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Abstract

15-Lipoxygenase-2 (15-LOX-2) synthesizes 15-S-hy-

droxyeicosatetraenoic acid (15-S-HETE), an endoge-

nous ligand for the nuclear receptor, peroxisome

proliferator–activated receptor-g (PPAR-g). Several

studies have described an inverse relationship between

15-LOX-2 and PPAR-g expression in normal versus

tumor samples. To systematically determine if this is a

ubiquitous phenomenon, we used a variety of epithelial

and nonepithelial cells and some tissues to further

evaluate the extent of this inverse relationship. The

levels of mRNA or protein were measured by reverse

transcriptase polymerase chain reaction or Western

gray level intensity, whereas distribution was deter-

mined by in situ hybridization or immunofluorescence.

15-S-HETE was measured by liquid chromatography/

tandem mass spectrometry. Normal epithelial cells/

samples generally expressed high levels of 15-LOX-2

along with the enzyme product 15-S-HETE, but both

levels were reduced in cancer cells/samples. In con-

trast,most cancer cells expressedhigh levelsofPPAR-g

mRNA and protein, which were absent from normal

epithelial cells. Overall, the inverse relationship be-

tween these two genes was primarily restricted to

epithelial samples. Forced expression of PPAR-g re-

duced 15-LOX-2 protein levels in normal cells, whereas

forced expression of 15-LOX-2 in tumor cells sup-

pressed PPAR-g protein levels. These results suggest

that feedback mechanisms may contribute to the loss

of 15-LOX-2 pathway components, which coincide with

an increase in PPAR-g in many epithelial cancers.
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Introduction

Lipoxygenase (LOX) enzymes catalyze the conversion of

polyunsaturated fatty acids to hydroxy fatty acids [1,2]. LOX

enzymes contain a nonheme iron (Fe3+) that promotes

hydrogen abstraction and dioxygenation of 1,4-diene moie-

ties, followed by protonation of the peroxyl radical to form

monohydroperoxy fatty acids predominantly from mobilized

lipid pools [2–4]. A wide variety of LOXs are found in nature,

which are described based on the carbon atom that each

enzyme peroxygenates on a particular substrate [2–4]. The

primary lipid targets of LOX activity are arachidonic acid (AA)

and linoleic acid (LA). Two forms of 15-LOX occur in humans:

15-lipoxygenase-1 (15-LOX-1), originally isolated from reticu-

locytes [5], and 15-lipoxygenase-2 (15-LOX-2), first described

in skin [6]. 15-LOXs are distinguished by their catalytic prop-

erties. 15-LOX-2 preferentially peroxidates AA on carbon 15 to

generate 15-S-hydroperoxyeicosatetraenoic acid, which is hy-

drolyzed to 15-S-hydroxyeicosatetraenoic acid (15-S-HETE)

[3,6]. In contrast, 15-LOX-1 preferentially peroxidates LA on

carbon 13 to form 13-S-hydroperoxyoctadecadienoic acid,

which is hydrolyzed to 13-S-hydroxyoctadecadienoic acid

(13-S-HODE) [7]. 15-LOX-1 also generates 15-S-hydroperox-

yeicosatetraenoic acid from AA (thus the nomenclature), but

less efficiently than 15-LOX-2 [7]. A variety of oxidized lipids,

including 15-S-HETE, can activate the nuclear receptor perox-

isome proliferator–activated receptor g (PPAR-g) during in-

flammation and prostate cancer [8–11].

15-LOX-2 expression is most studied in human prostate, a

tissue initially reported to have one of the highest expression

levels of this gene [6]. Shappell et al. [12] reported that 15-

LOX-2 expression was high in benign prostatic epithelium, but

was low in malignant prostatic adenocarcinoma. Tang et al.

[13] reported that 15-LOX-2 levels were high in normal
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prostatic epithelial cells and, when expressed, also acted

as negative cell cycle regulator. Further work by Bhatia et al.

[14] suggested that tumor-suppressive functions of 15-

LOX-2 may not necessarily depend solely on AA-metabo-

lizing activity or localization to the nucleus. Jack et al. [15]

also correlated 15-LOX-2 levels with tumor grade (> 5

Gleason score); expression was reduced in higher-grade

tumors. Moreover, 15-LOX-2 expression was significantly

reduced in high-grade prostatic intraepithelial neoplasia

compared with benign tissue [15]. In addition, 15-S-HETE

production was lower in prostatic adenocarcinoma com-

pared with benign prostatic hyperplasia, which produced

both 15-LOX-2 and 15-S-HETE [8,12]. These studies sug-

gest that the loss of the 15-LOX-2 pathway may contribute

to increased proliferation and reduced differentiation in

prostatic adenocarcinoma.

In view of what is known about 15-LOX-2 expression in

prostate and the limited information available for other tis-

sues, we examined the expression of 15-LOX-2 and its

relationship with PPAR-g expression in normal or cancer

samples from various epithelial and nonepithelial sources.

We hypothesized that an inverse relationship exists between

15-LOX-2 and PPAR-c expression in normal samples com-

pared to tumor samples, which may be a generalized phe-

nomenon. As an extension of this hypothesis, we also

hypothesized that complex mechanisms limit the coexpres-

sion of 15-LOX-2 pathway components and PPAR-g in cells,

particularly in the presence of substrate or ligand. We set out

to determine if an inverse relationship between these two

genes was common to epithelial tissues. We also deter-

mined whether forced expression of either 15-LOX-2 or

PPAR-g would affect the endogenous expression of its coun-

terpart, or be altered by AA or 15-S-HETE. Based on these

outcomes, we might expect that disrupting the counterregu-

lation of 15-LOX-2 or PPAR-g would profoundly influence

epithelial carcinogenesis.

Materials and Methods

The primary rabbit antibody against 15-LOX-2 was pur-

chased from Oxford Biomedical Research, Inc. (Oxford,

MI). Primary antibodies against PPAR-g [rabbit polyclonal

immunoglobulin G (IgG) and mouse monoclonal IgG1] were

purchased from Santa Cruz Biotechnology, Inc. (Santa

Cruz, CA). The secondary antibodies to rabbit, or mouse

IgG that were conjugated to horseradish peroxidase, were

obtained from Pierce Chemical Co. (Rockford, IL), or those

conjugated to Alexa-488 were purchased from Molecular

Probes (Eugene, OR). Deuterated liquid chromatography/

tandem mass spectrometry (LC/MS/MS) standard, 15-S-

HETE-d8, and purified 15-S-HETE were purchased from

Cayman Chemical Co. (Ann Arbor, MI). AA and butylated

hydroxytolulene (BHT) were obtained from Sigma Chemical

Co. (St. Louis, MO).

Cell Culture

Tumor cell lines derived from different epithelial and non-

epithelial origins were grown in tissue culture. The cells of

normal epithelial origin included normal prostate epithelial

cells (PrEC), normal or immortalized normal keratinocytes

(NHEK and NK), human bronchial epithelial cells (NHBE),

human mammary epithelial cells (HMEC), and immortalized

normal bladder cells (SVHUC), which were purchased

from Cambrex BioScience (Walkersville, MD) or American

Tissue Type Culture Collection (ATCC; Manassas, VA).

Normal esophageal epithelial cells (EEC) were obtained

from the Department of Surgery and Surgical Basic Science,

Graduate School of Medicine, Kyoto University (Kyoto,

Japan). Esophageal cancer cell lines TE-3 and TE-12 were

obtained from the First Department of Pathology, Hiroshima

University School of Medicine (Hiroshima, Japan). Skin

squamous cell carcinomas (HaCaT, SCC-M7, and SCC-

P9) were provided by Dr. John Clifford (Lousiana State

University, Shreveport, LA). UM-UC-9 and UM-UC-14 blad-

der cells, referred to hereafter as U-9 and U-14 were

obtained from Dr. Barton Grossman at The University of

Texas M.D. Anderson Cancer Center. Other cancer cells

were obtained from ATCC, including breast carcinoma cells

(MCF-7, SK-BR-3, and MDA-MB-453), pancreatic carci-

noma cells (AsPC-1, MIA PaCa, and Panc 28), colon carci-

noma cells (HCT-115, SW-480, and SW-620), and prostate

carcinoma cells (PC-3, LnCaP, and DU 145). Hepatic carci-

noma cells (Hep 3B and Hep G2) cells were purchased from

ATCC. The cells from nonepithelial origin including prostate

stromal cells (PrSt) and prostate smooth muscle cells (PrSM)

were purchased from Cambrex BioScience. NIH-3T3 cells

were also purchased from ATCC. Also, cells from neuro-

epithelial or neural crest origins, melanocytes Cambrex

BioScience, and melanoma cells (MeWo, 3S5, and 70W)

were obtained from Dr. Robert Kerbel, Sunnybrook and

Women’s College Health Sciences Centre in Toronto,

Ontario, Canada. Primary cell cultures were maintained in

defined culture medium according to the manufacturer’s

instructions as described previously [16]. Cancer cell lines

were maintained in Dulbecco’s modified Eagle’s medium/

F-12 low-glucose medium (Invitrogen-GIBCO, Carlsbad,

CA) supplemented with 5% to 10% fetal bovine serum.

Reverse Transcriptase Polymerase Chain Reaction

(RT-PCR)

Total RNA was extracted using RNA STAT-60 reagent

(Tel-Test, Inc., Friendswood, TX) and treated with DNase I

before use in RT-PCR. One microgram of RNA was reverse-

transcribed with mouse mammary tumor virus reverse tran-

scriptase (Life Technologies, Inc., Rockville, MD). 15-LOX-2

(351 bp) was amplified by the primer set S 5V-AACTCACC-

CCCACCACCATACACA-3V and AS 5V-TTCCCGCCTCCA-

TCTCCCAAAGT-3V as previously described [6]. Primer pairs

were used in RT-PCR analysis to detect PPAR-g (gS 5V-

TCTCTCCGTAATGGAAGACC-3V; gAS 5V-GCATTATGAG-

CATCCCCAC-3V; g2S 5V-GCGATTCCTTCACTGCTAC-3V)

[17] and 36B4 (S, 5V-CAGCTCTGGAGAACTGCTG-3V; AS

5V-GTGTACTCAGTCTCCACAGA-3V) [18]. The PCR products

were electrophoretically separated, transferred onto a nylon

membrane, and probed with 15-LOX-2 (5V-TCTACCAAGAACA-

GAGTCTC-3V), total g (5V-GAGTACCAAAGTGCAATCAA-3V),
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g2-specific (5V-GTCTGCAAACATATCACA-3V), or 5V-

GTGAGGTCACTGTGCCAG-3V (36B4) 32P radiolabelled

oligonucleotide probes. RT-PCR cDNA products were sub-

cloned using the TOPO TA system (Invitrogen, Carlsbad,

CA), sequenced using an automated system (Seqwright,

Houston, TX) and subjected to a BLAST analysis for se-

quence verification.

Western Blot Analysis

Whole cell lysates were prepared as previously described

[16]. Specifically, 100 mg of protein was loaded in each lane,

run on a 7.5% sodium dodecyl sulfate polyacrylamide gel

electrophoresis gel, and transferred onto a nitrocellulose

membrane (Schleicher and Schuell Bioscience, Keene,

NH). The membrane was blocked overnight in Tris-buffered

saline (TBS) solution and 0.1% Tween 20 containing 3.0%

bovine serum albumin (BSA) and fraction V (United States

Biological, Swampscott, MA). Rabbit primary antibodies,

including anti-PPAR-g (Santa Cruz Biotechnology, Inc.) or

anti–15-LOX-2 (Oxford Biomedical Research, Inc.), were in-

cubated overnight at 4jC. The appropriate HRP-conjugated

secondary antibody (Pierce Chemical Co.) in TBS solution

and 0.1% Tween 20 was used at 25jC for 1 to 2 hours. The

signals were detected using the Super Signal chemilumines-

cence system (Pierce Chemical Co.).

Immunofluorescence Analysis of 15-LOX-2

Subcellular Distribution

All cells were grown on laminin-coated coverslips. Cover-

slips were fixed with 1% paraformaldehyde and permeabi-

lized using 1% Triton X-100. Samples were then blocked

with 3% fatty acid–free BSA solution in TBS containing

0.1% Tween 20 (TBST). Primary rabbit polyclonal antibody

that recognizes 15-LOX-2 was diluted to 2.5 mg/ml in 3%

BSA solution and incubated overnight at 4jC. Samples

were rinsed twice with TBS and incubated with Alexa-

488–conjugated goat antirabbit secondary antibody (Ex

495/Em 519; Molecular Probes) in a 3% BSA solution.

After the cells were stained with secondary antibodies,

counterstaining was performed with 500 nM DAPI (4V,6-

diamidino-2-phenylindole dilactate; Ex 358/Em 461; Molecu-

lar Probes) to identify the nuclei and with 1 U/ml Alexa-594

phalloidin (Ex 590/Em 617; Molecular Probes) to stain the

cytoplasmic actin in 3% BSA solution containing TBST at

4jC. After overnight incubation, samples were washed

three times in TBS, rinsed with distilled water, and mounted

on glass slides using an antifade solution (Prolong; Molecu-

lar Probes). Slides were then analyzed by epifluorescence

microscopy and data were acquired using digital image

analysis, as previously described [16]. The controls con-

sisted of secondary antibody alone or nonspecific primary

antibody that were imaged using conditions that resolve the

Alexa-488–conjugated goat antirabbit secondary antibody.

Determination of 15-S-HETE in Prostate Cells and

Tissue Culture Medium

Various cell lines were plated in 100-mm tissue culture

dishes to attain 70% to 75% confluence. Cells were then

incubated with 10 mM AA for 30 minutes and 1 hour. The

culture medium was collected at both time points, and cells

were harvested at 1 hour by trypsinization and subjected to

HETE extraction. Intracellular 15-S-HETE were extracted

using the method of Kempen et al. [19] with modifications.

Briefly, cells were resuspended in 500 ml of phosphate-

buffered saline (PBS), and 20 ml of 1 N citric acid and 2.5 ml

of 10% BHT were added to prevent free radical peroxidation.

HETE was extracted with 2 ml of hexane/ethyl acetate

(1:1, vol/vol) thrice. The upper organic phases were pooled

and evaporated to dryness under a stream of nitrogen

at room temperature. All extraction procedures were per-

formed under conditions of minimal light. Samples were then

reconstituted in 200 ml of methanol and 10 mM ammonium

acetate buffer (70:30, vol/vol), pH 8.5, prior to analysis by

LC/MS/MS.

15-S-HETE in the cell culture medium was extracted

using a solid-phase method. An aliquot of 10 ml of 10%

BHT was added to 1 ml of cell culture medium. The solution

was applied to a Sep-Pak C18 cartridge (Waters Corpora-

tion, Milford, MA) that had been preconditioned with metha-

nol and water. HETE were eluted with 1 ml of methanol.

The eluate was evaporated under a stream of nitrogen and

the residue was dissolved in 100 ml of methanol and 10 mM

ammonium acetate buffer (70:30, vol/vol), pH 8.5.

LC/MS/MS

LC/MS/MS was performed using a tandem mass spec-

trometer (Micromass Quattro Ultima MS Technologies;

Waters Corporation) equipped with an Agilent HP 1100

binary pump high-pressure liquid chromatography inlet.

Eicosanoid metabolites were separated using a Luna 3-mm

phenyl–hexyl 2 � 150 mm column (Phenomenex, Torrance,

CA). The mobile phase consisted of 10 mM ammonium

acetate, pH 8.5 (phase A), and methanol (phase B). The

flow rate was 250 ml/min and the column temperature was

maintained at 50jC. The sample injection volume was

25 ml. Samples were kept at 4jC during the analysis. 15-

S-HETE was detected using electrospray negative ioniza-

tion and multiple reaction monitoring of transitions at m/z

319.4!219.3. Fragmentation for the HETE was performed

using argon as the collision gas at a collision cell pressure

of 2.10 � 10�3 Torr. The results were expressed as nano-

grams of 15-S-HETE per 106 cells. The cell number was

measured with an electronic particle counter (Coulter, Hia-

leah, FL).

In Situ Hybridization (ISH)

For the purpose of ISH, a 1059-bp fragment of 15-LOX-2

was amplified using the primer sets 5V-TGCCTCTCGCCATC-

CAGCT-3V and 5V-TGTTCCCCTGGGATTTAGATGGA-3V as

previously described [6]. After being subcloned in sense

and antisense orientations into Bluescript KS II vector, the

1059-bp sequence was verified and used for probe prepa-

rations in ISH. ISH on human tissue sections was performed

according to the method of Xu et al. [20], with appropriate

hybridization controls.
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15-LOX-2 or PPAR-g Forced Expression

Normal epithelial cell primary cultures (NHBE and HMEC)

or epithelial tumor cells that had been selected for the

highest level of PPAR-g expression (PC-3, Calu I, MDA453,

HaCaT, SW-620, U-9, and ASPC-1) were transiently cotrans-

fected with 0.5, 1.0, or 2.0 mg of human PPAR-g cDNA

(provided by Dr. Alex Elbrecht) or 15-LOX-2 cDNA, respec-

tively, using FuGENE 6 (DNA ratio, 3:1; Roche Diagnostic

Corporation, Indianapolis, IN) overnight in serum-free

medium (SFM). Cell cultures were then replated and used

for experiments. After 2 days, transfected cells were placed

in SFM and incubated either alone or with 1 or 10 mM 15-S-

HETE (BIOMOL Research Laboratories, Inc., Plymouth

Meeting, PA) for 14 to 16 hours. Protein extracts were made

and analyzed for 15-LOX-2 or PPAR-g expression by Western

blot analysis.

Biotinylated-15-S-HETE Binding to PPAR-g

PC-3 cells were used to examine the binding of biotiny-

lated 15-S-HETE to endogenous PPAR-g. Nuclear lysates

were prepared by suspending cells in 400 ml of an ice-cold

hypotonic buffer (containing 10 mM HEPES, pH 7.9, 1.5 mM

MgCl2, 10 mM KCl, 0.5 mM DTT, 100 mg/ml aprotinin, 5 mg/ml

leupeptin, and 1 mg/ml pepstatin) and incubating on ice for

15 minutes. NP40 was added to a final concentration of

0.5% in 500 ml final volume. Next, the tubes were vortexed

for 10 seconds and then centrifuged at 6500g for 10 minutes

at 4jC. The supernatant was discarded and the nuclei were

resuspended in 50 ml of a buffer containing 20 mM HEPES,

pH 7.9, 25% glycerol, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM

EDTA, 0.5 mM DTT, 0.2 mM PMSF, 10 mg/ml aprotinin,

5 mg/ml leupeptin, and 1 mg/ml pepstatin. The tubes were

incubated on ice for 20 minutes and then centrifuged for

10 minutes at 12,000g at 4jC. The resulting supernatant

(nuclear extract) was then used for ligand binding studies.

Nuclear lysate (300 mg) was incubated with 5 or 10 mg of

biotinylated 15-S-HETE in 225 ml of binding buffer containing

26 mM HEPES, pH 7.9, 26% glycerol, 120 mM KCl, 10 mM

MgCl2, 2 mM EDTA, 2 mM DTT, mg/ml aprotinin, 5 mg/ml

leupeptin, and 1 mg/ml pepstatin for 30 minutes at 25jC.

Control nuclear lysates that were pretreated with 10 mM of

unlabeled 15-S-HETE for 10 minutes at 37jC were incu-

bated with 10 mg of biotinylated 15-S-HETE in binding buffer

for 30 minutes at 25jC. Biotinylated 15-S-HETE was bound

to 25 ml of NeutrAvidin beads (Pierce Chemical Co.) by incu-

bation at room temperature in binding buffer while mixing

for 30 minutes. The agarose beads were then washed three

times in PBS, resuspended in 20 to 30 ml of SDS-PAGE

sample buffer, and boiled for 5 minutes. Samples were

resolved by 7.5% PAGE, transferred to a nitrocellulose

membrane, and blocked with 3% BSA overnight at 4jC.

Western analysis using an anti-PPAR-g monoclonal antibody

(Santa Cruz Biotechnology, Inc.) was performed and

detected as previously described [16].

To determine if binding of biotinylated-15-S-HETE was

restricted to the PPAR-c ligand binding domain (LBD), COS-1

cells were transfected with a chimeric expression plasmid

containing the PPAR-c LBD fused to a Gal4–DNA binding

domain (DBD). Total cell lysates were prepared and sub-

jected to affinity isolation using biotinylated 15-S-HETE as

described above.

15-S-HETE–Mediated PPAR-g Transactivation in PC3 Cells

To determine if extraneous 15-S-HETE could transac-

tivate endogenous PPAR-g, PC3 cells were transfected

with either 1.5 mg of DR1 luciferase (LUC) [21] or acyl-

CoA oxidase–peroxisome proliferator response element–

thymidine kinase–LUC [(AOx-PPRE)3-TK-LUC] [22] reporter

plasmids. Transfection efficiency was normalized using

500 ng of p-SVb Gal expression plasmid (Promega, Inc.

Madison, WI) as an internal control and the reporter assay

analysis was performed as previously described [23]. LUC

activity was expressed as relative LUC activity in fold

increase after normalization to b-gal activity.

To determine if the binding of 15-S-HETE could trans-

activate PPAR-g, transfection experiments performed using

expression plasmids that contain either Gal4–DBD (amino

acids 1–147) coupled to PPAR-g LBD (amino acids 174–475)

or fusion protein (or just Gal4–DBD as control) [24] were

used to transfect PC 3 cells in six-well tissue culture plates.

Either plasmid (1.0 mg) plus 1.0 mg of (Gal4UAS)4–TK–LUC

reporter plasmid [25] were cotransfected using Fugene 6,

(Roche Diagnostics Corporation). PPAR-g ligand, 15-S-

HETE (5–10 mM) in ethanol, or ethanol alone was added

24 hours after the addition of DNA. LUC activity was mea-

sured 6 hours after adding the ligands.

Densitometry

All densitometric analyses were performed using a Per-

sonal Densitometer SI (Amersham Biosciences, Piscataway,

NJ) and the corresponding software program, ImageQuant

(Amersham Biosciences). Images were quantified using

NIH Image J (National Institutes of Health). The density of

the proteins analyzed was normalized to actin controls and

represented graphically as a percentage of the transfec-

tion control.

Scoring of Stained Sections and RT-PCR or Western

Gray Level Intensity

The sections stained by IHC or ISH for 15-LOX-2 were

reviewed by light microscopy and scored as positive or

negative, where positive staining indicates that 10% or more

of the epithelial cells were immunopositive. RT-PCR and

Western blot data were scored as 1 to 3+ based on their

relative gray level intensity.

Statistical Analyses

A statistical analysis of stained sections was performed

using the McNemar test to determine the association be-

tween the staining results in distant normal and cancerous

tissues. The Kendall test is used to determine the accor-

dance between ISH and IHC. P values were generated using

Statistica version 4.1 for the PowerMac (StatSoft, Tulsa,

OK). RT-PCR and Western gray level intensity or 15-S-

HETE levels were analyzed statistically using the Statview

software program (SAS Institute, Inc., Cary, NC). Student’s
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t tests were used to determine the significance (P < .01)

between mean group values.

Results

Inverse Expression Between 15-LOX-2 and PPAR-g

in Normal and Malignant Epithelial Cells

Normal primary epithelial cell cultures derived from the

prostate (PrEC), breast (HMEC), lung (NHBE), bladder

(SVHUC), and skin (NK) all expressed mRNA and protein

levels that were high for 15-LOX-2 (Figure 1) and low for

PPAR-g (Figure 2). In contrast, malignant and some trans-

formed epithelial cells including those from the prostate (PC-

3 and DU145), breast (MDA453), lung (Calu I), bladder (U-9

and U-14), skin (HaCaT), and pancreas (Mia PaCa-2 and

ASPC-1) exhibited the inverse mRNA and protein expres-

sion pattern, namely, low 15-LOX-2 levels (Figure 1) and

high PPAR-g levels (Figure 2). The relative intensities of RNA

and protein expression are summarized in Table 1. In other

epithelial tumor cells, including prostate (LNCaP), lung

(MSK-3), breast (MCF-7 and SK-BR-3), and skin (SCC-M7

and SCC-P9), we observed a similar trend of low 15-LOX-2

mRNA and protein expression (Figure 1, Table 1), but the

levels of PPAR-g, although present, were not as high as in

other malignant cells (Figure 2, Table 1).

We previously reported that 15-LOX-2 mRNA and

protein levels were high in normal EEC and low in

esophageal cancer cells (TE-3 and TE-12) [26]. Results

from the current study showed that PPAR-g expression

was high in TE-3 and TE-12 and low in EEC. In contrast,

the levels of both 15-LOX-2 and PPAR-g were mixed in

colon cancer cells (HCT-115, SW-480, and SW620),

depending on the tumor cell line (Table 1). Primary PrSt

and PrSM cultures did not express 15-LOX-2 and

expressed very low levels of PPAR-g (Table 1). In neural

crest–derived cells (normal human melanocytes and

MeWo, 3S5, and 70W melanoma cells) or hepatic tumor

cells (Hep G2 and Hep 3B), mRNA and protein levels of

15-LOX-2 and PPAR-g were absent to low (Table 1,

Figure 1). Northern blot analysis also confirmed the

inverse mRNA expression pattern between 15-LOX-2

Figure 1. 15-LOX-2 expression is high in normal epithelial cells and low in tumor cells. High levels of 15-LOX-2 RNA were detected by RT-PCR in normal epithelial

cells, including those from the prostate (PrEC), breast (HMEC), lung (NHBE), bladder (SVHUC), and skin (NK), at various cycle numbers (25, 30, 35, and 40).

Trace levels of 15-LOX-2 RNA were detected in breast cancer cells (MCF-7, SK-BR-3, and MDA-453) and no 15-LOX-2 RNA was detected in the prostate (PC-3,

LNCaP, and DU145), lung (Calu I and MSK-3), bladder (U-9 and U-14), or skin (NIH-3T3, HaCaT, SCC-M7, and SCC-P9) at any cycle number. Consistent with RT-

PCR, high levels of 15-LOX-2 protein were detected in all normal epithelial cells. No 15-LOX-2 protein was detected in any tumor cells.
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and PPAR-g expression in normal versus tumor cells (data

not shown). These data highlight the inverse relationship

between normal and tumor epithelial cell expression pat-

terns of 15-LOX-2 and PPAR-g.

Subcellular Distribution of 15-LOX-2 in Normal

and Tumor Cells

As shown in Figure 3, normal epithelial cells expressed

high levels of 15-LOX-2 in the cytoplasm, which was absent

from tumor cells. The cytoplasmic distribution in normal

epithelial cells occurred in vesicles that resembled Golgi or

endoplasmic reticulum (ER), and was heavily concentrated

in perinuclear areas, typically at one pole of the nucleus.

Counterstaining with DAPI, which labeled nuclear DNA,

indicated that little or no 15-LOX-2 was present in the

nucleus. Counterstaining with Alexa-594 phalloidin, which

labeled cytoplasmic actin, showed that no 15-LOX-2 was

associated with actin bundles.

15-LOX-2 Expression in Normal and Tumor Epithelia

ISH-identified 15-LOX-2 mRNA in epithelial tissues

revealed trends of expression similar to those observed in

cells. Normal prostate, breast, bladder, and skin tissues

expressed high levels of 15-LOX-2 mRNA, but such levels

were not observed in tumor tissues (Figure 4). Normal

epithelia found in samples taken from the bladder (5/5),

breast (5/5), pancreas (6/6), prostate (5/5), and skin (9/9)

all expressed high levels of 15-LOX-2 mRNA. Fewer of the

corresponding tumors expressed 15-LOX-2 mRNA, specifi-

cally bladder (3/7), breast (3/7), pancreas (4/6), prostate

(3/6), skin (5/9) and lung (3/7).

15-S-HETE Levels in Normal and Tumor Cells

In general, 15-S-HETE levels produced by the various

cells corresponded to the expression levels of 15-LOX-2:

high in PrEC, HMEC, NHBE, and SVHUC normal cells but

low in PC-3, MDA 453, Calu I, and U14 cancer cells

Figure 2. PPAR-c expression is high in tumor cells and low in normal epithelial cells. High levels of PPAR-c RNA were detected by RT-PCR in nearly all cancer

cells, including those from the prostate (PC-3 and DU145), breast (SK-BR-3), lung (Calu I), bladder (U-9 and U-14), and skin (HaCaT) and, to a lesser degree, in

the prostate (LNCaP), breast (MCF-7 and MDA-453), lung (MSK-3), and skin (NIH-3T3, SCC-M7, and SCC-P9) at various cycle numbers (25, 30, 35, and 40). No

PPAR-c RNA was detected by RT-PCR in normal epithelial cells, including those from the prostate (PrEC), breast (HMEC), lung (NHBE) or bladder (SVHUC), and

skin (NK) at any cycle number. Consistent with the results of RT-PCR, high levels of PPAR-c protein were detected in nearly all tumor cells, but no PPAR-c protein
was detected in any of the normal epithelial cells.
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(Figure 5). Both cells and medium were assayed for the

presence of 15-S-HETE. On average, most (95 ± 1%) of

the 15-S-HETE produced was present in the medium. The

SVHUC cells were the only samples in which the levels of

15-LOX-2 expression did not exactly correspond to the

amount of 15-S-HETE produced. This may be due to

the less efficient release of 15-S-HETE (88 ± 1%) from

the SVHUC cells, which was significantly different from

all of the other cell lines (t-test significance values ranged

from P < .01 to P < .03 when other cells were compared

with SVHUC cells).

15-S-HETE Binding to PPAR-g in PC3 Cells

The direct binding of 15-S-HETE to PPAR-g has yet to

be demonstrated in cell nuclear lysates. Here we show that

increasing concentrations (5 and 10 mg) of biotinylated-15-

S-HETE bound increasing amounts of PPAR-g protein. The

specificity of this binding reaction was demonstrated by

competition with unlabeled 15-S-HETE (Figure 6A). The

involvement of the LBD in 15-S-HETE binding was dem-

onstrated after transfecting COS-1 cells with chimeric pro-

tein containing the PPAR-g LBD fused to a Gal4–DBD.

Figure 3. Intracellular expression and distribution of 15-LOX-2. 15-LOX-2

expression was detected by immunofluorescence in normal epithelial cells,

including those from the prostate (PrEC), breast (HMEC), lung (NHBE), or

bladder (SVHUC). Intracellular 15-LOX-2 was located in vesicles or ER

(arrows) and was heavily concentrated in perinuclear areas, typically at one

nuclear pole. No 15-LOX-2 protein was detected in any of the tumor cells,

including the prostate (PC-3), breast (MDA-453), lung (Calu I), and bladder

(U-14). Controls consisted of secondary antibody alone or nonspecific

primary antibody (bottom panels).

Table 1. Summary of Results from RT-PCR and Western Analyses for 15-

LOX-2 and PPAR-g Gene Expression in Multiple Normal and Tumor

Cell Lines*.

Tissue Type Tissue Cell Line 15-LOX-2 PPAR-g

RNA Protein RNA Protein

Epithelial Prostate PrEC (N) +++ +++ � �
PC-3 (T) � � +++ +++

LNCaP (T) � � ± ±

DU145 (T) � � + +

Breast HMEC (N) +++ +++ � �
MCF-7 (T) ± � + ±

SK-BR-3 (T) � � + ±

MDA-453 (T) ± � ++ +++

Lung NHBE (N) +++ +++ � �
Calu I (T) � � +++ +++

MSK-3 (T) � � + +

Bladder SVHUC (N) +++ +++ ± �
U-9 (T) � � +++ +++

U-14 (T) � � +++ +++

Skin NK (N) +++ +++ � �
HaCaT (T) � � +++ ++

SCC-M7 (T) � � ± ++

SCC-P9 (T) � � ± ++

Esophageal EEC (N) +++ +++ � �
TE-3 (T) � � ++ ++

TE-12 (T) � � ++ ++

Pancreas AsPC-1 (T) � � ++ +++

Panc-1 (T) � ± ++ ++

MIA PaCa-2 (T) � � +++ ++

Colon HCT-115 (T) � � + �
SW-480 (T) ± ± + �
SW-620 (T) ++ ++ +++ +

Nonepithelial Melanocytic NHMC (N) � � � �
MeWo (T) ++ ++ + ±

3S5 (T) + + � ±

70W (T) � � + ±

Fibroblast NIH-3T3 (N) � � � �
Prostate PrSt (N) � � ± �

PrSM (N) � � ± �
Liver Hep G2 (T) + + ± ±

Hep 3B (T) + + ± ±

All of the normal epithelial cells exhibited RT-PCR or protein intensity scores

of (+++) for 15-LOX-2 expression including those from the prostate (PrEC),

breast (HMEC), lung (NHBE), bladder (SVHUC), skin (NK), and esophagus

(EEC). In contrast, no tumor cells received any intensity scores greater than

one except for colon (SW-620) and melanoma (MeWo) cells. Conversely,

PPAR-g RT-PCR or protein intensity scores were high in many tumor cells

including those from the prostate (PC-3 and DU145), breast (MA-453), lung

(Calu I), bladder (U-9 and U-14), skin (HaCaT, SCC-M7, and SCC-P9) or

esophagus (TE-3 and TE-12), pancreas (ASPC-1, Panc-28, and Mia PaCa),

colon (SW-620), and, to a lesser extent, in the prostate (LNCaP), breast

(MCF-7 and MDA-453), lung (MSK-3) and skin (NIH-3T3, SCC-M7, and

SCC-P9), colon (HCT-115 and SW-480), and liver (Hep G3 and Hep 3B). No

normal epithelial cells expressed PPAR-g. Other cells including normal

human melanocytes (NHMC), melanoma (70W), fibroblasts (NIH-3T3),

prostate stromal cells (PrSt), or prostate smooth muscle cells (PrSM) did

not express significant levels of either 15-LOX-2 or PPAR-g. RT-PCR and

Western blot data were scored as (+), (++), or (+++) based on their relative

gray scale intensity.

*N, normal cell lines; T, tumor cell lines.
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Biotinylated-15-S-HETE was used to affinity-isolate the

PPAR-g LBD–containing chimeric protein, which gave a

similar protein isolation pattern as was observed for total

PPAR-g (data not shown).

15-S-HETE–Mediated Transactivation of PPAR-g

in PC3 Cells

The first enzyme of the peroxisomal b-oxidation pathway,

AOx, contains upstream cis-acting regulatory regions termed

PPREs, which are arranged as direct repeats [27]. When

PC-3 cells were transfected with a DR-1 LUC construct

followed by treatment with 15-S-HETE, there was nearly

a two-fold induction of LUC reporter activity (Figure 6B).

Similarly, another reporter construct containing three (AOx-

PPRE)3-TK-LUC) was induced two-fold by 15-S-HETE treat-

ment (Figure 6C).

15-S-HETE–Mediated Ligand Transactivation Is

Specific for PPAR-g LBD

To determine if PPAR-g LBD is involved in 15-S-HETE

transactivation, COS-1 cells were cotransfected with GAL4-

DBD/mPPARg LBD in combination with (GAL4) LUC re-

porter plasmid. (Figure 6D). Treatment of transfected cells

with 5 or 10 mM 15-S-HETE caused a 3- and 12-fold increase

in LUC activity, respectively, in comparison with ethanol-

treated control samples.

Inverse Relationship between 15-LOX-2 and PPAR-g

in Normal Cells Compared with Tumor Cells

The inverse relationship between 15-LOX-2 and PPAR-g

expression in normal cells compared with tumor cells sug-

gests that a feedback mechanism regulates the expression

of these proteins. We further examined this relationship by

overexpressing PPAR-g in epithelial cells and 15-LOX-2 in

tumor cells. We previously showed that overexpression of

PPAR-g1 and PPAR-g2 each caused a dose-dependent

downregulation of 15-LOX-2 protein expression in PrEC that

was augmented by treatment with the 15-S-HETE ligand

[28]. In the present study, we found that overexpression of

PPAR-g1 (Figure 7A) caused downregulation of 15-LOX-2 in

normal epithelial cells from breast (HMEC) or lung (NHBE)

tissues, which was enhanced by 15-S-HETE and, to a lesser

extent, by AA—an effect that also occurred with PPAR-g2

(data not shown).

Figure 4. ISH analysis of 15-LOX-2 expression in human tissue sections. Tumor and adjacent normal tissues were examined for 15-LOX-2 expression by ISH.

Normal human prostate, bladder, skin, and breast normal tissues exhibited levels of 15-LOX-2 hybridization, whereas no signal was detected in the corresponding

tumor tissues. Sections of formalin-fixed and paraffin-embedded human cancer tissues and distant normal tissues were hybridized with 15-LOX-2 antisense

digoxigenin-labeled cRNA probe, which results in purple to blue staining of the positive signal in the cytoplasm. Original magnification,�100.
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To test for feedback-driven regulation of PPAR-g expres-

sion by 15-LOX-2, we overexpressed 15-LOX-2 in tumor

cells that were derived from a variety of epithelia. Tumor cell

lines selected were based on the highest level of PPAR-g

expression observed in our initial studies: PC-3, MDA-453,

Calu I, U-14, and AsPC-1. In all cell lines examined, we

observed concentration-dependent downregulation of

PPAR-g protein levels with increasing amounts of 15-LOX-2

Figure 5. 15-S-HETE production in normal and tumor cells. To examine 15-S-HETE production, normal epithelial cells from the prostate (PrEC), breast (HMEC),

lung (NHBE), or bladder (SVHUC) were paired with tumor cells from the prostate (PC-3), breast (SK-BR-3), lung (Calu I), and bladder (U-14) that expressed high

levels of PPAR-g. Preconfluent monolayers of cells in 100-mm tissue culture dishes were washed with serum-free medium, and fresh serum-free medium

containing 10 �M arachidonic acid was added. After 30 and 60 minutes, cells and medium were processed for LC/MS/MS. 15-S-HETE detection was validated

using a deuterated 15-S-HETE-d8 internal standard. All values were normalized to a specific cell number of 1�106. Data shown are the mean ± SD from two

experiments run in duplicate. 15-S-HETE, 15-S-hydroxyeicosatetraenoic acid.

Figure 6. 15-S-HETE binding and transactivation of PPAR-g. A. PPAR-g from nuclear lysates that had bound biotinylated 15-S-HETE was isolated by affinity binding

to streptavidin-coated agarose beads. Samples were separated by polyacrylamide gel electrophoresis and electrotransferred to nitrocellulose, and then PPAR-g

was detected by chemiluminescence using a mouse monoclonal antibody. As the concentration of biotinylated 15-S-HETE was increased from 5 �g (lane 1) to

10 �g (lane 2), there wasmore PPAR-g protein bound to the beads. Unlabeled 15-S-HETE (10 �M) competed for the interaction of biotinylated 15-S-HETE (10 �g) with

PPAR-g protein (lane 3). PC-3 cells were transfected with (B) DR-1-LUC or (C) (AOx-PPRE)3-TK-LUC plasmid followed by treatment with 5 �M 15-S-HETE, which

induced nearly a two-fold increase in LUC reporter activity using the (B) DR-1-LUC (P < .001) or a two-fold increase in LUC reporter activity using the (C) (AOx-

PPRE)3-TK-LUC (P < .001). (D) LBD activity was measured after cotransfecting PC-3 cells with 1.0 �g of a chimeric expression vector pCMX-Gal-L-mPPARg with

1.0 �g of TK-MH100x4-LUC reporter followed by treatment with 15-S-HETE. The PPAR-g LBD was transactivated more than two-fold with 5 �M 15-S-HETE

(P < .001) or approximately 10-fold with 10 �M 15-S-HETE (P < .001) as measured by LUC reporter activity.
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plasmid, a downregulation effect that was amplified by

coincubation with 15-S-HETE (Figure 7B).

Discussion

Epithelial tissues give rise to a large number of cancers;

however, it is generally difficult to find molecular determi-

nants that are commonly regulated among the majority of

epithelial cancers. Similarly, many epithelial tissues typi-

cally secrete unique molecular products, but few secretory

products are commonly altered in a large variety of epi-

thelial cancers. Our current study suggests that 15-LOX-2

and its enzymatic product, 15-S-HETE, or its receptor,

PPAR-g, comprise one set of candidate molecular deter-

minants that changes in most normal versus malignant

epithelial tissues.

In the original cloning report on human 15-LOX-2, Brash

et al. [6] examined a number of tissues for mRNA expres-

sion by Northern blot analysis. They showed that certain

epithelia containing tissues including prostate, lung, and

Figure 7. Inverse effects caused by 15-LOX-2 (top panel) and PPAR-c (bottom panel) expression in normal cells compared with cancer cells. (A) The forced

expression of PPAR-c in normal epithelial cells from the breast (HMEC) or lung (NHBE) suppressed the expression of 15-LOX-2—an effect that was enhanced by

the addition of 15-S-HETE and, to a lesser extent, by AA. (B) The forced expression of 15-LOX-2 decreased the level of PPAR-g in selected tumor cells, including

those from the prostate (PC-3), breast (MDA-453), lung (Calu I), bladder (U-14), and pancreas (ASPC-1)—an effect that was enhanced by the addition of 15-S-

HETE and, to a lesser extent, by AA. Densitometry was performed to determine the mean pixel density of each protein band. These values were first normalized to

actin and then represented graphically as a percentage of the control band in lane 1. PPAR-g, peroxisome proliferator –activated receptor g; AA, arachidonic acid;

15-S-HETE, 15-S-hydroxyeicosatetraenoic acid; 15-LOX-2, 15-lipoxygenase-2.
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corneal tissues expressed 15-LOX-2, which was confirmed

by RT-PCR in another study [29]. Our current study ex-

tended the analysis of 15-LOX-2 and PPAR-g in epithelial

tissues to other tissues, including the bladder, breast, colon,

esophagus, lung, pancreas, and skin, and some of non-

epithelial origin. We showed through systematic analysis

that most epithelial tissues exhibit an inverse relationship

between 15-LOX-2, its product 15-S-HETE, and PPAR-g in

normal versus tumor cells, and that this relationship may be

regulated by a feedback mechanism. Because the PPAR-g

ligand, 15-S-HETE, is largely secreted as a free ligand

based on our current studies, this may influence any po-

tential feedback relationship between these molecules.

The secretory properties of 15-S-HETE have been known

for some time, but their relationship to carcinogenesis is

unclear. The production of 15-S-HETE as a part of mucin

release was first described by Marom et al. [30] using human

cultured airway cells in 1983. The release of 15-S-HETE was

subsequently shown during allergic and asthmatic reactions

[31–33], which may affect mast cell activity [34] or neutrophil

function [35]. The release of 15-S-HETE can either increase

or decrease the chemotaxis of inflammatory cells depending

on the conditions and cells studied [36–39]. Our current

observations revealed the localization of 15-LOX-2 with

structures resembling ER or Golgi in all normal epithelial

cells, but these structures were less apparent in virally

transformed cells (Figure 3). Our current study also showed

that 95 ± 1% of the 15-S-HETE was released into the growth

medium by all normal epithelial cells examined, but that viral

transformation decreased the efficiency of 15-S-HETE re-

lease. ER and Golgi are known to be associated with the

synthesis, packaging, and release of secretory lipids and

proteins [40–42]. Furthermore, SV40 transformation was

shown to affect intracellular lipid transport into the Golgi

apparatus [43]. The importance of 15-S-HETE release from

epithelial cells and its relationship to the growth and devel-

opment of epithelial cancer remain unknown. Further study is

needed to determine whether the release of 15-S-HETE is

involved in the homeostasis of normal epithelium, helps with

immune surveillance, or has a paracrine influence on cancer

cells that express PPAR-g.

ISH analysis of normal and tumor samples revealed that

15-LOX-2 gene expression was primarily restricted to epi-

thelial cells in normal tissues, but was reduced or lost in

tumor tissues (Figure 4). These results are similar to the 15-

LOX-2 expression patterns described in benign and malig-

nant human prostate cancers [12]. In breast cancer, two of

two cases of ductal carcinoma in situ (DCIS; data not shown)

and four of seven cases of invasive carcinoma exhibited loss

of 15-LOX-2 expression. Our data are consistent with RT-

PCR data reported by Jiang et al. [44] on patient samples

that examined normal DCIS and tumor tissues for 15-LOX-2

expression. Jiang et al. [44] also reported high levels of 15-

LOX-2 mRNA in certain breast cancer cell lines including

MCF-7, MDA MB231, and MRC-5, which contrasted with our

findings of low levels of 15-LOX-2 mRNA in MCF-7, SK-BR-

3, and MDA-453 cells using a different set of primers. Jiang

et al. [44], however, did not examine protein levels in these

cells, whereas we did not see protein produced in any of

these cancer cell lines even though low levels of 15-LOX-2

mRNA are present. When taken together, these findings

suggest that the loss of 15-LOX-2 gene expression may be

regulated not only at the transcriptional level but also at the

translational level.

Numerous reports have described the potential involve-

ment of 15-S-HETE in asthmatic reactions [45–48]. Little,

however, is known about the role of 15-LOX-2 in the

development of lung cancer. Moody et al. [49] showed that

LOX inhibitors can inhibit the growth of non small cell lung

cancer cells in tissue culture and mouse xenografts. In

contrast, 15-S-HETE production in A549 human lung ade-

nocarcinoma cells significantly suppressed proliferation

[50]. In our studies on lungs, all normal samples expressed

the 15-LOX-2 gene, whereas four of seven cases did not

express the 15-LOX-2 gene, which is consistent with our

cell line data whereby normal NHBE expressed high levels

of 15-LOX-2 gene and 15-S-HETE, which was lost in Calu I

and MSK-3 lung cancer cells.

Although 15-LOX-2 was originally cloned from human hair

rootlet cells, little is known about its role in skin cancer.

Shappell et al. [51] examined both RNA and protein expres-

sion in benign and neoplastic sebaceous glands and other

cutaneous adnexa. They observed that the strongest 15-

LOX-2 expression is in the androgen-regulated secretory

cells of sebaceous, apocrine, and eccrine glands, which

decreased in skin-derived sebaceous neoplasms [51]. Our

ISH studies were consistent with this report; all normal

samples expressed the 15-LOX-2 gene but four of nine

squamous cell carcinoma cases did not express the gene.

Similarly, NK cells expressed high levels of 15-LOX-2 when

compared to HaCaT, SCC-M7, or SCC-M9 cells.

Our ISH analysis of bladder or pancreatic tissues also

revealed that 15-LOX-2 expression was either reduced or

lost during tumor progression. In the bladder where all

normal samples expressed the 15-LOX-2 gene, four of

seven tumor cases did not express the gene. In the

pancreas, where all normal samples expressed the 15-

LOX-2 gene, two of six cases did not express the gene. No

other studies on 15-LOX-2 gene expression in bladder

have been reported. One study did not find 15-LOX-2 by

RT-PCR in pancreas [29]. In the pancreas, however, the

effects of antidiabetic thiazolidinediones on PPAR-g func-

tion are well documented [52–54]. Overall, our ISH analy-

sis of different cancer tissues also revealed that 15-LOX-2

expression was reduced or lost, consistent with RT-PCR

analysis of cancer cell lines. Thus, loss of 15-LOX-2 during

cancer progression might be a generalized phenomenon in

most epithelial cancers.

PPAR-g is activated by a number of polyunsaturated fatty

acids and their derivatives [55], antidiabetic thiazolidine-

diones [56–60], 15 deoxy-D prostaglandin J2 [24,61–63],

and metabolites of the LOX pathway [8,10,64,65]. 15-S-

HETE, a metabolite of 15-LOX-2 gene, was shown to

activate the nuclear transcription factor PPAR-g in macro-

phages and PC-3 cells [8,10]. Wigren et al. [66] also

demonstrated that 5 mM 15-S-HETE caused a 12-fold
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increase in activation of the LBD of PPAR-g using a chimeric

GAL4-DBD/mPPARg LBD receptor in combination with a

(GAL4)UAS4 E1b LUC reporter plasmid in RAW 264.7 mu-

rine macrophages and CV-1 monkey kidney cells. Similarly,

the 15-LOX-1 gene product, 13-S-HODE, has been shown

to activate PPAR-g in colon tissue by increasing mitogen-

activated protein kinase signaling, phosphorylation of the

receptor, and thus downregulation of PPAR-g activity [67].

The production of 13-S-HODE by 15-LOX-1 in colon cancer

cells also downregulates PPARy activity [68]. In addition,

13-S-HODE induces apoptosis in a colon tumor cell line

treated with sodium butyrate by upregulation of 15-LOX-1

[69–71]. Prostate cancer cells also synthesize 13-S-HODE

from LA [72] and respond to 15-S-HETE by activating

PPAR-g and inhibiting cellular proliferation [8].

Our current data are the first to show a direct interaction

between 15-S-HETE and PPAR-g by using biotinylated-15-S-

HETE to affinity-isolate total PPAR-g from PC-3 cell nuclear

lysates (Figure 6A). Using the same biotinylated 15-S-HETE

ligand binding method, we also observed that this interaction

occurs with the LBD of PPAR-g when we overexpressed

chimeric GAL4-DBD/mPPAR LBD protein in COS-1 cells

(data not shown). In these studies, unlabeled 15-S-HETE

competing for biotinylated-15-S-HETE interaction with chi-

meric GAL4-DBD/mPPAR LBD protein was affinity-isolated

from COS-1 total cell lysates (Figure 6B). The present study

also shows that 15-S-HETE is able to transactivate PPAR-g

in three different reporter systems. The DR-1 and the (AOx-

PPRE)3-TK-LUC reporters (Figure 6, B and C) were acti-

vated approximately two-fold by 5 mM 15-S-HETE, which

is consistent with previous reports showing approximately

a two-fold increase in LUC activity using 10 mM 15-S-HETE

in PC-3 cells [8]. The present study also shows approxi-

mately a 12-fold increase in PPAR-g LBD–driven LUC ac-

tivity following stimulation with 10 mM 15-S-HETE, but only

three-fold increase with 5 mM 15-S-HETE when using a

chimeric GAL4-DBD/mPPARg LBD LUC reporter system

(Figure 6D). These data are similar to those observed by

Wigren et al. [66] in RAW 264.7 murine macrophages using

5 mM 15-S-HETE with the same system. The differences

between these studies are likely due to cell background,

transfection efficiency, or possibly 15-S-HETE stability.

The relative contribution of each LOX, its products, the

preference of substrates, and the extent of PPAR-g activation

and downstream targets may lead to differential responses in

a given cell. Natural and synthetic agonists can cause growth

inhibition, differentiation, and apoptosis in numerous tumor

cell lines, according to cell type [73], suggesting the involve-

ment of different pathways and genes. The present study

demonstrated that the forced expression of 15-LOX-2 sup-

presses PPAR-g in many types of epithelial cancer cells,

which was augmented by treatment with 15-S-HETE. The

mechanisms responsible for this suppressive feedback will

require additional study; however, one factor that appears to

promote this behavior is high levels of PPAR-g. In the case

of 15-LOX-2, in contrast, previous studies, the existence of

multiple splice variants and transcriptional repression of 15-

LOX-2 in the absence of methylation [13], as well as our data

suggest that there are multiple regulation levels of this

protein. As we previously shown, the overexpression of

PPAR-g alone or in combination with 15-S-HETE ligand

downregulated 15-LOX-2 protein expression in PrEC [28].

In the current study, the suppression of 15-LOX-2 protein

expression by PPAR-g and 15-S-HETE was observed in

HMEC and NHBE. Further studies are needed to determine

if this occurs at the 15-LOX-2 promoter level.

In summary, our results identified 15-LOX-2 expression in

a variety of human cells and tissues. All epithelial tumor

tissues we studied displayed reduced 15-LOX-2 expression

and 15-S-HETE production but increased PPAR-c expres-

sion, compared with those in normal tissues. PPAR-g trans-

activation analysis using 15-S-HETE indicated that this

metabolite is a ligand in multiple epithelial tissues (data not

shown). Furthermore, the inverse relationship between the

inhibition of 15-LOX-2 expression by PPAR-g in normal cells

and the inhibition of PPAR-g expression by 15-LOX-2 in

tumor cells suggests that a feedback inhibition mechanism

is involved in balancing the expression of these two proteins,

which is amplified by the 15-S-HETE ligand. Based on these

data, the loss of 15-LOX-2 expression may be a useful

biomarker for the early identification of multiple epithelial

cancer types.
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