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An efficient method has been developed for packing �-helices in
proteins. It treats �-helices as rigid bodies and uses a simplified
Lennard–Jones potential with Miyazawa–Jernigan contact-energy
parameters to describe the interactions between the �-helical
elements in this coarse-grained system. Global conformational
searches to generate packing arrangements rapidly are carried out
with a Monte Carlo-with-minimization type of approach. The
results for 42 proteins show that the approach reproduces native-
like folds of �-helical proteins as low-energy local minima of this
highly simplified potential function.

The problem of determining the structure of a protein starting
from its amino acid sequence has been approached from

many different directions. Knowledge-based methods cannot
predict entirely new folds, whereas ab initio methods have this
capability but are generally less accurate and more computa-
tionally intensive. One class of ab initio methods is based on the
minimization of a potential energy function. These methods
immediately present the challenge of producing a potential
function that identifies the native fold as the lowest-energy
structure, yet remains simple enough to permit adequate sam-
pling of the conformational space.

If the secondary structure is known, the space that needs to be
searched becomes much smaller, but it still contains a very large
number of incorrect packing arrangements. The secondary
structure either can be predicted from the sequence [by using
programs such as JPRED�JNET (1, 2), PSIPRED (3), etc.] or can be
extracted from the preliminary output of another method. Here,
we demonstrate the feasibility of using a highly simplified
energy-based method to pack secondary structure elements in
which the positions of residues within these elements are fixed.
Each residue is represented by just one interaction center and the
potential used is much simpler than in previous work (4).
Because helical structures have a simple geometry, the proce-
dure is applied to 42 mainly �-helical proteins. It is shown that,
for most structures with six or fewer helices, a limited number of
plausible conformations can be identified that contain native-
like structures, whereas completely wrong folds are eliminated.
The resulting ensemble of conformations can then be used as a
starting point for a search with a more detailed model and
potential, such as united residue (UNRES; ref. 5), to refine and
rank the predicted conformations. Some of the proteins inves-
tigated are 100–200 residues long [which overcomes a limitation
of some previous studies (6)], but this does not seem to present
any problems.

Methods
Our procedure uses an energy-driven Monte Carlo-like search to
generate an ensemble of plausible structures, and consists of
three main parts. First, a simplified representation of a protein
is constructed. Second, a potential function is developed to
assign an energy to a given conformation. Third, a search is
carried out to find the optimal (lowest-energy) arrangement of
secondary structure elements.

Protein Representation. Given a sequence of amino acids and the
corresponding secondary structure assignment, we represent a
protein by only its C� atoms. Coordinates for loop residues are
left unspecified (see Potential Energy Function), whereas coor-
dinates for residues in �-helical regions are constructed by using
ideal parameters (5, 7), namely, 3.6 residues per turn, 1.5 Å per
residue along the helix axis, and 3.8 Å virtual C�–C� bond length.
Helices are then treated as rigid objects, simply described by the
positions of their centroids and their orientations, while the
relative positions of the residues within a given �-helix are fixed.

Potential Energy Function. The energy function is the pairwise
interaction between two residues, m and n, of amino acid type
i and j:

U�rmn� � eij�q� r0

rmn
� p

� p� r0

rmn
� q

q � p
� , [1]

where p, q (q � p) and r0 are adjustable parameters, rmn is the
distance between the C� atoms of residues m and n, and eij is the
contact energy associated with residues of types i and j. The signs
are chosen to obtain a repulsive interaction if eij � 0, or negative
if eij � 0, and to ensure that U(r0) � eij, as in a Lennard–Jones
potential. The main purpose is to capture the tendency for
nonpolar residues to be buried in the cores of proteins (7). The
contact potential developed by Miyazawa and Jernigan (8) has
been shown to represent the properties of nonpolar residues
accurately (9), and it also provides interaction energies for the
polar residues. The matrix of contact energies provided by
Miyazawa and Jernigan (10) is used for the parameters eij. In
their treatment, Miyazawa and Jernigan consider two residues to
be in contact if the distance between their side-chain centroids
is �6.5 Å. In Eq. 1, the interaction is smoothed and equals eij only
at the special contact distance r0 (even when the interaction is
purely repulsive).

The energy for a multihelical structure is then calculated by
summing over the interactions between all residue pairs belong-
ing to distinct �-helices. There is no interaction between residues
within an �-helix (since the relative coordinates are fixed), or
with residues belonging to loops. For this reason, coordinates for
residues in loops are not necessary. The only contribution that
loops make to the energy is a penalty if the distance between the
ends of two helices connected by a loop becomes greater than the
maximum length allowed for that loop (the number of bonds
times the virtual C�–C� bond length, 3.8 Å).

Global Optimization. To search the conformational space of a
particular structure, an efficient global optimization method,
conformation-family Monte Carlo (CFMC; ref. 11), previously
developed in our laboratory, was used with small modifications.

Abbreviations: rmsd, rms deviation; CMrmsd, center-of-mass rmsd; MaxAngle, maximum
angle; UNRES, united residue.
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This search is based on a conformational family database, which
is an ensemble of conformations clustered into families.

The starting point for the search is the sequence and second-
ary structure information. Helices are then built, using values of
ideal �-helices as mentioned above.

The procedure clusters structures into families, in which each
structure is similar to at least one other conformation within its
family. A structure is said to be similar to another structure or
a family if a distance measure provides a value that is smaller
than a chosen cutoff. The same is true for two structures being
identical except that the cutoff values are stricter. The two
distance measures used are explained in Distance Measures.

To control the computational expense, the number of families
and the number of structures within one family have a limit of
Nf and Nc, respectively. The ensemble is initialized with Nf
nonredundant structures selected randomly and is then energy-
minimized with the SUMSL algorithm (12). This process defines
the initial phase after which the actual search starts. In each
iteration of the search, a conformation is selected with a
probability according to its Boltzmann weight. This structure is
subsequently perturbed, its energy is minimized, and similarity,
energy, and metropolis tests are carried out to determine
whether it will be kept in the ensemble and�or it forms a new
family. The temperature was adjusted to maintain a reasonable
fraction of new generating families. Thus, the conformations are
improved iteratively, and the search is biased to investigate the
regions of the lowest-energy families while trying to explore
different areas of conformational space effectively. In every
iteration, the perturbed structure is checked quickly to deter-
mine whether loops could be constructed without clashes. This
check is done by treating the C� atoms of the loops as spheres
with diameter set to the bond length. By using a soft-sphere
potential [cubic in the extent (distance) of overlap] and subject
to bond-length constraints, the energies of these residues are
then minimized and checked to determine whether any clashes
within each loop or between loops and �-helices occurred.

Because CFMC was originally applied to the UNRES model,
it had to be modified for a rigid-body treatment of secondary
structure elements; i.e., a different method for producing new
conformations, described in Methods for Producing New Confor-
mations, was applied. Also, a new distance measure was devised
to suit the objective of finding an ensemble of different folds.

Methods for Producing New Conformations. Two major classes of
moves were used for producing new conformations. The first
class, called Global Move, produces radically different structures.
This class involves moves, such as randomizing the positions and
orientations of all helices, by translational and rotational mo-
tions of any number of helices. Helices are allowed to flip upside
down or have the positions of any two swapped while keeping the
relative orientation unchanged. Moves are chosen randomly and
can be combined in any number of ways to perturb the generating
structure.

The second class, called Local Move, is designed to produce
very similar structures. Like global moves, it also involves
translations and rotations of �-helices, but only by much smaller
distances and angles. The values by which the helices are
translated and rotated are chosen randomly, but they are bound
by an upper limit that is different in global and local moves
(global: translation up to 15 Å, rotation up to 360°; local:
translation up to 4 Å, rotation up to 50°). Local moves can also
rotate a helix (up to 180°) or shift it (up to 3 Å) along its axis.
The idea behind these moves is that, if a conformation has
correct packing but wrong relative orientation, a local move
should try to improve it.

Distance Measures. Two methods were used to describe the
similarity of two structures.

1. rms deviation (rmsd) between C� atoms in helices. Unfortu-
nately, the C� rmsd does not provide an unambiguous mea-
sure to determine whether the correct (i.e., native-like) fold
is obtained. For example, if the alignment is not very good, the
rmsd will be high but the folded protein might have correct
orientation of secondary structure elements. Also, this num-
ber grows with the size of the protein; therefore, comparison
of performance of the method for two proteins of different
size is not straightforward. This measure was used only to
present the results.

2. Center-of-mass rmsd and maximum angle (CMrmsd and
MaxAngle). This distance measure was devised as a replace-
ment for the C� rmsd. The method works as follows: The
centers of mass of each helix in the two conformations to be
compared are superimposed. The angle between the axes of
every pair of corresponding helices is calculated and the
MaxAngle is taken. The CMrmsd and the MaxAngle are the
two values used to determine similarity. This measure works
better for differentiating the correct orientation of helices
from the wrong ones, and was thus used in the search for the
definition of the families.

Protein Targets. Three main sources of target �-helical proteins
were used in the simulations, namely, all 24 �-helical proteins
from Zhang et al. (13), a set of �-helical proteins obtained from
other simulations in our laboratory, and a set extracted from the
SCOP database (Version 1.61; ref. 14), in which only proteins
from the �-class and belonging to different families were con-
sidered. All three sources provided 42 proteins (36–188 residues
long), which were a representative and diverse pool of target
structures. The secondary structure information used in our
simulations was determined by applying the DSSP algorithm (15)
to the native structure.

Results
To produce a set of consistent results, most of the adjustable
parameters were kept uniform for all of the proteins tested. The
potential parameters p, q, and r0 were set to 15, 14, and 7.5 Å,
respectively. Whereas a different set of parameters could per-
form slightly better for a particular protein, the values used were
chosen for best performance over the entire set of 42 proteins,
particularly the smaller ones (up to five helices).

The computations were carried out primarily on dual AMD
Athlon MP 1800� based machines (although only one processor
was used). The searches for all 42 proteins consisted of 10,000
iterations each, which kept the time for a complete search
between 1 and 10 h, depending on the protein size. Primarily, one
such run was carried out for each protein, although several runs
were carried out for a few models to check reproducibility. The
similarity between structures was determined according to the
CMrmsd and MaxAngle measure described above (to belong to
the same family, the MaxAngle cutoff was 60° and the CMrmsd
cutoff was between 2.5 and 4.5 Å, depending on the protein size
and complexity, i.e., number of �-helices). To generate diverse
packing arrangements, 75% of the moves were global, and only
25% were local. The size of the ensemble was increased with
protein complexity (from 100 families, each containing four
structures, to 250 families, each containing six structures). At the
end of each search, the entire ensemble was reclustered accord-
ing to a stricter criterion; each structure within a family had to
be similar to the lowest-energy member, not just to any other
structure in that family. This reclustering was done to strengthen
the link between a given structure and its family number (which
is determined by sorting families according to the energy of their
lowest member). Naturally, this increases the number of families,
but it also makes the family number a more relevant property of
a structure.
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Table 1 presents the results of the simulations. The protein
1dv5 had the structure closest to the native fold, with rmsd � 2.2
Å, which was also found as the global minimum (i.e., the
lowest-energy structure in the lowest-energy family). Proteins
1i6z and 1a6s also had native-like global minimum structures,
1kdx and 1dlw had structures resembling the native-like fold
within the lowest-energy family.

Fig. 1 shows the difficulty of obtaining structures with native-
like folds for proteins with increasing numbers of helices. The
three graphs are plots for the percentage of all proteins with the
corresponding number of helices in the 20, 60, and 130 lowest-

energy families, respectively, for which the method retrieves a
fold within the rmsd indicated in the key. For example, the
structures of all three-helix proteins were within 4.5 Å rmsd from
their native, where the computed structures were ranked in the
20 lowest-energy families of the final ensemble. It is important
to note that, as the number of helices increases, the percentage
of successful computations within the same rmsd decreases.

Fig. 2 shows a superposition of a computed structure for 1nfo
with its native structure. The superimposed structures agree to
within 4.8 Å rmsd and show that the overall orientation of all
helices is qualitatively correct. This result is not the best con-
formation obtained; the rmsd of the best one is 3.0 Å (see Table 1).

To determine the stability of the procedure with different
positions of secondary structure elements in the sequence,
several simulations were carried out on 6 of the 42 proteins
(Protein Data Bank ID codes 1lre, 2abd, 1a6s, 1g2h, 1hdp, and

Table 1. Simulation results

Protein N

Nres Best result rmsdmin, Å (family no.)

Total Helices Low 20 Low 60 All

1cktA 3 61 47 3.6 (9)
1dv5 3 75 34 2.2 (1)
1fex 3 50 31 3.4 (6)
1g2h 3 36 28 3.4 (20)
1gab 3 42 35 2.9 (6)
1hdp 3 44 33 3.7 (11)
1i6z 3 114 102 2.5 (1)
1kdxA 3 66 50 2.6 (1)
1lbu* 3 60 32 3.9 (6)
1lea 3 48 39 3.1 (7)
1lre 3 66 55 3.4 (10)
2occH 3 53 42 4.0 (15) 3.0 (21)
1a04 4 56 45 4.9 (19) 4.7 (31)
1a6s 4 85 46 4.4 (1)
1bw6 4 43 29 4.1 (17) 3.6 (25) 2.7 (93)
1c5a 4 61 46 4.6 (7) 4.4 (23)
1eij 4 59 41 4.8 (5) 4.6 (21) 3.7 (159)
1ffh* 4 83 63 3.7 (11) 3.7 (11) 3.0 (75)
1hdj 4 61 40 5.2 (16) 3.9 (22)
1unkA 4 67 48 4.7 (18) 3.7 (28) 3.2 (146)
2abd 4 79 49 6.9 (16) 4.1 (28)
1aisB* 5 88 67 6.7 (4)
1b0nA* 5 60 42 5.4 (3)
1b0x 5 62 43 4.0 (7) 3.3 (29)
1beg 5 91 55 6.2 (11) 6.2 (11) 5.5 (83)
1bmtA* 5 79 61 6.6 (2) 6.6 (2) 3.7 (65)
1ctj 5 82 46 8.3 (20) 7.4 (35) 5.4 (230)
1f1f 5 85 48 5.9 (8)
1f68 5 100 66 8.8 (13) 8.2 (37) 6.2 (93)
1lpe 5 138 117 3.4 (6)
1nfo 5 136 110 3.0 (9)
1nkl 5 70 54 5.2 (14) 4.0 (25)
1qc7A 5 74 58 8.1 (14) 6.6 (34) 5.5 (145)
2ezyA 5 83 54 6.7 (17) 6.0 (46) 5.4 (129)
1bxm 6 92 50 7.0 (4) 7.0 (4) 6.4 (229)
1fio 6 188 162 10.3 (12) 6.1 (25)
1ngr 6 71 49 7.3 (18) 5.4 (59)
1rzl 6 71 49 7.1 (7) 5.7 (32) 4.8 (123)
1a0b 7 109 87 11.1 (4) 8.4 (24) 8.0 (140)
1dlw 7 112 72 6.1 (1)
1emy 7 145 107 11.4 (9) 8.4 (57) 8.1 (281)
1ezt 8 125 89 12.6 (13) 11.2 (59) 11.0 (175)

Protein name (PDB ID), followed by the number of helices, the total number
of residues (excluding the non-helical residues at the N and C termini), and the
number of residues only in helices. The last three columns show the best results
obtained for the 20 and 60 lowest-energy, and all families, respectively. The
rmsd value is measured on C� atoms of helices from the native, followed by the
corresponding family number (in parentheses). The empty fields indicate that
the value to the left is not improved by including more families.
*The following are fragment proteins: 1lbu: 1lbu1–83; 1ffh: 1ffh2–88; 1aisB:
1aisB1108–1205; 1b0nA: 1b0nA1–68; 1bmtA: 1bmtA651–740.

Fig. 1. Percentage of all proteins with corresponding number of helices for
which at least one structure was generated within the rmsd from the native
indicated in the key. The graphs correspond to the 20, 60, and 130 lowest-
energy families, respectively.
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1ctj) with different assignments of secondary structure, accord-
ing to DSSP and JNET�JPRED, respectively. The results are shown
in Table 2 and are quite comparable with the ones from Table
1; thus, it seems that our procedure is stable with respect to
secondary structure assignment.

From Fig. 1 it is clear that, as the number of helices grows,
the performance of the method decreases. One source of
difficulty is the imperfection of the potential function itself.
Given all of the simplifications in this approach, it would be
unreasonable to expect the global-energy minimum to identify
the native structure in all cases. For example, loops can play
a role in determining the structure (16), but are neglected
here. Also, some of the proteins examined are only parts of
larger structures, the effects of which are also neglected.
However, native structures, ideally, should always be present
among the low-energy conformations, as shown in Fig. 3. This
result has been confirmed for 41 of the above proteins (the
exception being 1ais) by performing searches restricted to the
neighborhood of the native structure. Native-like structures
with low energies are generally present, even when searches
without such restrictions fail to find them (examples being
1a0b, 1emy, and 1ezt). The reason for this is the complexity of

the fold and the large number of local energy minima in the
search space. Even with a simplified potential, searches for
proteins with six or more helices are not complete in 10,000
steps. In these cases, models within 6.0 Å from the native are
found within the final ensemble only if two helices are omitted
from the comparison (i.e., five- instead of seven-helix frag-
ments for 1a0b and 1emy, and six- instead of eight-helix
fragments for 1ezt). The protein 1ais is the only one for which
native-like structures have significantly higher energies than
the global minimum. Closer examination reveals that this
structure is much more compact than the others, and in fact the
results are improved by decreasing the parameter r0 from 7.5
to 6.0 Å.

Discussion
Packing of secondary structure elements is one of the important
steps in achieving the ultimate goal of predicting a structure from
sequence. We have developed an energy-based method to
generate a variety of folds by treating �-helices as rigid bodies,
applying a simple potential, and searching the conformational
space with a Monte Carlo-type search. Despite the simplicity of
our model, we were able to produce native-like folds ranked in
low-energy families for many proteins.

Although the method provided good results for proteins with
a small number of helices, there is considerable room for
improvement in our procedure. It is important to note that it is
the number of helices, rather than the size of the protein, that
seems to cause difficulties. A more systematic approach to
generate diverse topologies would increase the probability of
locating native-like folds (17). Further improvements could
come from modifications to the contact energies that take into
account the environment of a residue (i.e., the kind of secondary
structure element to which it belongs; ref. 18), or by carrying out
a systematic optimization procedure for the potential parameters
(19). Another possibility is the improvement of the functional
form of the potential or the protein representation, which could
be further simplified to reduce the large number of local minima
in our conformational space.

Although generating folds is an important step, the main
purpose of this exercise is to continue with the refinement of the
generated models by using them as input for an algorithm with

Fig. 2. Stereoview of the superposition of a generated structure of the five-helix protein 1nfo (not the best) on the experimental structure. The C� atoms agree
to within an rmsd of 4.8 Å. The native structure is yellow and the generated structure is red. The figure was generated by using MOLMOL (20).

Table 2. Stability of procedure with respect to different
secondary structure assignment

Protein HDSSP HJNET Q3

rmsdmin, Å (family no.)

All Low 10

1lre 3 3 76 3.6 (77) 5.5 (1)
2abd 4 4 86 3.9 (145) 4.9 (3)
1a6s 4 4 68 4.7 (9) 4.7 (9)
1g2h 3 4 53 5.1 (25) 5.2 (7)
1hdp 3 3 82 2.3 (3) 2.3 (3)
1ctj 5 4 83 5.2 (56) 8.3 (4)

Protein name, HDSSP, number of helices according to DSSP. HJNET, number of
helices predicted by JNET�JPRED. Q3, percentage of correctly predicted second-
ary structure. rmsdmin, lowest rmsd (corresponding family number in paren-
theses) from the native structure in the whole ensemble, and in the 10
lowest-energy families, respectively.
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a more detailed representation of the polypeptide chain, such as
the UNRES model (5). The procedure described here greatly
reduces the number of helical conformations that have to be
explored with the UNRES model.

Currently, only �-helices are treated by this simple procedure,
but inclusion of �-strands and sheets in the model is a natural
extension. For this to occur, it will be necessary to address the
issue of hydrogen bonds, which is currently not treated.

Finally, the efficiency of the procedure can be improved by
parallelizing the code instead of using only one processor.
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