �,

[2]

where rij
ON denotes the distance from the carbonyl oxygen on

residue i to the nitrogen on residue j, and rij
OH denotes the

distance from the oxygen on residue i to the H-bonded hydrogen
on residue j. First, in an effort to foster the cooperative forma-
tion of regular secondary structure elements, we added an
additional dependence on the presence or absence of hydrogen
bonds between nearby residues:

V�ij�HB � ��1�� j 	 i���ij 	 �2�� j 	 i���ij�ji 	 �3�� j 	 i���i, j�j,i � 2,

where the � functions are exponentials of the form given in
Eq. 2. The �2 term gives an additional stabilization to an
antiparallel � hydrogen bonding, and the �3 does the same for
parallel � patterns. The dependence on �j � i� indicates that the
coefficients are set separately for each proximity class. The final
values of the coefficients were optimized to maximize the free
energy difference between the native and unfolded states as
described (16) and are listed in Table 2.

The registry of � strands is often poorly encoded by the
Hamiltonian using only a four-letter code. To correct this we
have made use of a suggestion by Regan and others (17, 18) that
� secondary structures are stabilized by specific pair interactions

as well as amino acid preferences. To account for these inter-
actions, we have introduced a sequence dependence to the
nonadditive coefficients �2 and �3:

�2�ai, aj� � �2 	 �1 ln Panti�ai� � �1 ln Panti�aj�

	0.5�2��j 	 i�� ln PHB�ai, aj� 	 0.25�3��j 	 i��

� 
ln�PNHB�ai � 1, aj 	 i� � ln PNHB�ai 	 1, aj � 1���

�3�ai, aj� � �3 	 ��4 ln Ppar�ai � 1� � �4 ln Ppar�aj�

	�5��j 	 i��ln Ppar�ai � 1, aj��.

The probabilities, P, for amino acids to be in particular second-
ary structures were computed by using a database of well-
resolved x-ray structures as follows:

Panti�ai� � �Nanti
ai �Nanti���Nai�N�

Ppar�ai� � �Npar
ai �Npar���Nai�N�

PX�ai, aj� � �Nai,aj

X �Npairs
X ���Nai

X Naj

X��Npairs
X �2�,

where X can refer to hydrogen-bonded, nonhydrogen-bonded, or
parallel pairs as defined by Regan and coworkers (17). The final
values of the probabilities are in good agreement with the
experimental values reported by Regan and coworkers (17) and
the calculations of Wouters and Curmi (18). The coefficients, �i,
were optimized as above and are given in Table 2. The total
hydrogen bond potential, VHB, is the sum over the contribution
from each pair, V(ij)HB.

The hydrogen bond term as defined is fairly narrow; i.e., even
relatively small deviations from ideal �-sheet geometry lead to
a large loss of hydrogen bond energy. This is desirable from the
point of view of reproducing the geometry of secondary struc-
ture elements accurately; however, it is disadvantageous in the
search for a globally correct fold to have only such a strict
definition of a hydrogen bond, because at temperatures where
many hydrogen bonds form the barriers to breaking them will be
large, leading to slow dynamics. In the spirit of making a
funneled (rather than golf course-shaped) landscape, we intro-
duce a further term to the energy function intended to encourage
� strands to line up in a roughly parallel or antiparallel manner
even at temperatures where the hydrogen bonding has not fully
set in. This potential is based on C� positions and gives a
reduction in the total energy if when residues i and j are in
contact i 	 4 and j 	 4 (parallel, P) or i 	 4 and j � 4
(antiparallel, AP) are also in contact. The P and AP contacts are
allowed different weights, and the AP term is itself split into two
distance classes (AP and APH) to allow different weights for
putative �-hairpins. This term is thus a sum of three parts,

VP 	 AP � ��APH �
i�1

N�13 �
j�i	13

min�i � 20,N�

vijvi � 4, j 	 4

	 �AP �
i�1

N�21 �
j�i	21

N

vijvi � 4, j 	 4

	 �P �
i�1

N�17 �
j�i	13

N�4

vijvi � 4, j � 4,

where vij � 1⁄2(1 	 tanh[7(8 � rij)]). The coefficients, �, are all
set to 0.4
.

Finally, we have introduced two new features to the energy
function that enable us to take advantage of additional information

Table 1. Parameters of the contact potential scaling term, Ck(N)

k ak bk

1 0.0298 0.0298
2 0.0390 0.0211
3 0.0597 0.0133
4 0.0681 0.0100
5 0.0729 0.0035

Table 2. Coefficients of the hydrogen bond term

�1 �2 �3 �1 �2 �3 �4 �5

�(j 	 i) � 13� 1.79 3.05 0.0 �0.74 0.54 0.60 0.42 0.0
�(j 	 i) � 13� 1.62 3.47 4.09 �0.74 0.93 1.02 0.42 2.31

All data are given in units of 
. The zero values for �3 and �5 indicate that
the parallel sheet interaction is turned off in the intermediate range proximity
class.
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that may be available about a target sequence before predicting its
structure. To the Ramachandran potential described in ref. 14,
Vrama, we have added two wells centered at dihedral angels appro-
priate for �-helices and �-sheets, respectively. The coefficients on
these wells can then be used to provide the option of biasing the
protein backbone to its predicted secondary structure:

Vi
bias��i, �i� � �i

� exp (�419.0
�cos��i � 0.995� 	 1�2

	�cos��i � 0.820� 	 1�2�)

	�i
� exp (�15.398
�cos��i � 2.25� 	 1�2

	�cos��i 	 2.16� 	 1�2�).

For the set of test proteins discussed here the target sequence was
submitted to the JPRED (19) secondary structure prediction server,
and �i

� was set to 2.0
 for residues predicted to be helical and zero
for all other residues. Similarly, �i

� was set to 2.0
 for those residues
predicted to be � and zero otherwise. It has also been shown (9, 20)
that averaging interactions over homologous sequences can im-
prove the free energy surface of structure prediction energy func-
tions. In several of the runs discussed below, we have done a
multiple sequence alignment of top scoring hits from a PSI-BLAST
(21) search with the target sequence and computed separate
potentials for each sequence (including the target) in the alignment.
Molecular dynamics on the target sequence is then performed with
the average force.

The total energy function also includes terms for amino acid
chirality, an excluded volume term, and a combination of
harmonic terms and SHAKE (22) constraints that maintain the
planarity of the peptide bond, and appropriate bond lengths, and
bond angles. The coefficients for these terms are the same as
used previously. The full, modified associative memory and
contact (AMC) energy function, including the backbone, is:

VT � ��VAM � Vlong � ���V�� � �HBVHB � ��V�

� �EVVEV	�HarmVHarm � VP 	 AP�.

We define a reduced temperature as T* � kBT�
. Here 
 is
one-quarter of the native state energy per residue averaged over
the training in the following way:


 � �EAM � C
Native

4N ��.

With this choice of units, the folding temperature is typically
near T* � 1.0.

Constrained Self-Consistent Optimization
The parameters in the AMC energy function should be chosen to
give good discrimination between the native state and typical
unfolded states at intermediate temperatures and to minimize the
presence of local minima that can slow the search through confor-
mational space. The minimal requirement for rapid folding of a
target sequence is a sufficiently large ratio of the stability gap, �ES,
the gap in energy between the native state and the average energy
of the ensemble of non-native states and the variance in energy of
the unfolded states (�Es��E). The stability gap is related to the
folding temperature, TF, and the variance is related to typical depth
of a local minimum, and thus to the glass transition temperature, TG
(10). Maximizing the ratio of the stability gap to the variance can
be shown to be equivalent to maximizing the ratio of the folding
temperature to the glass transition temperature (23).

As described, we enforce a set of constraints on the contri-
bution to the mean energy of the globules from each proximity
class, and we enforce roughly equal transition temperatures in
each proximity class by constraining the variance in each class.

The details of the optimization functional are contained in
Hardin et al. (14).

To determine the optimal set of parameters, we choose a
training set of 14 ��� proteins and generate a set of unfolded
conformations via a constant temperature molecular dynamics
simulation. The full set of 14 training proteins and their asso-
ciated memories are discussed in the Appendix. To generate the
initial set of decoys, we used an energy function that was
optimized for an �-helical training set (7). Once the optimum set
of parameters is chosen for a particular ensemble of unfolded
states that energy function is used to generate a new set of
decoys, and the procedure is iterated until self-consistency (13).
The collapse temperature is related to the mean energy of the
unfolded states and can vary among the members of the training
set. To ensure that the globules for each training set protein
come from roughly equivalent portions of phase diagram, we
constrain the unfolded states to have a given degree of similarity
to the native state. This is measured by the fraction of native
contacts, or Q:

Q �
2

�N 	 1��N 	 2�
�

i�j�2

exp��
�rij 	 r ij

N�2

2
ij
2 �.

The unfolded ensembles were constrained to have a Q of 0.3. The
constraint procedure is described in ref. 9.

Results and Discussion
Once the optimized energy function is obtained we minimize it by
using simulated annealing via molecular dynamics. Table 3 shows
the results of simulations on each of the 14 training set proteins,
using just the optimized energy function, i.e., without applying
the bias to predicted secondary structure or the average over a
multiple sequence alignment. The database of known structures
from which the AMC potential is calculated was constructed by
deliberately excluding any proteins with structural similarity to the
corresponding training set protein. Thus scaffold proteins have
global rms deviations (rmsd) that are generally �9 Å (9). There are
two points about the results on the training set proteins. First, the
best structure obtained in the simulation is frequently more native-
like, as measured by Q, than anything in the database. This
demonstrates the ability of the AMC potential to reconstruct the
members of the training set by generalizing from the partial
structural similarities contained in the alignments to globally un-
related structures. Finally, there is a general decline in quality of the
predictions as the length of the target sequence increases. The

Table 3. Results of simulated annealing on training set proteins

Protein N Q of closest scaffold Qbest

1igd 61 0.31 0.38
2sni(i) 64 0.33 0.36
1snb 64 0.29 0.31
3il8 68 0.33 0.47
1ubi 76 0.31 0.37
1pht 83 0.25 0.31
1poh 85 0.32 0.34
1tig 88 0.32 0.36
2acy 98 0.26 0.24
1frd 98 0.30 0.27
1opc 99 0.29 0.25
1rds 105 0.26 0.29
3chy 128 0.30 0.29
5nul 138 0.35 0.31

For each protein five simulations from T* � 1.5 to T* � 0.005 were
conducted. Qbest is the Q of the most native-like structure encountered in any
of the runs.
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potential is most effective for sequences �90 residues long. For
most of the training proteins beyond that length, the best structure
obtained is somewhat inferior to the best input structure from the
point of view of the Q measure. This may indicate a generic size
dependence of the potentials that is not accounted for in our model.
The use of the bias to predicted secondary structure and the
averaging over sequence homologs should generally improve the
performance of the potential. To test this expectation, we have
conducted five simulations each on proteins 2acy and 3chy with the
augmented energy function. In the case of 2acy, the Qbest structure
is improved compared with the previous results; however, for 3chy
it is unchanged. We have used the augmented potential for all of the
test set simulations, discussed below.

To test the optimized potential, we choose three protein
domains from the critical assessment structure prediction 4
experiment. The test set proteins are domain 1C from FtsA
(Protein Data Bank code 1E4F, residues 86–166), residues
200–309 of Streptococcus mutans Pyrophosphatase, and the
N-terminal 115 residues of the human XRCC4 DNA repair
protein. The highest Q to any member of the associative memory
database used for each of these targets, Qmem, is given in Table
4. We have also included the structural alignment from the
combinatorial extension (CE) program of Shindyalov and
Bourne (24). CE finds the alignment of two proteins that
maximizes the structural overlap. Table 4 reports the length of
the alignment, the number of residues contained in gaps in that
alignment, the rmsd of the alignment, and a statistical score, Z,
which is a function of the difference between the alignment score
and the distribution of scores associated with random align-
ments. Z � 4.0 typically denotes a strong structural similarity;
3.7 � Z � 4.0 represents a more ambiguous structural assign-
ment (24). The low Z values, taken together with the low Qs,
demonstrate that the three test set proteins are structurally
unrelated to the database proteins. Table 5 indicates that the
three test set proteins are also unrelated to any of the training
set proteins, and so constitute a test of the AMC potential’s
performance on an unknown target.

The simplest gauge of the success of a prediction is the global
superposition of the predicted and correct structure. Fig. 1
illustrates such a superposition for the best Q structure (Qbest)
encountered during the simulations on each of the test set
proteins. Even by this very stringent evaluation criteria, the

AMC potential performs rather well. It is worth noting that the
distance maps look somewhat more native-like than the direct
superpositions. The best structures for the test set proteins, as
indicated in Table 5, have Q � 0.35, Q � 0.31, and Q � 0.28. It
is possible to define a distance map overlap as:

�N�N 	 1���1 �
i�j

�ij,

where �ij is 1 when residues i and j have the same state (contact,
no contact) in the native and predicted structure and is 0
otherwise. The corresponding distance map overlaps are 0.77
for 1e4f, 0.76 for 1i74(a), and 0.78 for 1fu1(a). It is perhaps
unsurprising that the AMC potential would be more successful
at predicting the set of pair distances than it is at predicting the
global structure. The backbone used in the simulation is highly
schematic. Given the success at predicting the inter-residue
contacts, it would be interesting to see how much improvement
can be achieved with a more elaborate description of the
backbone or even the substitution of segments from experimen-
tal structures subject to the predicted pair constraints paralleling
a fragment assembly method (25).

The secondary structure bias, in its present form, can some-
times lead to interesting failures. In the case of 1fu1(a), the break
in the native helix at residue 60 facilitates a turn that the
predicted structure lacks. The 1D prediction that enters into the
bias has residue 60 as helical. In this case the rather strong bias
to the predicted secondary structure that we have used (4
) is a
disadvantage. It is obviously possible to choose different, even
optimized, weights for this term.

Fig. 1. Superpositions of Qbest structures onto the native state. The native C�

trace is shown as lines and the predicted trace as a solid ribbon. (A) Protein
1e4f. (B) Protein 1i74(a). (C) Protein 1fu1(a).

Table 4. Structural relationship of test set proteins to
database proteins

Protein Qmem

Length of CE alignment
(Naln�Ngaps) rmsd Z

1e4f 0.29 56�28 6.74 2.6
1i74(a) 0.27 72�62 5.4 2.3
1ful(a) 0.27 64�66 5.9 1.6

Qmem is the best overlap to a protein in the memory database. Also shown
is the result of a structural alignment of the best memory to the test protein
by using CE. Naln is the number of residues aligned, Ngap is the number of
residues contained in gaps, rmsd is the rmsd of the alignment, and Z is the Z
score as reported by CE.

Table 5. Structural relationship between test set and training
set proteins

Test set
protein

Closest training
protein Q

Alignment
length rmsd

CE Z
score

1e4f 1tig 0.19 56�20 3.7 3.7
1i74(a) 1tig 0.22 54�5 4.2 3.7
1ful(a) 1poh 0.23 40�35 4.5 1.6
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The global superposition of two structures can often fail to
highlight significant segments of correct native structure. We
have submitted the best Q structures to the LGA (Local-Global
Alignment) server (http:��PredictionCenter.llnl.gov�local�lga),
and the results are given in Table 6. The predictions are
evaluated according to two measures, LCS and GDT. LCS is the
longest continuous (along the sequence) segment that can be
superimposed on the native structure without exceeding a rmsd
cutoff. The global distance test (GDT) represents the largest
number of residues that lie within a distance cutoff of their
correct positions. The set of residues need not be contiguous. In
all three cases large portions of the prediction are correct to
within the cutoff. We have also used CE to align the predicted
and native structure. Note that in all three cases the predicted
structure is more similar to the native than any of the database
structures, thus demonstrating the ability of the potential to
generalize from incorrect scaffolds. The scores of local similarity
will, of course, depend on the chosen cutoff. Fig. 2 is a Hubbard
plot of the percent of residues below the cutoff, as a function of
the cutoff distance.

Although such successful predictions are encouraging, a more
complete characterization of the AMC potential requires knowl-
edge of the free energy as a function of similarity to the native
state. We can calculate the free energy surface as a function of
Q by means of the multiple histogram technique (26). The
optimization procedure outlined above is expected to yield a free
energy surface that is shaped like a rough funnel toward the
native state. In Fig. 3 we show the energy and free energy of 1e4f.
The energy declines steadily until relatively high values of Q,
indicating that the free energy surface is largely funnel like, with
the protein trading energy for entropy as it moves toward the

native state. The energy gain is not sufficient to completely
balance the loss in entropy, as indicated by the relatively low Q
value at the minimum. However, structures with Q � 0.4 are
certainly accessible within moderate amounts of computation
time.

For a well-funneled landscape, it is expected that the minima
will shift to higher Q as the temperature is lowered. There is a
practical problem, however, with simulating at temperatures
much lower than those studied here. As the temperature de-
creases, escape from non-native traps is slowed. At a low enough
temperature, we encounter a glass transition, below which the
protein is localized to a single basin. Even before that point,
however, escape times can become long enough that the finite-
time simulations we have performed fall out of equilibrium (27).
Fig. 4 shows the Q autocorrelation functions for runs at several
different temperatures. It is clear that much below T* � 1.0 the
simulation is exploring an increasingly small amount of config-
uration space. The glass transition therefore limits the simulation
to intermediate temperature even though the minima in free
energy would be expected to shift to higher Q as the temperature

Fig. 2. GDT as function of cutoff distance.

Fig. 3. Energy and free energy as a function of Q for protein 1e4f (CASP4
Target 0089). T* � 1.0.

Fig. 4. Q autocorrelation functions.

Table 6. Results of LGA server analysis of test set predictions

Protein N
LCS,
5 Å Qbest

GDT,
6 Å

Alignment
length rmsd CE Z

1e4f 81 61 0.35 51 67�12 4.4 3.7
1i74(a) 109 54 0.31 44 84�33 6.5 3.7
1ful(a) 115 45 0.28 48 72�23 7.4 3.3

Listed are the longest continuous segment of each target (LCS) that falls under
a 5-Å rmsd cutoff and the sequence independent number of residues (GDT),
which fall under a 6-Å distance cutoff. The LCS and GDT numbers for Qbest refer
to the best Q structures encountered in any of the five runs of each target.
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is lowered. The energy curve shown in Fig. 4 is not monotonically
decreasing in Q but is f lat above Q �0.6. We have previously
discussed the practical implications of this caldera-like shape for
the sampling of predicted structures (9).

Conclusion
We have described a potential energy function for the prediction
of ��� protein structures without resorting to information from
known, homologous structures. Using ideas from energy land-
scape theory, we have optimized the parameters of the potential
to yield a free energy surface, which is as near to a smooth funnel
as is possible given our encoding. The resulting potential per-
forms well in tests on short- to medium-length proteins unrelated
to the structures on which it was trained.

Appendix
The ��� training set was selected to represent the various
structural classes appearing in the CATH database (28). The 14
training proteins ranged in length from 53 to 138 residues. The
training set consisted of proteins 1igd, 2sni(i), 1snb, 3il8, 1ubi,
1pht, 1poh, 1tig, 2acy, 1frd, 1opc, 1rds, 3chy, and 5nul. The
scaffolds were a subset of the ��� chains appearing in the Protein
Data Bank select 2001 list (29). Structures determined by NMR,
those with resolution �3.0 Å, and those with length �200
residues were removed. This process resulted in a list of 168
proteins from which the memory proteins were selected. The
selection process eliminated any memory protein with structural
overlap � Q � 0.4 to the training protein to which it was aligned.
The final memory set consisted of the top 138 scoring alignments
to unrelated scaffolds.
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