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Regulation of Wnt transcriptional targets is thought to

occur by a transcriptional switch. In the absence of Wnt

signaling, sequence-specific DNA-binding proteins of the

TCF family repress Wnt target genes. Upon Wnt stimula-

tion, stabilized b-catenin binds to TCFs, converting them

into transcriptional activators. C-terminal-binding protein

(CtBP) is a transcriptional corepressor that has been

reported to inhibit Wnt signaling by binding to TCFs or

by preventing b-catenin from binding to TCF. Here, we

show that CtBP is also required for the activation of some

Wnt targets in Drosophila. CtBP is recruited to Wnt-regu-

lated enhancers in a Wnt-dependent manner, where it

augments Armadillo (the fly b-catenin) transcriptional

activation. We also found that CtBP is required for repres-

sion of a subset of Wnt targets in the absence of Wnt

stimulation, but in a manner distinct from previously

reported mechanisms. CtBP binds to Wnt-regulated en-

hancers in a TCF-independent manner and represses target

genes in parallel with TCF. Our data indicate dual roles for

CtBP as a gene-specific activator and repressor of Wnt

target gene transcription.
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Introduction

The Wnt/b-catenin pathway is a signaling cascade that is

highly conserved among metazoans (Cadigan and Nusse,

1997; Primus and Freeman, 2004). This pathway is used

throughout animal development to control a variety of cell

fate decisions (Cadigan and Nusse, 1997; Logan and Nusse,

2004). Mutations causing constitutive activation of Wnt/

b-catenin signaling have been identified in many human

cancers (Polakis, 2000). Several studies suggest that Wnt/

b-catenin signaling promotes oncogenesis by maintaining

a proliferative, stem cell fate (Willert et al, 2003; Pinto and

Clevers, 2005). In addition, perturbation of this pathway has

been linked to abnormal bone density and vascular defects

of the eye in humans (Logan and Nusse, 2004).

Wnt/b-catenin signaling is regulated by the stability and

cellular location of a pool of b-catenin that is distinct from

the b-catenin associated with adherens complexes. In the

absence of Wnt stimulation, this pool of b-catenin is small

and largely cytosolic. This is due to constitutive phosphory-

lation by a so-called degradation complex, which contains

Axin, the adenomatous polyposis coli (APC) protein, glyco-

gen synthase kinase 3 (GSK3) and casein kinase 1 (Ding and

Dale, 2002). Phosphorylated b-catenin is then targeted to the

ubiquitin/proteosome degradation pathway (Daniels et al,

2001). Upon Wnt stimulation, the degradation complex is

inactivated, causing the accumulation of hypophosphory-

lated b-catenin. This stabilized b-catenin then translocates

into the nucleus where it complexes with transcription

factors, most notably members of the TCF family of DNA-

binding proteins (Roose and Clevers, 1999).

In the absence of Wnt signaling, TCFs are thought to

function as repressors of Wnt target gene expression, as has

been suggested for other transcription factors mediating

signaling (Barolo and Posakony, 2002). It has been shown

that TCFs can form a repressive complex by interacting

with transcriptional co-repressors of the Groucho/TLE (Gro)

family (Cavallo et al, 1998; Roose et al, 1998). b-catenin and

Gro bind competitively to TCF through overlapping binding

sites, suggesting that b-catenin displaces Gro once it enters

the nucleus, relieving transcriptional repression (Daniels and

Weis, 2005).

In addition to relieving TCF repression, b-catenin is

thought to activate directly Wnt target gene expression by

recruiting additional proteins to TCF-bound chromatin. In

Drosophila, Legless (Lgs) acts as an adaptor between

Armadillo (Arm), the fly b-catenin, and Pygopus (Pygo),

which promotes transcriptional activation (Kramps et al,

2002; Thompson, 2004; Hoffmans et al, 2005). Lgs binds to

Arm repeats in the N-terminal half of Arm (Hoffmans and

Basler, 2004), consistent with the finding that the N-terminal

half of b-catenin has potent transcriptional activation activity

(Hsu et al, 1998). In addition, both b-catenin and Arm have

been shown to possess a distinct transcription activation

domain at their C-terminus (van de Wetering et al, 1997;

Hsu et al, 1998; Cox et al, 1999). This portion of Arm/

b-catenin has been shown to bind to CBP/p300 (Hecht

et al, 2000; Takemaru and Moon, 2000) as well as with the

TRRAP/TIP60 and mixed-lineage leukemia (MLL1/MLL2)

SET1-type chromatin-modifying complexes (Sierra et al,

2006). This region of Arm/b-catenin can also bind to the

chromatin remodeler Brg-1 (Barker et al, 2001) and the zinc-

finger protein Teashirt (Gallet et al, 1999). These interactions

are thought to contribute to the ability of TCF/b-catenin
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to activate Wnt target genes, supporting the model that

b-catenin/Arm converts TCFs from repressors to transcrip-

tional activators (van Es et al, 2003).

In this report, we focus on the role of C-terminal-binding

protein (CtBP) in the regulation of Wnt target genes in

Drosophila. CtBPs are well-characterized transcriptional co-

repressors that have sequence homology to D2-hydroxyacid

dehydrogenases and are known to bind to several DNA-

binding proteins (Chinnadurai, 2002). Mammals have two

CtBP genes, while flies have only one, which is alternatively

spliced to form a shorter and longer isoform, both containing

the dehydrogenase domain but differing in their C-termini

(Nibu et al, 1998; Poortinga et al, 1998).

CtBPs can directly interact with some vertebrate TCFs, and

overexpression of CtBP inhibits TCF-mediated transcriptional

activation of reporter genes (Brannon et al, 1999; Valenta

et al, 2003). These observations support a model where TCF

bound by CtBP and Gro silences Wnt target genes in unsti-

mulated cells. However, another report found no interaction

between CtBP and TCF, and provided evidence that CtBP

antagonizes Wnt signaling by binding to APC and diverting

b-catenin/Arm away from TCF (Hamada and Bienz, 2004).

This is further supported by data that a APC/CtBP complex is

recruited to a Wnt transcriptional target, where it somehow

dislodges b-catenin from TCF to suppress Wnt signaling

(Sierra et al, 2006).

Both models for CtBP function are based largely on studies

with reporter genes containing concatermerized TCF binding

sites, which may not reflect the regulation of endogenous

Wnt targets. In this report, we find that CtBP is required for

basal repression of naked cuticle (nkd), a direct transcrip-

tional target of TCF/Arm. Our loss of function data suggests

that CtBP acts in parallel to TCF and Gro to repress basal nkd

expression. Our data cannot be explained by increased access

of Arm to TCF, ruling out the mechanism proposed involving

APC/CtBP interaction with Arm (Hamada and Bienz, 2004;

Sierra et al, 2006). In unstimulated cells, CtBP binds the

nkd Wnt-regulated enhancer (WRE), but this binding is TCF-

independent. Our data are consistent with CtBP acting on

elements distinct from the TCF binding sites within the nkd

control region to repress nkd expression in the absence of

Wnt stimulation.

In addition to its already postulated role in Wnt target

gene repression, we demonstrate that CtBP is required for the

activation of some Wnt targets, both in wing imaginal discs

and cultured cells. CtBP is recruited to WREs by Wnt stimula-

tion, and can be recruited to a reporter gene by the full-length

Arm or the N-terminal half of Arm. These data argue strongly

for a previously unsuspected role for CtBP as a gene-specific

Wnt transcriptional activator.

Results

CtBP both represses and activates Wingless signaling

in Drosophila

Expression of wingless (wg), a fly Wnt, via the GMR promoter

in the developing eye results in a severe reduction in adult

eye size (Figure 1A; Cadigan et al, 2002). This GMR/wg

background was used to screen for genes that could suppress

the small eye phenotype when overexpressed. Random genes

were placed under the control of Gal4-dependent promoters

using a bidirectional EP element known as P[GSV] (Toba

et al, 1999). Two GSV transposon insertions (P[GSV]A396 and

P[GSV]A132) located in the first intron of CtBP strongly

suppress the GMR/wg phenotype (Figure 1A–C). Both inserts

drive the expression of CtBP in a Gal4-dependent manner,

as judged by immunostaining (see Supplementary data,

Supplementary Figure S1 and data not shown). CtBP expres-

sion also strongly suppressed the effects of an activated form

of Arm (Arm*; Figure 1D–F), which cannot be phosphory-

lated by the Axin/APC/GSK3/CKI degradation complex

(Freeman and Bienz, 2001). The effect of CtBP was specific

for Wnt signaling, as P[GSV]A396 and P[GSV]A132 did not

suppress the small eye phenotype generated by GMR-hid,

a potent activator of apoptosis (data not shown). These

data suggest that overexpression of CtBP can block the Wg

pathway downstream of Arm stabilization.

To examine the effect of CtBP overexpression on endo-

genous Wg signaling, we turned to the wing imaginal disc. In

this larval tissue, a stripe of Wg expression at the dorsal/

ventral (D/V) boundary of the wing blade primordia (the

wing pouch) regulates target genes such as senseless (sens)

and Distal-less (Dll) (Cadigan, 2002; Parker et al, 2002).

Endogenous CtBP is predominately localized to the nucleus

and its expression/localization does not appear to be regu-

lated by Wg signaling (see Supplementary data and Supple-

mentary Figure S1).

During late third instar larvae, Wg signaling activates

Sens expression in two stripes adjacent to the Wg D/V stripe

(Nolo et al, 2000; Parker et al, 2002; see Figure 2A and B).

Expression of CtBP in the posterior compartment of the wing

pouch using Engrailed (En)-Gal4 (Figure 2I) had no effect on

Wg expression (Figure 2E), but caused a severe reduction in

Sens levels (Figure 2F). In contrast to Sens, Dll and a Dll-lacZ

reporter are expressed in a broader domain surrounding

the Wg D/V stripe (Figure 2C and D). CtBP overexpression

A C

GMR/wg/lacZ GMR/wg/132 GMR/wg/396

D F

GMR/arm*/lacZ GMR/arm*/132 GMR/arm*/396

B

E

Figure 1 Two GSV insertions in the CtBP locus suppress Wg and
Arm-dependent signaling in the eye. Micrographs of adult fly heads
containing P[GMR-Gal4] and P[UAS-wg] (A–C) or P[GMR-Arm*]
(D–F) and the following transposons: (A, D) P[UAS-lacZ], (B, E)
P[GSV]A132 or (C, F) P[GSV]A396. Expression of wg via the GMR
promoter produces an eye that is severely reduced in size (A), and
this phenotype is suppressed by A132 or A396 (B, C). Expression of
an activated form of Arm (Arm*) also causes eye size reduction
(D) that is dramatically suppressed by A132 or A396 (E, F). Each
transgene is present in one copy/fly and flies were reared at 251C.
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(Figure 2K) caused a significant expansion of the Dll-lacZ

expression domain (Figure 2H) and a more subtle expansion

of endogenous Dll protein (Figure 2G). Since there was no

obvious expansion of the Wg stripe at the D/V boundary

(Figure 2E), the effect on Dll expression is unlikely to be

due to ectopic Wg expression.

The experiments described in Figures 1 and 2 are compli-

cated by the fact that they are based on overexpression of

CtBP. In addition, it is also possible that the bidirectional

P[GSV] EP element is driving expression of other genes

in addition to CtBP. To determine whether endogenous

CtBP is regulating Wg targets, mitotic clones of a strong allele

of CtBP (CtBP87De-10; Poortinga et al, 1998) were examined for

Sens and Dll expression. These clones had no detectable

signal with anti-CtBP antisera (see Supplementary data and

Supplementary Figure S1) and did not disrupt Wg expression

(data not shown). For Sens, the effect of removing CtBP was

different depending on the developmental stage. The double

row of Sens on either side of the Wg D/V stripe is initiated

during mid-third instar. It starts in the middle of the pouch, at

the anterior/posterior boundary, and expands both anteriorly

and posteriorly over the next 18 h. By 6 h prior to pupariation,

the Sens double row spans the entire wing pouch (DS Parker

and KM Cadigan, unpublished). Thus, the Sens pattern is

a sensitive indicator of the developmental stage of the wing

imaginal discs.

The effect of loss of CtBP on Sens expression is stage-

specific. At 12–15 h before pupariation, Sens expression is

absent in CtBP clones (Figure 3A–C), even though the Sens

double row is present on either side of the clones. However,

in later discs, Sens is expressed normally inside CtBP clones,

with no obvious expansion of the normal Sens domain

(Figure 3D–F). These data suggest a lag in Wg activation of

Sens in cells lacking CtBP. There was also a consistent (90%)

reduction of Dll levels in CtBP clones (Figure 3G–I), which is

more pronounced in cells further away from the Wg stripe

(see arrowheads in Figure 3G–I). The CtBP clonal analysis

suggests a positive role for CtBP in Wg signaling.

CtBP is a gene-specific repressor and activator of Wg

targets in cultured cells

To examine the mechanism by which CtBP regulates Wg

target gene expression, we utilized a cell culture model

that appears to faithfully recapitulate Wg signaling. Kc167

(Kc) cells are derived from embryonic hemocytes (Goto

et al, 2001) and are responsive to Wg signaling, as judged

by reporter genes (Lum et al, 2003; DasGupta et al, 2005). To

identify endogenous targets of the pathway, we performed

microarray analysis with control cells and cells stimulated by

Wg-conditioned media (Wg-CM). Several activated targets

were identified (T Blauwkamp and K Cadigan, unpublished)

and two of them, nkd and CG6234, are described here in

detail. nkd is a Wg antagonist that is activated by Wg

signaling in flies (Zeng et al, 2000) and CG6234 is predicted

to encode a membrane protein of unknown function (http://

flybase.bio.indiana.edu). Wg-CM induced the transcript

levels of CG6234 and nkd seven- to 15- or 15- to 30-fold,

respectively (Figure 4A, B, E and F). RNA interference

(RNAi)-mediated knockdown of TCF or the coactivators

pygopus (pygo) and arm blocked Wg activation of these

genes (Figure 4A and B), indicating that nkd and CG6234

are activated through the canonical b-catenin/Arm pathway.

The standard model predicts that in the absence of Wnt

stimulation, transcriptional targets of the pathway are re-

pressed by TCFs bound by corepressors such as Gro (Cavallo

et al, 1998; Roose et al, 1998) and CtBP (Brannon et al, 1999;

Valenta et al, 2003). To test whether repression was occurring

in Kc cells, we inhibited CtBP, TCF and gro using RNAi.

A DC

I LK

E HG
Sens Dll Dll-lacZWg

Sens Dll Dll-lacZWg

CtBP Merge CtBP Merge

En/+

En/A396

En/A396

B

F

J

Figure 2 CtBP overexpression can activate and repress Wg targets in the wing imaginal discs. Confocal images of wing imaginal discs from
late third instar larva. (A, B) P[En-Gal4]/þ disc immunostained for Wg (blue) and Sen (red) displaying the wild-type expression pattern.
(C, D) P[En-Gal4]/P[Dll-lacZ] discs stained for Dll (green) and lacZ (red) showing the normal broad expression surrounding the D/V boundary.
(E, F, I, J) P[En-Gal4]/P[GSV]A396 disc, where CtBP (green) is overexpressed in the posterior compartment. Wg expression (blue) is unaffected,
while Sens (red) is sharply reduced in the CtBP-expressing domain. (G) P[En-Gal4]/P[GSV]A396 disc stained for Dll (green), displaying a subtle
but reproducible expansion of Dll expression in the posterior compartment (compare arrows in panel G with those in panel C). (H, K, L)
P[En-Gal4] P[GSV]A396 P[Dll-lacZ] disc stained for CtBP (green) and lacZ (red), exhibiting a significantly wider Dll-lacZ expression domain in
the posterior compartment.
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Depletion of any of these genes individually had a minimal

effect on CG6234 basal expression (Figure 4C). nkd was

slightly more sensitive, with CtBP or gro inhibition causing

a two- to three-fold increase in expression, and TCF a three- to

five-fold increase (Figure 4B and D). When multiple genes

were knocked down, a more dramatic difference between the

two Wg targets was observed. CG6234 depression was never

more than three-fold (Figure 4C), while that of nkd could

exceed 30-fold (Figure 4D). Interestingly, gro/TCF RNAi treat-

ment only slightly increased nkd expression compared to TCF

alone, suggesting that these proteins act together to repress

nkd. Synergistic derepression was only observed when CtBP

depletion was combined with either gro or TCF (Figure 4D).

This suggests that CtBP is acting in parallel to TCF/Gro to

repress the basal level of nkd expression, not through TCF

as proposed previously.

In addition to its role in repression in the absence of

Wg signaling, CtBP is also required for maximal activation

of CG6234 expression by Wg (Figure 4E). In several experi-

ments, CtBP depletion caused a two- to three-fold reduction

in the activation of CG6234 by intermediate levels of Wg-CM,

and usually less than two-fold at higher Wg-CM concentra-

tions (Figure 4E and data not shown). Inhibition of CtBP did

not affect the ability of Wg to stabilize Arm (Figure 4G), and

had no effect on the activation of nkd expression by Wg

(Figure 4F). As is the case in the wing imaginal disc, CtBP is

required for optimal activation of Wg targets, although the

data with nkd indicates that this effect is gene-specific.

CtBP binding to WREs in endogenous Wg

transcriptional targets

To determine whether CtBP directly regulates Wg transcrip-

tional regulation of endogenous targets, we characterized the

WREs in CG6234 and nkd. We identified clusters of putative

TCF binding sites in the intergenic and intronic regions of

nkd and CG6234 using an online tool called Target Explorer

(http://trantor.bioc.columbia.edu/Target_Explorer; Sosinsky

et al, 2003). The matrix that defined the search criteria is

based on the DNA-binding data from the sloppy pair1, even-

skipped, Ultrabithorax and decapentapleigic Wg-dependent

enhancers (Riese et al, 1997; Lee and Frasch, 2000; Yang et al,

2000; Knirr and Frasch, 2001). For CG6234, two regions

containing TCF sites were identified (C#1 & C#2), located

approximately 2.8 and 1.8 kb upstream from the transcription

initiation site respectively (Figure 5A). A 1.8 kb fragment

containing several TCF sites was fused upstream of the

hsp70 core promoter driving luciferase (pCG6234). This con-

struct was activated 10- to 20-fold by cotransfection with

Arm*. The WRE was further localized to a 1.15 kb fragment

containing the C#1 sites and three other potential TCF sites

(pCG6234A). Mutation of all these sites (pCG6234Amut) abo-

lishes the reporter’s responsiveness to Arm* (Figure 5A).

Similar data were obtained for a 420 bp fragment containing

TCF cluster N#5 in the first intron of nkd (Figure 5D and J Li

and K Cadigan, in preparation). Thus, both Wg targets

contain functional TCF sites that respond to Wg signaling,

suggesting that they are direct targets of the pathway.

Further support for direct regulation of CG6234 and nkd

by TCF comes from chromatin immunoprecipitation (ChIP)

studies using antibodies against endogenous TCF. Strong TCF

binding was observed on the C#1 site upstream of the CG6234

transcriptional unit, compared to the CG6234 ORF (C#0;

Figure 5B). Preferential binding to two TCF binding site

clusters in the nkd intron (N#4 and N#5) is also observed

(Figure 5D and E), consistent with these sequences contain-

ing a WRE. TCF binding to the WREs in both genes is greatly

enhanced after a 4 h treatment of Wg-CM. TCF expression

is not activated by Wg signaling (data not shown) and the

mechanism of this Wg-dependent increase of TCF binding

to the WREs is under investigation. The TCF ChIP signal is

dramatically reduced by RNAi depletion of TCF, indicating

that it is specific for TCF (Figure 5B and E).

Following identification of bona fide WREs in CG6234

and nkd, ChIP analysis using antibodies against endogenous

CtBP was performed to determine whether CtBP occupies this

region of the chromatin. Preferential CtBP binding was found

for both the C#1 site in CG6234 (Figure 5C) and N#4 and N#5

in nkd (Figure 5F). Stimulation of the cells with Wg-CM for

4 h reveals a marked increase in CtBP binding to these sites

(Figure 5C and F). These data indicate that CtBP is physically

present on these WREs both in the absence and presence of

Wg signaling, consistent with CtBP playing a direct role in

both repression and activation of Wg targets.

The pattern of TCF and CtBP binding to the CG6234 and

nkd regulatory regions is consistent with TCF recruitment

of CtBP to DNA (Figure 5B, C, E and F). To test this, CtBP

binding to chromatin was determined in cells that were deple-

ted for TCF via RNAi. Two results were observed. First, CtBP

still binds to the WREs of both genes after TCF depletion

(Figure 5C and F), under conditions where TCF binding was

greatly reduced (Figure 5B and E). In fact, a 1.5- to 2.0-fold

increase in the CtBP ChIP signal was consistently observed

in TCF-depleted versus control cells, the cause of which is

not clear. The data strongly argue that, in the absense of

Wg, CtBP recruitment to the WREs is TCF-independent. The

second result is that the Wg-dependent increase in CtBP

A C

D F

G I

GFPSens Merge

GFPSens Merge

Merge

De-10 clone

De-10 clone GFPDll

B

E

H

Figure 3 Loss of endogenous CtBP results in a reduction in acti-
vation of Wg targets in the wing imaginal discs. CtBP activity was
removed by creating mitotic clones of CtBP87De-10 (De-10), a strong
CtBP allele. Clones are marked by the absence of GFP (green).
Clones displayed a highly penetrant (100%, n¼ 8) loss of Sens
expression at B12–15 h before pupariation (A–C), which was not
observed in clones from discs that were a few hours prior to
pupariation (D–F). A reduction in Dll expression (90% penetrance,
n¼ 30) was observed in late third instar discs (G–I), which was
more pronounced in clones further from the D/V boundary (white
arrowheads).
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binding to the WREs was abolished by TCF depletion (Figure

5C and F). This suggests that the Wg-dependent increase in

CtBP recruitment to the WREs requires TCF.

CtBP mediates transcriptional activation through

the N-terminal half of Arm

To further explore the activating role of CtBP in Wg signaling,

we examined a simple reporter gene system where the

requirement for TCF is bypassed by fusing Arm to the Gal4

DNA-binding domain (Gal4DBD). As shown for Gal4-

b-catenin (Hsu et al, 1998), Gal4Arm can activate a UASluc

reporter (Figure 6B, C, E and F). Arm contains at least two

transcriptional activation domains, one in the N-terminal

half (Gal4ArmN) and another in the C-terminal portion of

Arm (Gal4ArmC; see Figure 6A–C). Coexpression of either

the short or long isoform of CtBP with Gal4Arm or Gal4ArmN

consistently enhanced (five- to 12-fold) their ability to acti-

vate UASluc (Figure 6B), although the effects were greatest

when Gal4Arm or Gal4ArmN activation of UASluc was kept

to a moderate level (five- to 10-fold over Gal4DBD; data

not shown). However, CtBP expression had no effect on the

ability of Gal4ArmC to activate the reporter (Figure 6B),

regardless of the level of Gal4ArmC expressed (data not

shown). Conversely, CtBP depletion via RNAi reduced the

activity of Gal4Arm and Gal4ArmN four- to eight-fold, but not

Gal4ArmC (Figure 6C). The RNAi effect on endogenous CtBP

is specific, as judged by the ability of a CtBP transgene

not targeted by the dsRNA (corresponding to the 50UTR of

the endogenous transcripts) to rescue the CtBP RNAi defect

of Gal4Arm transcriptional activation (Figure 6E). These

data indicate that CtBP acts through the N-terminus of Arm

to activate transcription of UASluc.

CtBPs exhibit sequence homology to D2-hydroxyacid

dehydrogeneases (Schaeper et al, 1995) and biochemical

studies have shown that human CtBP1 (hCtBP1) is a func-

tional dehydrogenase (Kumar et al, 2002). Mutations in the

catalytic site of hCtBP1 blocked its ability to interact with

known binding partners such as E1A to repress transcription

(Kumar et al, 2002). Because the dehydrogenase domain is

highly conserved between hCtBP1 and fly CtBP (72% iden-

tity, 84% similarity), we took advantage of the crystal struc-

ture of hCtBP1 (Kumar et al, 2002) to examine whether
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Figure 4 CtBP represses as well as activates endogenous Wg targets in Kc cells. (A, B) Kc cells were treated with control dsRNA or sequences
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Wg-CM. aTubulin levels are used as a loading control. The gels shown are representative of three separate experiments.
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dehydrogenase activity is required for the ability of fly CtBP

to augment Gal4Arm transcriptional activation. The con-

served residues aspartate 290 and histidine 312, crucial for

substrate binding and catalysis (Kumar et al, 2002), were

converted to alanine and threonine, respectively. Two mutant

proteins (CtBP-H312T and CtBP-D290A, H312T) were able to

activate Gal4Arm activity as effectively as wild-type CtBP

(Figure 6F). Both mutant proteins were expressed at similar

levels as the wild type (data not shown). These data suggest

that dehydrogenase activity is not required for CtBP’s ability

to enhance Arm transcriptional activation.

We have tested whether Arm and CtBP interact when

coexpressed in Kc cells, but no association was detected

(data not shown). This raises the possibility that CtBP’s effect

on Arm activity is indirect. To address this, ChIP was per-

formed on cells transfected with different Gal4Arm fusions

and UASluc. The ability of anti-CtBP antisera to pull down

UASluc was enhanced almost 10-fold by Gal4Arm compared

to Gal4DBD (Figure 6G). In several experiments, transfection

of Gal4ArmN gave a reproducible three-fold increase in CtBP

ChIP signal compared to Gal4DBD, while Gal4ArmC was not

consistently higher than the negative control (Figure 6G and

data not shown). These data are consistent with the func-

tional interaction between CtBP and the N-terminus of Arm,

and indicate a physical association of CtBP and Arm on

WREs.

Discussion

CtBP represses Wnt target genes independently

of TCF and Arm

CtBP has previously been identified as a repressor of Wnt

signaling, as measured by TCF reporter genes in cultured cells

(Valenta et al, 2003; Hamada and Bienz, 2004). Consistent

with this, we identified CtBP in an overexpression screen via

its ability to suppress Wg and Arm action in the developing

eye (Figure 1). In wing imaginal discs, CtBP overexpression

also inhibited the Wg target Sens (Figure 2F). Consistent with

this overexpression data, the reduction of CtBP in cultured

cells via RNAi is also consistent with a role for CtBP in

repressing some Wnt targets (Figure 4D).

Our working model for CtBP repression of Wnt target gene

expression is summarized in Figure 7A. CtBP is bound to the

same area of the nkd and CG6234 loci as TCF, but this binding

1 Kb

CG6753 CG6225CG6234

C#1 C#0C#2

–3220

–2087

–2654

–1465
lucpCG6234

hsp7 lucpCG6234B

lulucpCG6234A

hsp7 lucpCG6234Amut

0 10 15
Fold change of Luc activity

Empty vector
Arm*

A B C

P
er

ce
n

t 
o

f 
in

p
u

t

P
er

ce
n

t 
o

f 
in

p
u

t

ChIP: αCtBP

0.0%

0.1%

0.2%

0.3%

C#0 C#1

Control
C#0 C#1

dTCF

Control
Wg-CM

ChIP: αTCF

0.8%

0.0%

0.2%

0.4%

0.6%

C#0 C#1

Control

C#0 C#1

dTCF

Control
Wg-CM

RNAi

hsp70

hsp70

hsp70

hsp70

5

P
er

ce
n

t 
o

f 
in

p
u

t

P
er

ce
n

t 
o

f 
in

p
u

t

D E

5 Kb

Naked cuticle

N#1

Acp76A CG18136

N#2 N#3 N#4 N#5 N#6 N#7 N#0

ChIP: αCtBP
Control
Wg-CM

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

N
#0

N
#1

N
#2

N
#3

N
#4

N
#5

N
#6

N
#7

N
#0

N
#4

N
#0

N
#1

N
#2

N
#3

N
#4

N
#5

N
#6

N
#7

N
#0

N
#4

Control TCF

ChIP: αTCF
Control
Wg-CM

7%

0%

1%

2%

3%

4%

5%

6%

Control TCFRNAi

F

Figure 5 CtBP binding to WREs is activated by Wg signaling, but is TCF-independent in the absence of Wg. (A) Schematic diagram of the
CG6234 locus showing the location of the predicted TCF sites (C#1 and 2) and a coding region control site (C#0) used for ChIP analysis.
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is TCF-independent (Figure 5C and F). Consistent with this,

knock down of CtBP and TCF or gro synergistically dere-

pressed nkd expression (Figure 4D). No synergism was

seen with TCF/gro double depletions (Figure 4D). The RNAi

and ChIP data together favor a model where CtBP acts in

parallel with TCF/Gro to repress nkd expression in the

absence of Wg stimulation. Because CtBP has no detectable

ability to bind nucleic acids (Chinnadurai, 2002), we assume

that unknown DNA-binding protein(s) recruit CtBP to the

WRE (Figure 7A).

The existing models for CtBP antagonism of Wnt signaling

cannot explain our data. TCF-independent recruitment of

CtBP to WREs is not consistent with work suggesting direct

binding of CtBP to TCF (Brannon et al, 1999; Valenta et al,

2003). The alternative mechanism, where a CtBP/APC com-

plex diverts Arm/b-catenin away from TCF (Hamada and

Bienz, 2004; Sierra et al, 2006), also is inconsistent with our

results. In this model, the activation of nkd expression after

CtBP RNAi treatment would be dependent on TCF and arm.

Because the derepression of nkd occurred when both CtBP

and TCF were depleted (Figure 3D) and was not affected

when arm was also inhibited (data not shown), we do not

favor this model to explain the effects of CtBP depletion on

nkd expression. These distinct mechanisms for CtBP repres-

sion are not mutually exclusive and may all occur in some

contexts.
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Figure 6 CtBP is required for Arm-dependent transcription activity. (A) Schematic diagram of the UAS reporter and the Gal4 expression vectors
used in the following experiments. (B) Overexpression of both short and long forms of CtBP (500 ng/well) enhances the transcription activities
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There is a qualitative difference in the amount of derepres-

sion found between the two Wg targets studied in Kc cells.

Depletion of CtBP and TCF/gro causes a large (20- to 30-fold)

increase in nkd basal expression (Figure 3D), but has a much

more modest (o3-fold) effect on CG6234 (Figure 3C). These

differences may reflect a fundamental difference in the way

TCF/Gro and CtBP act on various Wnt targets in unstimulated

cells, but it is equally likely that the surrounding cis-elements

in these targets have a strong influence on the degree of

derepression that can be observed.

CtBP plays a direct role in transcriptional activation

of Wnt targets

In addition to defining a novel mechanism for CtBP repres-

sion of Wg targets, we provide strong evidence for CtBP

playing a role in Wg-mediated transcriptional activation.

In the wing imaginal discs, loss of CtBP resulted in a lag in

Wg-dependent activation of Sens (Figure 3A and D) and a

reduction in Dll expression (Figure 3G). In cultured Kc cells,

CtBP depletion caused a two- to three-fold reduction in the

ability of Wg to activate CG6234 expression (Figure 4E). The

ability of Gal4-Arm chimeras to activate a Gal4 reporter

gene is also highly dependent on CtBP levels (Figure 6B

and C). In all these contexts, CtBP is not absolutely required

for Wg signaling, but is necessary for maximal activation of

Wg/Arm transcriptional activation.

The positive effect of CtBP on Wg signaling is direct, as

judged by ChIP. Assuming that ChIP is measuring the degree

of occupancy of CtBP on the chromatin, and not simply

antigen accessibility, Wg stimulation promotes the asso-

ciation of CtBP with the CG6234 WRE (Figure 5C). This

increase in CtBP binding is not observed in TCF-depleted

cells (Figure 5C). Gal4-Arm recruits endogenous CtBP to

a UASluc reporter (Figure 6G). Taken together, these data

support a model where TCF/Arm recruits CtBP to Wg targets.

We have been unable to detect binding between Arm and

CtBP by co-immunoprecipitation (data not shown), suggest-

ing that another factor(s) may act as an adaptor between

CtBP and the Arm bound to TCF (Figure 7B).

As is the case for b-catenin (Hsu et al, 1998), Arm

has transcriptional activation activity in both the N- and

C-terminal portions of the protein (Figure 6A–C). CtBP over-

expression or RNAi depletion greatly effects the activity

of the N-terminal half of Arm but has no effect on the

C-terminal portion (Figure 6B and C). Consistent with this,

the N-terminal portion can recruit CtBP to a reporter gene,

but not the C-terminus (Figure 6G). Other factors that have

been linked to the N-terminal portion of Arm include Lgs

and Pygo (Kramps et al, 2002; Hoffmans and Basler, 2004)

and the ATPases Pontin and Reptin (Bauer et al, 2000). It may

be that CtBP acts in concert with one or more of these factors.

CtBPs have strong sequence similarity with D2-hydroxy-

acid dehydrogenases (Schaeper et al, 1995). hCtBP1 is a

functional dehydrogenase and point mutations blocking

CtBP1 dehydrogenase activity inhibit its ability to interact

with binding partners and act as a transcriptional corepressor

(Kumar et al, 2002). However, another group found that

similar mutations had no effect on the ability of CtBP to

repress transcription (Grooteclaes et al, 2003). In our report,

mutation of two residues (D290A and H312T) predicted to

be essential for catalytic activity had no effect on the ability

of fly CtBP to potentiate Gal4-Arm transcriptional activation

(Figure 6F). Further complicating the issue is data from

experiments expressing the fly CtBP fused to Gal4DBD in

mammalian cells (Phippen et al, 2000). In some cells, Gal4-

CtBP activated a UAS reporter, while the same reporter was

repressed in other cell lines. Interestingly, conversion of

CtBP’s catalytic histidine to glutamine abolished transcrip-

tional activation, but not repression (Phippen et al, 2000).

The heterologous nature of these experiments and the differ-

ences in the assays employed may explain the discrepancy

between these studies, and further experiments will be

needed on endogenous targets to determine how much

dehydrogenase activity of CtBP contributes to repression

and activation of Wnt targets.

Although CtBP is required for maximal activation of

CG6234 expression and a Gal4-Arm-dependent reporter

gene, Wg activation of nkd did not appear to require CtBP

(Figure 4F). The basis for this gene-specific requirement for

CtBP is not clear. CtBP is recruited to the nkd WRE in a Wg-

dependent manner (Figure 5F), similar to what was observed

for CG6234 (Figure 5C). It may be that CtBP is required for

nkd activation, but this is masked by its role in repressing

nkd expression. This hypothesis could be tested if we are able

to separate CtBP’s activator and repressor activities.

The requirement for CtBP in Wnt transcriptional activa-

tion may have been previously overlooked due to its well-

characterized role as a co-repressor. For example, mouse

embryos that lack CtBP2 have axial truncations and reduced

Brachyury (T) expression that is reminiscent of Wnt3a mut-

ants (Hildebrand and Soriano, 2002). These results suggest

that the activating role for CtBP in Wnt signaling that we have

identified is evolutionarily conserved.

Materials and methods

Drosophila genetics
A bidirectional EP element, P[GSV] (Toba et al, 1999), was mobi-
lized using P[delta 2–3] as the source of P element transposase
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Figure 7 Model depicting CtBP functions in the absence or pre-
sence of Wg signaling. (A) In the absence of Wg signaling, CtBP
(presumably recruited to the WRE by an unknown protein) acts in
parallel to TCF/Gro to repress nkd gene expression. (B) Upon Wg
stimulation, CtBP is recruited by Arm and other factors to the TCF
binding sites, where it contributes to activation of targets such as
CG6234.
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(Robertson et al, 1988). Insertions were screened for the ability to
suppress P[GMR-Gal4] P[UAS-wg] and P[GMR-Gal4] P[GMR-arm*]
as described previously (Parker et al, 2002). The insertions were
mapped using inverse PCR as described on the Berkeley Drosophila
Genome Project website (http://www.fruitfly.org/about/methods/
inverse.pcr.html). CtBP87De-10, EnGal4, Dll-lacZ, UASlacZ, ywP[hsFLP]1

and P[FRT]82B P[Ubi-GFP] P[lacW]RpL141/TM6 were obtained from
the Bloomington Stock Center.

Experiments with GMR-Gal4 were carried out at 251C, while
those with En-Gal4 were performed at 181C. Clones of CtBP87De-10

were generated by mitotic recombination using hsFLP and a
P[FRT]82B P[Ubi-GFP] P[lacW]RpL141chromosome carrying a Minute
mutation via a 1 h 371C heat shock at 48–72 h after egg laying.

Antibodies
Rabbit polyclonal anti-CtBP antisera was generated against bacte-
rially produced full-length CtBP (accession no. AB011840) GST
fusion protein. Antisera were affinity purified using GST-CtBP
coupled to a AminoLink Plus Column (Pierce). Rabbit polyclonal
anti-TCF antisera against the N-terminus of TCF were generated as
described previously (Chan and Struhl, 2002). Guinea-pig anti-Sens
was generated as described (Nolo et al, 2000). N2 7A1 (anti-Arm)
was from Developmental Studies Hybridoma Bank at the University
of Iowa. Anti-V5 epitope antibody was purchased from Invitrogen.
For Western blot analysis, anti-CtBP (1:1000) and anti-Arm (1:1000)
were followed by HRP-anti-rabbit IgG or HRP-anti-mouse (Amersham
Bioscience), respectively. Signal was detected using the ECL kit

(Amersham Bioscience). Immunostaining of wing imaginal discs
were performed as described previously (Cadigan et al, 1998),
using rabbit anti-CtBP (1:500), guinea-pig anti-Sens (1:500) and
rabbit anti-Dll antisera (1:100) (Panganiban et al, 1995). Cy3- and
Alexa 488-conjugated secondary antibodies were from Jackson
Immunochemicals and Molecular Probes, respectively. Samples
were examined using an Axiophot (Zeiss) coupled to a LSM 510
confocal apparatus (Zeiss).

Drosophila cell culture
Kc167 (Kc) cells were routinely cultured in the Schneider’s
Drosophila media (Invitrogen) containing 5% FBS at room
temperature. RNAi-mediated gene knockdowns were performed
essentially as described (Clemens et al, 2000). Briefly, cells were
resuspended at 2�106/ml in Drosophila SFM (Invitrogen), seeded
at 106/well and 9 mg of dsRNA added. After a 1 h incubation, 1 ml
of media containing 7.5% FBS was added. Cells were harvested on
the fourth day. Primers for dsRNA synthesis are available in the
Supplementary data (Table I).

Transient transfections were carried out with Fugene 6 (Roche
Applied Science) according to the manufacturer’s instruction.
If a transfection was combined with RNAi, cells were washed
with media twice on the second day after RNAi treatment, and
transfection was performed according to the same procedure (see
below). pAcCtBP-long and pAcCtBP-short expression vectors were
generated by subcloning the KpnI/XbaI long and short CtBP
fragments with double FLAG tags at the N-terminus (gifts from

Table I Primer sequences for dsRNA templates, RT–PCR and ChIP analysis

dsRNA Control gaattaatacgactcactatagggagaatgattgaacaagatggattgcacgca
gaattaatacgactcactatagggagaaatatcacgggtagccaacgctatgtcct

CtBP (ORF) gaattaatacgactcactatagggagaatgcacaaagcacctccgaaatacacga
gaattaatacgactcactatagggagagcaccaggtcgcatctgtttaattgtgaat

CtBP (5’UTR) gaattaatacgactcactatagggagaattctcgatttcaatatgaagcgccaa
gaattaatacgactcactatagggagagctgtttttcaatctgtctgctgctgtcct

groucho gaattaatacgactcactatagggagaccattagccctgactcgaaggtgtgctt
gaattaatacgactcactatagggagagttttactgccgatgctgctgctgttgt

armadillo gaattaatacgactcactatagggagaatgagttacatgccagcccagaatcgaa
gaattaatacgactcactatagggagacgatggtgtgataagttgtgcagtgttccta

pygopus ttaatacgactcactatagggagaccgctacaaccgaatttcttgc
ttaatacgactcactatagggagagtgattcatatgcggcggtagtc

TCF gaattaatacgactcactatagggagagaagatgactacgatgatgataaactaggcgga
gaattaatacgactcactatagggagaaatagggtttcgggatgtgtttggcatt

RT–PCR b-tubulin56D agacctactgcatcgacaac
gacaagatggttcaggtcac

CG6234 gctgctctgcgtgatcgtcttc
tctggtgttggtgaactctcctcc

naked cuticle taaaattctcggcggctacaa
cgcacctggtggtacatcag

ChIP C#0 accttctggctttggagcag
tgggctcctcataaactggc

C#1 tgcataatgcatacgatcgga
tgttcggcggaaaagctaaa

N#0 ccagcatcgctatcgacca
gcgtccttctccttttcgct

N#1 ttgatcccgattccccattc
ttggtgttccatcacagccac

N#2 tcaatttgcagctctggcact
agtataatggaatttaataggcgcgat

N#3 cctttgaattccccctgcat
gccaggccaacactttgaac

N#4 tcaatcagacgtcagaggtaccg
ctgatggaagaaccgtgttgg

N#5 aattttcccagaccgctttcc
cgaaaaagccgccaaacatat

N#6 tcagcatcggctacagcga
aaactcttatcaaacaggagccca

N#7 ttctaccggcaccattcacg
ttcccctcgaaataattgctactg

UASluc tgctagctcgaggccttgag
gctgcgcttgtttatttgctt
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Dr D Arnosti) into a pAc5.1 expression vector (Invitrogen). Mutant
CtBP (CtBP-H312T and CtBP-D290A, H312T) constructs were made
by PCR-based introduction of the mutation into the pAcCtBP-short
vector. The Arm* expression vector was constructed by first cloning
a full-length fragment of Arm into the pAc5.1 vector, followed
by introducing mutations that substitute Thr52 and Ser56 to Ala
via PCR. Reporter constructs of CG6234 (pCG6234, pCG6234A&B
and pCG6234Amut) were made by incorporating KpnI/XmaI PCR
fragments as indicated in Figure 4A into a pGL3-Basic vector
(Promega). The constructing of UASluc reporter vector, Gal4DBD
and Gal4Arm fusion expression vectors are described elsewhere
(J Li and K Cadigan, in preparation).

For the UASluc luciferase reporter assays, a mixture of DNA
containing 100 ng UASluc and the following expression vectors, 1 ng
pAclacZ (Invitrogen), 20–100 ng of Gal4Arm fusions and 500–625 ng
of CtBP vectors, were co-transfected. Gal4DBD or pAc5.1 vectors
were used to normalize the DNA content or as controls. Cells were
harvested 2 days later. Luciferase and b-galactosidase activities
were assayed using the Tropix Luc-Screen and Galacto-Star kits
(Applied Biosystems) and quantitated with a Chameleon plate
luminometer (Hidex Personal Life Science). Transfection efficiency
was normalized using the pAclacZ b-galactosidase activities. For the
CG6234 reporters, 100 ng of the reporter construct, 1 ng pAclacZ
and 500 ng Arm* vectors were co-transfected into 106 cells and the
Luciferase activity was measured 2 days later as for UASluc.

Wg–CM was collected using stable pTubwg S2 cells, kindly
provided by Dr R Nusse from Stanford University, and was typically
concentrated for B50-fold using a Centricon tube (Millipore) and
stored at �801C. Kc cells were treated with Wg-CM for 4 h prior to
harvesting.

Real-time quantitative PCR (Q-PCR)
All real-time Q-PCR analyses were carried out with iQ SYBR Green
Supermix (BioRad) on a iCycler iQ real-time PCR detection system

(BioRad). For RT–PCR, total RNA from 1 to 5�106 Kc cells was
extracted with Trizol Reagent (Invitrogen), and reverse transcribed
with Stratascript reverse transcriptase (Stratagene) followed by
Q-PCR analysis. Sequences of the primer pairs used are listed in
Table I.

ChIP
ChIP analysis was performed using a ChIP assay kit (Upstate
Biotechnology) essentially as described by the manufacturer, except
that we have included a initial protein–protein crosslinking step by
incubating cells with a 10 mmol/l dimethyl 3,30-dithio-bis(propio-
nimidate) dihydrochloride (Sigma-Aldrich) solution for 30 min on
ice as described (Fujita et al, 2003). A total of 2–3�106 cells and
5–10 ml of antisera were typically used per ChIP analysis. All result-
ing precipitated DNA samples were quantified with Q-PCR. Data are
expressed as the percent of input DNA.

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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