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Abstract

In a microarray-based methylation analysis of astro-

cytomas [World Health Organization (WHO) grade II],

we identified a CpG island within the first exon of

the protocadherin-g subfamily A11 (PCDH-g-A11) gene

that showed hypermethylation compared to normal

brain tissue. Bisulfite sequencing and combined

bisulfite restriction analysis (COBRA) was performed

to screen low- and high-grade astrocytomas for the

methylation status of this CpG island. Hypermethyla-

tion was detected in 30 of 34 (88%) astrocytomas

(WHO grades II and III), 20 of 23 (87%) glioblastomas

(WHO grade IV), and 8 of 8 (100%) glioma cell lines.

There was a highly significant correlation (P = .00028)

between PCDH-g-A11 hypermethylation and decreased

transcription as determined by competitive reverse

transcription polymerase chain reaction in WHO

grades II and III astrocytomas. After treatment of

glioma cell lines with a demethylating agent, tran-

scription of PCDH-g-A11 was restored. In summary, we

have identified PCDH-g-A11 as a new target silenced

epigenetically in astrocytic gliomas. The inactivation

of this cell–cell contact molecule might be involved in

the invasive growth of astrocytoma cells into normal

brain parenchyma.
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Introduction

Diffuse infiltration of normal brain tissue is a hallmark of

astrocytomas and a major obstacle to neurosurgical inter-

vention. Gliomas are the most frequent tumors of the brain

and account for 50% to 60% of all intracranial neoplasms

[1]. Even though these tumors rarely metastasize outside

the brain, tumor cells not removed by surgery and/or che-

motherapy tend to infiltrate into surrounding normal brain

parenchyma, giving rise to a more aggressive recurrent

tumor. Although much is known about genetic alterations

in gliomas (e.g., deletions in chromosomes 1p, 9p, 11p, 19q,

and 22q, and inactivation of tumor-suppressor genes TP53

and CDKN2A/B) [2], there is relatively little information on

epigenetic alterations and gene silencing, especially those

implicated in cell adhesion and locomotion.

In a microarray-based methylation analysis, we have iden-

tified a CpG island within the first exon of the protocadherin-c
subfamily A11 (PCDH-c-A11) gene that showed frequent meth-

ylation in diffuse astrocytoma World Health Organization

(WHO) grade II. Protocadherins constitute the largest sub-

group within the cadherin superfamily of calcium-dependent

cell–cell adhesion molecules and have been implicated in

neural cell–cell interactions. They are abundantly expressed

in the central nervous system during embryonic development

and in adulthood [3,4]. PCDH-c-A11 is located in the proto-

cadherin gene cluster of the chromosomal region 5q31. This

region contains nearly 60 protocadherin genes organized in

three large sequential clusters (a-, b-, and g-protocadherins),

some of which have been associated with specific neuronal

connectivity and synaptic junctions in the nervous system [5,6].

Loss of expression of members of the cadherin superfamily

(e.g., CDH1, CDH13, CDH11, and protocadherin LKC) has

been demonstrated in a number of different cancer entities

including colorectal, liver, and lung cancers [7–10], andmay be

involved in tumor cell invasion and metastasis [11,12]. Candi-

date gene approaches as well as genomewide methylation

analysis by RLGS demonstrated that epigenetic alterations are

common in gliomas and other central nervous system tumors

[13–16]. This points to the likelihood that DNAmethylation may

be involved in tumorigenesis and tumor progression in gliomas,

and it is therefore of interest to uncover novel gene promoters

that are hypermethylated in this tumor entity.
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Here we present evidence for de novomethylation and the

associated transcriptional silencing of PCDH-c-A11, a mem-

ber of the protocadherin-g subfamily, in 57 astrocytomas and

eight glioma cell lines.Methylation status ofPCDH-c-A11was
determined by bisulfite sequencing and COBRA analysis. A

competitive reverse transcription polymerase chain reaction

(cRT-PCR) protocol was used to determine transcript levels

of PCDH-c-A11 in astrocytomas and glioma cell lines. To

confirm the direct involvement of methylation in silencing of

gene transcription, we treated glioma cell lines with the

demethylating agent 5V-aza-2V-deoxycytidine and showed

that PCDH-c-A11 was reexpressed in the treated cells.

Materials and Methods

Tumor Samples and Isolation of Nucleic Acids

Tumor tissue was obtained from patients with brain

tumors treated at the University of Bonn Medical Center

(Bonn, Germany) and was classified according to the WHO

grading system of brain tumors using standard histologic and

immunohistologic methods [1]. The patient age ranged from

11 to 78 years. Our patient cohort included 29 females and

29 males (Table 1). The series included 34 astrocytomas

(WHO grades II and III), 24 glioblastomas (WHO grade IV),

and eight glioma cell lines (308D, A1207, LN229D, U178MG,

U87MG, LN428, A172, and U373MG). Tissues were se-

lected for extraction of DNA and RNA after careful examina-

tion of H&E staining of corresponding frozen sections to

exclude contaminating necrotic debris or normal brain tis-

sues, and to determine histologic characteristics of the tumor.

DNA was extracted using standard proteinase K digestion

and phenol/chloroform extraction. RNA was isolated with

TRIZOL reagent (Invitrogen, La Jolla, CA) following the ma-

nufacturer’s protocol. Contaminating residual genomic DNA

was removed by digestion with RNase-free DNase (Roche,

Mannheim, Germany). Biopsies of white matter and grey

matter (cortex) were included as normal tissue controls for

hybridization of differential methylation hybridization (DMH)

microarrays and for methylation and expression analyses.

DMH Analysis

The DMH procedure was performed as described [17].

CpG-rich DNA fragments were isolated from the human CGI

(CpG island) library and screened for the presence of BstUI

(NEB, Beverly, MA) and HpaII (NEB) restriction sites. A total

of 7680 suitable fragments was PCR-amplified using plasmid

primer and spotted onto UltraGAPS microarrays (Corning,

Acton, MA). For amplicon generation, 2 mg of genomic DNA

of five astrocytoma (WHO grade II) samples and a pool of

four normal brain samples (white matter) were digested with

MseI (NEB) according to the manufacturer’s protocol. After

ligation of linker H12/H24, fragments were digested with

methylation-sensitive restriction enzymes BstUI and HpaII

and amplified for 20 cycles with H24 as primer. PCR frag-

ments were labeled by direct incorporation of Cy3-dCTP

(normal brain) and Cy5-dCTP (tumor) using fluorescent dyes

(Amersham, Buckinghamshire, UK) and the Klenow frag-

ment (Invitrogen). Labeled amplicons were purified with

Microcon YM-30 columns (Millipore, Bedford, MA) and equal

amounts of Cy3 and Cy5 label and 20 mg of human CotI DNA

were combined for hybridization on DMH microarrays. Hy-

bridization and analysis procedure were carried out as

described [18]. Data from single-copy sequences were nor-

malized and loci with a Cy5/Cy3 ratio greater than 2 were

scored as hypermethylated.

Bisulfite Treatment and Bisulfite Sequencing

DNA was treated with sodium bisulfite as described [19].

Primers used for PCR amplification were PCDH-c-A11 fw-5V-

ATTTGGTTATTTGGTGATTAAGGTG-3V and PCDH-c-A11
rev-5V-AAAATTTCAAAAT TAACCAAAAACT-3V. The 312-bp

PCR product (acc. no. NM 018914; 2010–2321 bp) contains

26 putative CpG methylation sites and was cloned with the

pGEM-T Vector System kit (Promega, Madison, WI). Indi-

vidual bacterial clones were amplified by PCR using vector-

specific primers. PCR products were purified with the high

pure PCR purification kit (Roche), sequenced using the

BigDye Prism DNA sequencing kit (Applied Biosystems,

Foster City, CA), and analyzed on an automated DNA

sequencer 377 (Applied Biosystems).

Combined Bisulfite Restriction Analysis (COBRA)

PCR products generated with PCDH-c-A11 primers from

bisulfite-treated tumor and control DNA were digested with

the methylation-sensitive restriction enzyme BstUI and sub-

sequently run on 2.5% agarose gels adjacent to an untreated

aliquot of the respective PCR product. BstUI restriction sites

(CGCG) are conserved when the respective DNA samples

are methylated; unmethylated DNA samples are changed by

bisulfite treatment into TGTG and are not recognized by the

enzyme. The 312-bp amplicon contains three BstUI restric-

tion sites, yielding fragments of 151, 104, 35, and 22 bp if all

sites are methylated.

Cell Culture and Treatment with 5-Aza-2 V-deoxycytidine

Glioma cell lines U178MG, U87MG, LN428, A172,

and U373MG were cultured in DMEM medium (Biochrom,

Berlin, Germany) supplemented with 10% fetal calf serum

(Gibco, Paisley, UK) at 37jC and 5% CO2. To induce

demethylation, cells were treated with 0.5 and 1 mM 5-aza-

2V-deoxycytidine (Sigma, St. Louis, MO) for 3 days with

changes of medium every other day and, finally, total RNA

was extracted for PCDH-c-A11 expression analysis.

cRT-PCR

RNA competitor molecules with internal deletions for

PCDH-c-A11 and the housekeeping gene PBGD (porpho-

obilinogen desaminase) were generated by in vitro muta-

genesis and in vitro transcription as described [20]. To

achieve a quantitative assessment, predetermined amounts

of the specific standard RNA covering an equimolar range

of the corresponding mRNA transcript were added to

250 ng of sample RNA prior to reverse transcription using

the SuperScript Preamplification System (Invitrogen). One

microliter of cDNA was amplified with primers PCDH-c-A11
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fw 5V-caaagattcaggccagaacg-3V (exon 1) and PCDH-c-A11
rev 5V-ccaagatcatggcttgcagc-3V (exon 3) spanning intronic

regions, yielding products of 227 bp for the endogenous

transcript and 212 bp for the competitor transcript. ForPBGD,

the following primers were used: PBGD fw 5V-CCAGGA-

CATCTTGGATCTGG-3V and PBGD rev 5V-TAAGCTGCC-

GTGCAACATCC-3V, endogenous product size 389 bp,

competitor 367 bp. Every PCR was carried out in triplicates.

One primer for each gene was labeled with a fluorescent dye.

PCR products were separated on 4.5% denaturating acryl-

amide gels on an ABI 377 DNA sequencer and analyzed

using the Genescan software (Applied Biosystems). The

expression levels of target RNA were calculated using

the following algorithm: (PCDH-c-A11endogenous / PCDH-c-
A11competitor) / (PBGDendogenous / PBGDcompetitor).

Results

Aberrant Methylation within the First Exon of PCDH-c-A11
Using methylation microarray analysis, we have identified

a CG-rich fragment within the first exon of PCDH-c-A11 (acc.

no. NM 018914; 1839–2162 bp), which was found to be

hypermethylated in astrocytomas of WHO grade II but not in

normal brain tissues. A total of 57 astrocytomas and eight

cell lines were included in the methylation analysis. To

investigate the extent of de novo methylation within the first

exon of the PCDH-c-A11 gene and to validate the microarray

data, bisulfite sequencing of three astrocytomas of WHO

grade II (7282, 11092, and 12020), one GBM sample (WHO

grade IV; 4732), and two normal brain samples (white matter

12768 and grey matter 12434) was conducted. Figure 1 A

shows representative sequencing profiles of CpG sites 6 to

14 within the region analyzed in astrocytoma sample 7282

and cortical brain sample 12434 (acc. no. NM 018914;

2010–2321 bp). The tumor exhibits complete methylation

of all the studied CpG sites, whereas the normal brain

showed a complete conversion of these CpG sites, indicating

a complete lack of methylation in this region. Comparison of

the methylation pattern of the 26 CpG sites within the 312-bp

bisulfite PCR fragment clearly showed significant accumula-

tion of de novo methylation in the selected tumor samples.

However, moderate methylation in a few alleles was also

apparent in normal brain tissues (Figure 1 B). The overall

Table 1. Methylation and Expression Data for PCDH-c�A11 in Astrocytomas and Glioma Cell Lines.

Tumor ID S/A Diagnosis Methst RelmRNA Expr Tumor ID S/A Diagnosis Methst RelmRNA Expr

1074D M/44 AII m nd 3728 M/74 GBM m nd

2307 M/35 AII m nd 4006 M/38 GBM m 0.21 (± 0.05)

2154 M/30 AII m 0.33 (± 0.07) 4032 M/35 GBM m 0

2246 F/11 AII m 0.11 (± 0.01) 4416 M/61 GBM m 1.1 (± 0.1)

2316 M/35 AII m 0 4594 F/52 GBM m 9.7 (± 1.85)

3022 R F/29 AII m 2.44 (± 0.34) 4714 F/39 GBM m 0

3294 R F/34 AII m 0.8 (± 0.03) 4732 F/61 GBM m 0.1 (± 0.01)

3632 M/55 AII m 27.67 (± 4.51) 4804 M/57 GBM m 0.21 (± 0.08)

4948 M/46 AII m nd 4936 F/37 GBM m nd

5232 R M/36 AII m 0.88 (± 0.05) 4944 F/59 GBM m 0.2 (± 0.04)

7282 M/29 AII m 1.07 (± 0.39) 4962 F/70 GBM m 0.07 (± 0.01)

7342 M/40 AII m 0 5162 F/78 GBM m 8.16 (± 0.57)

9306 F/55 AII m 0.18 (± 0.15) 6236 M/69 GBM m 13.8 (± 1.14)

9421 F/37 AII m 0.82 (± 0.2) 6840 M/54 GBM m nd

9640 M/32 AII m 0.2 (± 0.02) 10120 R M/40 GBM m 98.47 (± 29.5)

11092 M/35 AII m 0.52 (± 0.03) 11418 F/68 GBM m 0.4 (± 0.01)

11240 M/25 AII m 0.29 (± 0.05) 11571 F/70 GBM m 16.74 (± 3.8)

12020 R F/21 AII m 0.93 (± 0.26) 11666 M/42 GBM m 0.05 (± 0.01)

9004 R F/32 AII nm 26.7 (± 2.19) 4530 F/66 GBM nm 0.08 (± 0.01)

7564 M/38 AII nm 18.5 (± 2.49) 4548 F/60 GBM nm 0

2392 R F/41 AIII m nd 4400 M/49 GBM nd 0

2754 F/50 AIII m 1.03 (± 0.04) 11637 F/52 GBM nm 3.1 (± 0.2)

2814 M/16 AIII m 1.44 (± 0.01) 308D GBMcl m nd

7006 M/42 AIII m nd A1207D GBMcl m nd

7020 M/32 AIII m nd LN229D GBMcl m nd

9846 F/50 AIII m 0.05 (± 0.02) U178MG GBMcl m 0.13 (± 0.01)

10048 M/49 AIII m 0.18 (± 0.04) U178MG+ GBMcl 10.4 (± 1.96)

10760 F/30 AIII m 1.14 (± 0.12) U87MG GBMcl m 0.2 (± 0.01)

11060 F/32 AIII m 0.09 (± 0.01) U87MG+ GBMcl 25.26 (± 7.16)

11226 F/32 AIII m 0.18 (± 0.02) LN428 GBMcl m 0

12442 F/28 AIII m nd LN428 ++ GBMcl 4.13 (± 0.28)

12490 F/51 AIII m 0.57 (± 0.15) A172 GBMcl m 0

2446 F/62 AIII nm 14.6 (± 1.02) A172 + GBMcl 2.6 (± 0.24)

10414 F/38 AIII nm 5.62 (± 0.32) U373MG GBMcl m 0

537D R M/49 GBM m nd U373MG+ GBMcl 11.36 (± 2.71)

1150D R M/62 GBM m nd NB WM,GM 7.8 (± 1.49)

M, male; F, female; R, recurrent; AII, diffuse astrocytoma of WHO grade II; AIII, anaplastic astrocytoma of WHO grade III; GBM, glioblastoma of WHO grade IV;

GBMcl, glioma cell line; S/A, sex/age; m, methylated; nm, not methylated; (+) 0.5 mM 5-aza-2V-deoxycytidine; (++) 1 mM 5-aza-2V-deoxycytidine; nd, not determined;

NB, pool of normal brain (white and grey matter) samples; WM, white matter; GM, grey matter (cortex); Methst, methylation status; RelmRNA Expr, relative

transcription levels and standard error of PCDH-c-A11 expression are indicated.
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Figure 1. Methylation analysis of a CpG island within the first exon of the PCDH-c-A11 gene. (A) Bisulfite sequencing profile of a WHO grade II astrocytoma

(7282) and normal brain (grey matter 12434). Methylated CpG sites 6 to 14 are indicated by arrows. Underlined are three BstUI restriction sites that are

methylated and therefore conserved during bisulfite treatment in this tumor sample and are used for the restriction-based methylation assay. (B) Bisulfite

sequencing analysis of CpG sites 1 to 26 of individual clones of the 312-bp PCDH-c-A11 PCR product of four tumor samples (AII 7282, AII 11092, AII 12020, and

GBM 4732) and two normal brain samples (white matter 12768, grey matter 12434). (n) Methylated CpG site; (5) unmethylated CpG site. (C) Restriction-based

methylation assay of the first exon of PCDH-g-A11 in astrocytomas. The 312-bp bisulfite PCR products without (�) and after treatment (+) with BstUI restriction

enzyme are shown. Restricted fragments of the PCR product are only apparent in tumor samples and not in the normal brain tissues (NB1, white matter 12284;

NB2, white matter 12692; NB3, white matter 12768). Tumor samples AIII 2446, AIII 10414, and GBM 11637 also show no methylation in this assay.
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percent methylation was 89% in the tumor samples and 23%

in the normal samples. The three BstUI restriction sites

flanked by the primer sequences were found to be frequently

hypermethylated in the tumor samples in comparison to

normal brain and thus was an ideal region to employ the

COBRA technology to scan the methylation status of PCDH-

c-A11 methylation in an expanded set of tumor samples. De

novomethylation of these BstUI sites identified by restriction

of the 312-bp bisulfite PCR product was found in 18 of 20

(90%) astrocytomas of WHO grade II, in 12 of 14 (86%)

anaplastic astrocytomas of WHO grade III, in 20 of 23 (87%)

glioblastomas of WHO grade IV, and in 8 of 8 (100%) glioma

cell lines. Much less hypermethylation was observed in the

10 normal brain samples (two grey matter and eight white

matter samples) at these restriction sites. In Figure 1 C,

representative data of the methylation analysis by restriction

digest are illustrated for 15 tumor samples and three white

matter controls (NB 1–3). Tumor samples displayed high

levels of restriction fragments (indicating the presence of

methylated alleles), whereas little to no restriction fragments

were found in normal brain tissues as well as in astrocytomas

AIII 2446, 10414, and GBM 11637 (indicating the presence

of little methylated alleles). These samples were therefore

scored as unmethylated. The undigested PCDH-c-A11 band

in the BstUI-treated samples is likely contributed by residual

normal brain tissue (nontumoral cells in the sample, e.g.,

endothelial cells), or may reflect the heterogenous nature of

PCDH-c-A11 methylation among the tumor cells. However,

the two assays employed in this study both point to the

unique frequent hypermethylation found in the first exon of

PCDH-c-A11 in grades II and III astrocytomas and not in

normal brain tissue.

PCDH-c-A11 Expression Analysis in Glioma Tissues and

5-Aza-2 V-Deoxycytidine–Treated Glioma Cell Lines

A cRT-PCR approach with specific RNA competitor mol-

ecules for PCDH-c-A11 and the housekeeping gene PBGD

was used to determine the expression level ofPCDH-c-A11 in
17 astrocytomas of WHO grade II, 10 anaplastic astrocyto-

mas of WHO grade III, 19 glioblastomas of WHO grade IV,

five glioma cell lines, and five normal brain samples (two

white matter and three grey matter specimens) of which RNA

was available. RelativePCDH-c-A11mRNA levels have been

determined by correlation toPBGD transcript levels (Table 1).

Fourteen of 17 (82%) astrocytomas of WHO grade II, 8 of 10

(80%) anaplastic astrocytomas of WHO grade III, and 14 of

19 (74%) glioblastomas of WHO grade IV exhibited no or low

expression of PCDH-c-A11 compared to the mean of all five

normal brain samples (Table 1 and Figure 2). Expression

profiles with standard error are shown in Figure 2, A–C.

Figure 2. Relative transcript levels of PCDH-c-A11 analyzed by cRT-PCR in (A) astrocytomas of WHO grade II, (B) anaplastic astrocytomas of WHO grade III, (C)

glioblastomas of WHO grade IV, and (D) glioma cell lines with (+) and without (�) 5 V-aza-2-deoxycytidine treatment. NB, normal brain (mean of two white matter

and three grey matter samples).
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Tumor samples with PCDH-c-A11 methylation are indicated

by dashed columns, whereas tumor and control (NB) tissues

with no methylation are represented by black columns. It is

interesting to note that few GBM samples, especially the

recurrent case 10120, showed dramatically elevated tran-

scription of PCDH-c-A11 even in the presence of methylated

PCDH-c-A11 alleles. In all analyzed glioma cell lines

(U178MG, U87MG, LN428, A172, and U373MG), no or

low PCDH-c-A11 expression was observed. After treatment

of the cells with 0.5 or 1 mM 5-aza-2V-deoxycytidine, a

significant increase of the PCDH-c-A11 transcript was

detected (Figure 2 D).

Correlation of Methylation Status with Transcriptional

Activity of PCDH-c-A11
To determine if CpG island methylation affects the ex-

pression of PCDH-c-A11, we correlated the methylation

status of 27 astrocytomas (WHO grades II and III) and

18 glioblastomas (WHO grade IV) with their transcript levels

of PCDH-c-A11. Of the 23 WHO grades II and III cases

exhibiting hypermethylation at the first exon of PCDH-c-A11,
20 (87%) showed low expression, 2 (9%) showed no ex-

pression, and 1 tumor sample (AII 3632, 4%) had high

PCDH-c-A11 expression levels compared to normal brain.

Conversely, of the four cases where the first exon of PCDH-

c-A11 was unmethylated, all (100%) showed expression

levels comparable to the control samples where PCDH-c-
A11 was also unmethylated (Table 1 and Figure 2). Statis-

tical analysis of these data revealed a significant inverse

relationship between PCDH-c-A11 methylation and expres-

sion (Fisher’s exact test; P = .00028) in astrocytomas of

WHO grades II and III. However, such relationship was not

observed in the glioblastoma samples analyzed in this study.

From 15 glioblastoma cases with PCDH-c-A11 hypermethyl-

ation, eight (53%) revealed low expression, two (13%)

revealed no expression, and five (33%) exhibited significant

PCDH-c-A11 transcription when compared to normal brain

samples. Three glioblastoma samples with unmethylated

alleles showed no or low expression levels.

Discussion

Structural changes in the genome of gliomas have been

studied over the last years and a series of candidate genes

has been identified [2]. A critical evaluation of the current

data, however, shows that most of these alterations are

restricted to advanced stages of these neoplasms (e.g.,

glioblastoma multiforme, WHO grade IV). Recently, there is

increasing evidence that altered methylation patterns of

tumor-associated genes are already present in the early

stages of astrocytic tumors such as astrocytomas of WHO

grade II and oligoastrocytomas of WHO grade II [13,21]. In

an attempt to identify new candidate genes that might be

involved in the early development of astrocytic gliomas, we

performed a microarray-based methylation analysis of WHO

grade II astrocytomas. These experiments yielded a DNA

sequence within the first exon of PCDH-c-A11, which was

methylated in astrocytomas of WHO grade II but not in

normal brain samples. In this study, we investigated the

methylation and expression status of PCDH-c-A11, a mem-

ber of the protocadherin-g family, in an expanded series of

astrocytomas of different malignancy grades, in glioma cell

lines, and in normal brain samples. We detected extensive

hypermethylation in tumor tissues in comparison to normal

brain controls. Although this is the first time that PCDH-c-A11
was found to be hypermethylated in tumor samples, previous

studies identified CpG islands in each variable region of the

protocadherin gene cluster, suggesting epigenetic modifica-

tions to be involved in the regulation of these genes [5].

Candidate gene approaches have provided evidence for a

role of epigenetic modifications in the process of transcrip-

tional silencing of the cadherin family members in neoplastic

cells [22].

A significant correlation (Fisher’s exact test, P = .00028)

between hypermethylation of PCDH-c-A11 and decreased

expression was identified in astrocytomas of WHO grade II

and III. This association was not evident in glioblastomas of

WHO grade IV, a subset of gliomas known to be histologi-

cally and genetically heterogenous. Although 66% of the

glioblastoma samples with methylated alleles showed re-

duced or lack of expression, in line with epigenetic silencing

of gene transcripts, 33% showed high transcript levels of

PCDH-c-A11 in the presence of methylation. This indicates

that in these cases, the methylation of the analyzed CpG

island is not sufficient to silence PCDH-c-A11 transcription

and that other 5V regions of the PCDH-c-A11 gene might be

involved in its regulation. Alternatively, the tumor might

contain two populations of cells, some of which are methyl-

ated and do not express high levels of PCDH-c-A11 tran-

script whereas others contain high levels of PCDH-c-A11
transcript. It also cannot be excluded that the inhibitory effect

of CpGmethylation by chromatin condensation in this area is

overcome by a downstream event (e.g., binding of transcrip-

tional activators or lack of histone modification). Of all the

three cases that showed no PCDH-c-A11 transcription in the

absence of methylation in the analyzed region, it is possible

that the accessibility of PCDH-c-A11 regulatory region or

availability of specific transcription factors is somehow im-

peded, leading to its nonexpression. Even though low levels

of methylation were found in normal brain samples, the

extent of methylation is distinctly lower than that found in

tumor tissues. A similar observation in other candidate genes

was also reported by Rood et al. [23] and Hong et al. [24].

Members of the protocadherin-g cluster are generally

assumed to play a role in synaptic connections between

neurons. The expression of PCDH-c-A11 detected in normal

brain tissues and some of the analyzed tumor samples

indicates that these genes may also be involved in cell–cell

interactions in the glial cell compartment. Epigenetic regula-

tion of another member of the protocadherin gene family,

cadherin-related neuronal receptors (CNR), has been

reported by Tasic et al. [25] in human cell lines HEC-1-B

and NT2/D1. The expression and methylation analysis of the

PCDH-c-A11 gene presented in this study provides evidence

that transcription is indeed blocked by methylation as its

expression can be reactivated by 5-aza-2V-deoxycytidine
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treatment. However, it remains unclear if this is also the

mode for determining the specific set of procadherin-g genes

expressed in a given cell as postulated by Yagi [26].

Based on the possible function of the PCDH-c-A11 gene

product, it is tempting to assume that transcriptional inacti-

vation of this gene may affect the adhesion of glial cells to

neighboring cells, thus promoting invasive growth of gliomas.

Protocadherin genes cluster on chromosome 5q, where

nearly 60 family members are known to locate [5,6]. The

investigation of the putative role of other protocadherin-g

family members in glial neoplasms will constitute an impor-

tant aspect of future studies.

We conclude that hypermethylation of the first exon of

PCDH-c-A11 is an early event in astrocytoma development

and results in a substantial decrease in gene expression.

Because PCDH-c-A11 functions as a cell–cell contact mole-

cule, it may be involved in the infiltration properties of these

neoplasms.
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