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Current efforts to detect covert bioterrorist attacks from increases in
hospital visit rates are plagued by the unpredictable nature of these
rates. Although many current systems evaluate hospital visit data 1
day at a time, we investigate evaluating multiple days at once to
lessen the effects of this unpredictability and to improve both the
timeliness and sensitivity of detection. To test this approach, we
introduce simulated disease outbreaks of varying shapes, magni-
tudes, and durations into 10 years of historical daily visit data from a
major tertiary-care metropolitan teaching hospital. We then investi-
gate the effectiveness of using multiday temporal filters for detecting
these simulated outbreaks within the noisy environment of the
historical visit data. Our results show that compared with the stan-
dard 1-day approach, the multiday detection approach significantly
increases detection sensitivity and decreases latency while maintain-
ing a high specificity. We conclude that current biosurveillance sys-
tems should incorporate a wider temporal context to improve their
effectiveness. Furthermore, for increased robustness and perfor-
mance, hybrid systems should be developed to capitalize on the
complementary strengths of different types of temporal filters.

W ith the very real threat of bioterrorism, the critical need for
timely detection of an outbreak has accelerated the time

frame for major enhancements to the public health infrastructure.
One of the earliest developments produced by these efforts has
been the syndromic surveillance system (1).§ The Centers for
Disease Control and Prevention define public health surveillance as
‘‘the ongoing systematic collection, analysis, and interpretation of
health data essential to the planning, implementation, and evalu-
ation of public health practice, closely integrated with the timely
dissemination of these data to those who need to know’’ (2).

In syndromic surveillance, healthcare utilization patterns are
monitored in real time for the first signs of a covert germ warfare
attack, which may appear as clusters of infected victims seeking
health care. For example, patients with early-stage anthrax infection
may develop influenza-like symptoms and might visit primary care
physicians or emergency departments for treatment (3, 4). By
detecting a surge in visits of patients with flu-like symptoms, a
public health authority could get an early warning of a covert
anthrax attack (5, 6), perhaps within the first 2 days, enabling
prompt identification, containment, treatment, and prophylaxis.

Many current detection approaches, reviewed in refs. 7 and 8 and
references therein, attempt to detect outbreaks by comparing a
single day’s actual visit rates with a model-generated forecast for
that day. A suspicious increase in the actual visit rate over the
forecast is a potential sign of an emerging outbreak.

The primary challenge to interpreting the output of these sur-
veillance systems is the signal noise, or unpredictability, that
prevents accurate modeling of the data and leads to errors in the
model’s predictions. These errors appear as noise that may cause
false positives and false negatives. False positives occur when noise
spikes in the model’s predictions are detected as possible outbreaks,
lowering the system’s overall specificity. False negatives occur when
noise in the model’s predictions masks the effects of actual out-
breaks, lowering overall sensitivity.

Most importantly, the effects of noise limit the early-detection
capabilities of standard syndromic surveillance systems. Bioterrorist
agents, such as anthrax, can spread very quickly through a popu-
lation (9). With only narrow time windows available for effective
public health response, knowing early is often as important as

knowing at all. Until currently experimental rapid screening tech-
nologies become widely available (10), it is essential to extract the
earliest possible detection capabilities from existing syndromic
surveillance systems.

To address these pressing needs, we set out to develop a
syndromic-based detection approach that uses an expanded tem-
poral window: Multiple days are examined together to produce a
more comprehensive picture of the recent healthcare utilization.
With this approach, we hope to improve specificity by reducing the
system’s vulnerability to noise spikes. We also hope to improve
sensitivity by aggregating signal strength over a period, thereby
enabling detection of a weak signal spread over a number of days.
Finally, we hope to improve timeliness of detection over existing
methods.

To achieve these aims, we systematically investigated a variety of
approaches to temporally enhanced detection. Box and Luceno (11)
describe cuscore statistics as various functions that look for specific
types of signals within noisy data streams. Similarly, we constructed
various filters, or sets of weights, that evaluate surveillance data
using a sliding detection window. We tested these filters with
historical visit data infused with simulated outbreaks that vary in
size, shape, and duration. The general methods set forth here can
be applied to the monitoring of other surveillance data, such as sales
of over-the-counter medications (12).

Methods
We analyzed all visits to the emergency department at Children’s
Hospital Boston, a major metropolitan pediatric tertiary-care
hospital, between June 1, 1992 and January 1, 2002 (3,505 days
totaling �500,000 visits). Daily forecasts of visit rates were
generated from a historical model of healthcare utilization. The
forecasts represent the expected visit rates and serve as a basis
for comparison with actual rates.

Modeling. The focus of the present article is to improve the
detection stage of a surveillance system by mitigating the effects of
modeling noise. The enhanced detection approach described herein
is independent of any one particular approach to modeling and is
expected to yield benefits when coupled with other types of models
as well. The modeling methodology used here is described in brief,
and in further detail in ref. 13.

A trimmed-mean seasonal model was calculated to capture both
the yearly and weekly trends in daily utilization rates. The model was
generated by separating the original signal into its component parts,
as follows: The average daily volume was calculated and subtracted
from the signal. The average of the remaining signal was then
calculated for each individual day of the week. This average weekly
signal was then subtracted away, and the average of the remaining
signal was calculated for each individual day of the year. In
calculating the yearly signal, a trimmed mean was used to remove
noise by ignoring the top and bottom 25% of values for each day.
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This average yearly signal was then subtracted away to yield the
residual error signal.

The residual error signal from the trimmed-mean seasonal model
was then fit with an Auto-Regressive Moving Average (1, 2)
time-series model (14) by using the SAS RELEASE V. 8.2 software
package Time Series Forecasting System (SAS Institute, Cary, NC)
(15). The Auto-Regressive Moving Average model captures auto-
correlations in the signal and helps adjust the forecasts to local
trends. Following standard time series modeling practice, different
low-order Auto-Regressive Moving Average models were itera-
tively tested and the Auto-Regressive Moving Average (1, 2) model
was found to have the best fit. The SAS toolkit was then used to
automatically fit the parameters for the model.

The average daily volume of the historical data was 136.9 visits
per day with a standard deviation of 22.4 visits. The distribution of
the forecast errors from the model described above is shown in Fig.
1. The standard deviation of the model-generated forecast error
was 14.25 visits per day, with a mean absolute percentage error of
8.11%. The mean absolute percentage error was not found to vary
significantly with the seasons.

Simulated Outbreaks. The historical dataset used here was devoid of
any known outbreaks. Because there is a paucity of data available
on actual germ warfare attacks (12), we introduced a set of
simulated outbreaks into the historical visit data by adding a certain
number of simulated visits on specified days. Any experimental
study with simulated outbreak data necessarily relies on assump-
tions about the nature of the outbreaks. To enable a systematic
study to be performed, we parameterized the simulated outbreak
models, varying the size, shape, and duration of the outbreaks.

Each complete 3,505-day simulation used outbreaks of only one
size, shape, and duration. Three different shapes of outbreaks were
tested: a fixed number of additional visits over a period, a linearly
increasing number of visits, and an exponentially increasing number
of visits. Many different sizes of outbreaks were also tested, ranging
from 5 to 45 visits per day.

Three durations of 3, 7, and 14 days were tested. Although real
outbreaks may last well beyond these durations, we focused on the
first few days because useful detection systems should be able to
spot outbreaks within that time frame.

The detection filters had a time window of at most 7 days. We
therefore spaced all outbreaks 15 days apart, more than double this

time window. This spacing ensured that all of the effects of any
previous outbreak could be reset from the detection system’s
memory before the onset of the next outbreak. Furthermore,
because the only significant periodicities present in the data were
7-day (weekly) and 365.25-day (yearly), the 15-day spacing of
outbreaks yielded a good unbiased sample of days for infusing
outbreaks. There were 233 simulated 7-day outbreaks in total in the
data.

Detection Filters. We set out to systematically study the effects of
using a wider temporal context for detection. To this end, we
investigated the performance of four different classes of detection
filters (shown in Fig. 2), each attributing a different set of weights
to the various days in a sliding 7-day detection window. Choosing
these four representative examples of filter classes enables a sys-
tematic study to be done: (i) a standard 1-day detector representing
the currently most widely used approach; (ii) a flat, moving average
filter that weights all days in the time window equally; (iii) a linearly
increasing filter with a slope of 1; and (iv) an exponentially
increasing filter with each day given twice as much weight as the day
before. The weights for each filter were normalized, so that the sum
of the weights for all 7 days was 1.0.

Attempted outbreak detection was performed as follows. For
each filter, a weighted sum was calculated over the 7-day sliding
detection window: The forecast errors on each day were multiplied
by the filter weights of the corresponding days of the sliding
detection window. These products were then summed to form the
overall detection score for each filter. If this score exceeded a
predefined threshold, an alarm was triggered.

Calibration of Thresholds. There are many possible ways to select
alarm thresholds. To allow for comparison across different filters
and outbreak types, we chose to set a fixed false-alarm rate
(equivalent to 1 � specificity). This is an important and appropriate
parameter to use as a benchmark, as surveillance systems that
generate too many false alarms risk losing credibility. We tuned the
threshold for each detection system to allow an average of 1 false
alarm per month (12 per year, or 3.3%, probably a manageable level
for intended users of surveillance systems) over the full 3,505 days
of no-outbreak conditions. This false alarm rate can be adjusted to
the needs of different systems.

Fig. 2. The shapes of four multiday temporal filters used for detecting disease
outbreakswitha7-daydetectiontimewindow.Thevalueforeachdayrepresents
the relative weight attributed to that day by the detection filter.

Fig. 1. The distribution of forecast errors (in visits per day) from a historical
model of emergency department visit rates. These errors inhibit reliable detec-
tion of outbreaks. Specifically, minor outbreaks that cause only small increases in
visit rates can be totally masked by these forecast errors.
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Results
Simulations. Fig. 3 shows the results of adding a series of simulated
outbreaks of magnitude 20 visits per day and duration 7 days to the
historical visit data. The top plot shows the input exceedance signal
(blue): the actual number of visits minus the expected number of
visits based on the model. The masking effects of noise can be seen
clearly in the top plot; despite the addition of the simulated 20 extra
visits (red), the resultant exceedance signal on some days still
remains negative. This masking occurs when a large preexisting
forecast error masks the additional visits of a simulated outbreak.

The bottom plot of Fig. 3 shows the responses of the different
filters to the simulated outbreaks in the presence of the real noise
signal. Some filters respond more quickly and dramatically than
others to changes in the signal. These response characteristics have
both benefits and drawbacks, as detailed below.

Specificity and Sensitivity. The standard quantitative metrics of
sensitivity and specificity were used to measure detection system

performance. Of the 233 simulated outbreaks of size 20 visits per
day, the four filters successfully detected 218 (1-day), 232 (moving-
average), 230 (linear), and 228 (exponential).

In this article, we do not report sensitivities and specificities based
on whole outbreaks, i.e., whether or not a particular outbreak was
detected at any point during its progress. Instead, we view each day
of an outbreak as an individual observation. Sensitivity is defined
as the number of days with true alarms divided by the number of
days with outbreaks. Specificity is defined as the number of days
with true negatives divided by the number of nonoutbreak days.
This more detailed approach toward measuring performance re-
wards earlier detection of outbreaks. It also allows careful study of
the detection properties of the various filters, as described below.

The sensitivities and specificities for the various filters are shown
in Table 1 with 95% confidence intervals. To get a better sense of
the tradeoff between sensitivity and specificity, Receiver Operator
Characteristic (ROC) curves were calculated, plotting sensitivity vs.
1 � specifcity (Fig. 4). The area under the ROC curve serves as an
aggregate measure of overall detection quality. The areas for the
various filters are reported in Table 2 with 95% confidence inter-
vals. Bivariate correlated �2 test statistics were calculated to test the
statistical significance of the difference between the areas for the
1-day filter and each of the other filters. Confidence intervals and
test statistics were calculated by using the ROCKIT toolset (16).

Outbreak Size. We varied the size of the simulated outbreaks to
study the effects of outbreak size on detection performance. The
top plot of Fig. 5 shows the sensitivities of the four filters as a

Table 1. Detection performance of filters given simulated
outbreaks 7 days long and 20 visits per day, with 95%
confidence intervals shown

Filter type Sensitivity Specificity

1-day 0.30 (0.28, 0.32) 0.97 (0.96, 0.98)
Moving avg. 0.65 (0.64, 0.68) 0.97 (0.96, 0.97)
Linear 0.71 (0.69, 0.73) 0.97 (0.96, 0.97)
Exponential 0.61 (0.60, 0.64) 0.97 (0.96, 0.98)

Table 2. Area under the ROC curve for all filters, with 95%
confidence intervals for outbreak size 20

Filter type Area �2 Test

1-day 0.85 (0.83, 0.86) —
Moving avg. 0.91 (0.90, 0.92) P � 0.0001
Linear 0.94 (0.93, 0.94) P � 0.0001
Exponential 0.93 (0.92, 0.94) P � 0.0001

Fig. 3. Simulation results. (Upper) Stimulus: When adding simulated outbreaks
(7-day, flat, size 20) to the noisy historical visit data, some outbreaks (red) are
masked by the noise, appearing broken up in the resultant input exceedance
signal (blue; actual visits minus expected visits plus outbreaks). (Lower) Response:
The responses of the different temporal filters to the stimulus above. The dashed
lines are the alarm thresholds for the various filters. Some filters react quickly to
increased visit rates, whereas others react more slowly.

Fig. 4. ROC curve shows the tradeoff between sensitivity and specificity for all
four filters, given outbreaks of size 20 visits per day.
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function of outbreak size, all maintaining a fixed 0.97 benchmark
specificity.

Varying the signal size yielded the following results: As signal
strength weakened with respect to noise, the sensitivity decreased
for all of the filters. As signal strength rose, detection sensitivity
improved for all filters, and the relative differences in sensitivities
between the filters were less pronounced as the filters became
saturated at their maximum sensitivities.

Another perspective on the effects of outbreak size is shown in
the bottom plot of Fig. 5. The areas under the ROC curves are
shown for all of the filters as a function of outbreak size.

Timeliness of Detection. Fig. 6 shows the sensitivities of all four filters
measured throughout the course of a flat, 7-day long, outbreak,
maintaining the benchmark specificity of 0.97. Results are shown
for outbreak sizes of 10, 20, and 30 visits per day.

Outbreak Duration. Shorter outbreak durations decreased the sen-
sitivity of the temporally enhanced filters, as there were fewer days
of temporal context available to help detect the signal in the
presence of noise. Longer outbreak durations increased the sensi-
tivities of all temporally enhanced filters. As expected, varying
outbreak duration had no effect on the performance of the 1-day
filter.

Outbreak Shape. The shape of the outbreaks directly affected the
shape of the filter’s responses. For the purposes of the comparisons
being investigated here, however, the relative advantages of the
different filters applied similarly across different outbreak shapes.

Discussion
The results show that employing multiple temporal filters can
enhance detection performance. These results build on the work

of Williamson and Hudson (17), who suggest using multiple
filters for detection, as well as Box and Luceno (11), whose
cuscore statistics are used to detect specific signals in noisy series
data.

It is not the goal of this article to describe a process for selecting
a single filter that is best suited for a particular surveillance task.
Instead, we characterize the performance of different filter types
under varying conditions. We recommend that a detection system
employ multiple filters simultaneously to provide a broader per-
spective on the data.

Sensitivity and Specificity. As Table 1 shows, compared with the
1-day filter, each of the temporally enhanced filters yielded over
twice the sensitivity while maintaining the same high benchmark
specificity, resulting in much better overall detection performance.

Table 2 shows that the areas under the ROC curves of the
temporally enhanced filters are greater than that of the 1-day filter.
The �2 statistics have a P value of �0.0001, indicating that this
difference in areas is statistically significant. The ROC analysis
shows that the sensitivity advantages of the temporally enhanced
filters apply broadly over a range of specificity levels and not just at
the specificity level reported in Table 1.

Outbreak Size. As shown in the top of Fig. 5, the temporally
enhanced filters consistently outperform the 1-day filter. Note that
each of the temporally enhanced filters in turn yields the best
sensitivity for a different range of outbreak sizes. The moving
average filter is best at smoothing out noise and picking up weak
signals over many days and thus offers the greatest sensitivity in the
noisiest environment: the smallest outbreaks. The exponential filter
performs the least smoothing and is thus best at detecting the
strongest signals: the largest outbreaks. The linear filter is a
compromise between the two and delivers the best performance in
the intermediate outbreak sizes.

Similarly, the bottom plot of Fig. 5 shows that all temporally

Fig. 5. Sensitivities using the benchmark specificity of 0.97 (Upper) and areas
under the ROC curve (Lower) of the four filters, shown for a range of outbreak
sizes.

Fig. 6. Timeliness of detection: Sensitivities of all four filters during different
stages of the outbreaks, using the benchmark specificity of 0.97. Comparisons are
shown for different outbreak sizes 30 (Top), 20 (Middle), and 10 (Bottom).
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enhanced filters outperform the 1-day filter in terms of area under
the ROC curve. Again, each temporally enhanced filter delivers the
largest area under the ROC curve at a different range of outbreak
sizes.

Timeliness of Detection. In developing surveillance systems, it is
crucial to minimize the amount of time before an outbreak is
detected. Fig. 6 shows the sensitivities measured throughout the
course of a 7-day-long outbreak, maintaining the benchmark spec-
ificity of 0.97. Comparisons are shown for three outbreak sizes.

Even in cases where Fig. 5 indicates that one filter offers superior
overall sensitivity for a particular outbreak size, Fig. 6 shows that all
of the filters can offer superior sensitivity during specific stages of
an outbreak. For example, for outbreak size 20, although Fig. 5
reveals that the linear filter offers superior overall sensitivity, the
middle plot in Fig. 6 reveals that each of the four filters offers
superior sensitivity for a particular stage of the outbreak. Based on
all of the data above, the strengths and benefits of each filter will
now be discussed in turn.

The 1-day filter inherently has no temporal context and achieves
no smoothing. It thus performs best at the start of an outbreak when
other filter’s contexts still include nonoutbreak conditions. It is also
the most vulnerable to noise of all of the filters compared here.

The moving average filter, although starting off with relatively
poor sensitivity at the beginning of an outbreak, gradually improves
over time. This slow build-up results from the fact that the 7 most
recent days are all weighted equally, and so it takes continuous
signal strength over an extended period to raise the detection score.
Its broad temporal context means that this filter consistently
reaches the highest sensitivity of any filter on the seventh day of an
outbreak. The moving average filter is also the most robust to noise
and thus offers the greatest advantage in the presence of weak
signals.

The sensitivity of the linear filter is in most cases better than that
of the moving average filter during the early and middle stages of
an outbreak. This can be explained by the extra weight attributed
to the more recent days, meaning that it takes less time to build up
the detection score to the point when an alarm is triggered.

Of all of the temporally enhanced filters, the exponential filter
has the heaviest emphasis on the recent days, giving it good
sensitivity in the early stages of an outbreak. However, this also
means that less weight is attributed to the wider temporal context,
decreasing the system’s capability to spot weak signals over many
days, and limiting the ultimate sensitivity the system can reach.

The results suggest that temporally enhanced filters can help

achieve earlier detection of outbreaks, enabling effective and timely
public health interventions such as containment and prophylaxis.
Even for larger outbreaks of size 30, where the 1-day filter offers the
best sensitivity advantage on the 1st day of an outbreak, the
exponential filter has 16% greater overall sensitivity over the first
2 days than the 1-day filter. (The overall sensitivities for the first 2
days are 0.61 and 0.70 for the 1-day and exponential filters,
respectively). The difference in sensitivities is even greater for
moderate outbreaks of size 20, where the exponential filter beats
the 1-day filter by 27%. (The overall sensitivities for the first 2 days
are 0.30 and 0.39 for the 1-day and exponential filters, respectively.)

This improved early detection capability allows more outbreaks
to be detected within the first 2 days and is thus crucial for enabling
an effective and timely response by public health authorities.
Furthermore, if an outbreak is not caught within the first 2 days, the
temporally enhanced filters offer even greater sensitivity advan-
tages during the middle and later stages of an outbreak (in some
cases many times greater than the 1-day filter; see Fig. 6), enabling
more outbreaks to be detected overall.

We note also that the general approach of enhancing detection
with different filters using expanded temporal context may have
benefits in fields other than biosurveillance, specifically where the
particular benefits of the various filters studied here are desirable.

Conclusions
The results from this systematic study indicate that using temporally
enhanced filters can result in significantly improved sensitivity and
early detection capabilities while maintaining a high specificity.
These benefits are achieved primarily by combating noise through
filtering (increased specificity) and by exploiting all of the infor-
mation available in the full temporal context (increased sensitivity).
These findings are both explained theoretically and supported
experimentally by using historical visit data and simulated out-
breaks.

Furthermore, each filter type has its own merits and drawbacks,
with, for example, certain filters trading off timeliness of detection
for maximum sensitivity. Based on these results, we recommend the
development of an integrated multialarm framework, incorporat-
ing the use of multiple filters operating in parallel.

The results reported here can be put to use today in confronting
the growing bioterrorist threat.
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