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Abstract

We investigated the epigenetic silencing and ge-

netic changes of the RAS-associated domain family

1A (RASSF1A) gene and the O6-methylguanine-DNA

methyltransferase (MGMT) gene in retinoblastoma.

We extracted DNA from microdissected tumor and

normal retina tissues of the same patient in 68 retino-

blastoma cases. Promoter methylation in RASSF1A

and MGMT was analyzed by methylation-specific

PCR, RASSF1A sequence alterations in all coding

exons by direct DNA sequencing, and RASSF1A

expression by RT-PCR. Cell cycle staging was ana-

lyzed by flow cytometry. We detected RASSF1A pro-

moter hypermethylation in 82% of retinoblastoma, in

tumor tissues only but not in adjacent normal retinal

tissue cells. There was no expression of RASSF1A

transcripts in all hypermethylated samples, but

RASSF1A transcripts were restored after 5-aza-2V-

deoxycytidine treatment with no changes in cell cycle

or apoptosis. No mutation in the RASSF1A sequence

was found. MGMT hypermethylation was present

in 15% of theretinoblastoma samples, and the ab-

sence of MGMT hypermethylation was associated

(P = .002) with retinoblastoma at advanced Reese-

Ellsworth tumor stage. Our results revealed a high

RASSF1A hypermethylation frequency in retinoblas-

toma. The correlation of MGMT inactivation by pro-

moter hypermethylation with lower-stage diseases

indicated that MGMT hypermethylation provides

useful prognostic information. Epigenetic mecha-

nism plays an important role in the progression

of retinoblastoma.
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Introduction

Alteration in genomic DNA methylation is an important

mechanism in the pathogenesis of human cancers and

is associated with the transcriptional repression of cancer-

associated genes [1]. Promoter hypermethylation and subse-

quent transcription silencing of tumor-suppressor genes such

as p16, RB1, BRCA1, and VHL promote tumorigenesis in many

types of cancers [2–5]. Identifying hypermethylation at the

CpG islands is an efficient alternative approach for detection

of disease-associated genes in ovarian cancer, renal carci-

noma, colorectal cancer, and breast cancer [2,5–10]. In retino-

blastoma, several tumor-suppressor genes and DNA repair

genes have been shown to be frequently inactivated due to

aberrant methylation at the 5V promoter regions including RB1

(14%) [11], RASSF1A (59%) [12], and MGMT (35%) [13].

These studies provide evidence that genes associated with

tumorigenesis acquire hypermethylation changes during

retinoblastoma development. The gene for the RAS associa-

tion domain family protein, RASSF1A, which is located at

3p21.3, encodes an Mr of 39,000 predicted peptide with a

Ras association domain. There is a predicted NH2 terminal

diacylglycerol binding domain. Rarely inactivated by mutations,

it has been suggested to be a tumor-suppressor gene on

the basis of its frequent inactivation through promoter hyper-

methylation in human cancers [14,15]. The epigenetic silencing

of the RASSF1A gene, brought forth by promoter hypermethy-

lation, commonly occurred in (40–72%) lung cancer [14,15],

(66.7%) nasopharyngeal carcinoma [16], (62%) primary mam-

mary carcinoma [17], (59%) retinoblastoma [12], and (45%)

adenocarcinoma of the uterine cervix [18]. RASSF1A is likely

involved in cell cycle control through the inhibition of cyclin D1

accumulation [19]. Recently, RASSF1A has been identified

as a microtubule binding protein that may play a role in the

control of microtubule stability [20], and regulates the stability

of mitotic cyclins and mitotic progression by inhibiting APC–

Cdc20 activity [21]. In vitro expression of RASSF1A in lung
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cancer cells resulted in suppression of colony formation and

anchorage-independent soft agar growth. It also suppressed

the malignant phenotype [14,15]. Thus, RASSF1A likely

serves as a tumor suppressor during cancer development

[14,15,22,23].

Loss of heterozygosity (LOH) on chromosome 3p is a

common and early event in the pathogenesis of lung

cancer, nasopharyngeal carcinoma, and other tumors.

However, LOH at 3p or 3p21.3 is not common in retino-

blastoma [23]. Loss of chromosome 3 has so far been

reported only in six retinoblastoma cases among a total of

101 cases reported in 16 studies [24–29]. Recently, a high

frequency (59%, 10/17) of promoter hypermethylation in

RASSF1A has been detected in retinoblastoma by Harada

et al. [12]. They suggested that epigenetic silencing in

RASSF1 might be one of the genetic targets involved in

the development of retinoblastoma. However, their number of

study subjects (n = 17) was small and there was a lack of

assessment on clinical correlations. It was unclear how

epigenetic silencing in RASSF1A correlated with the devel-

opment of retinoblastoma and whether epigenetic silencing

of RASSF1A could be an independent prognostic factor.

Meanwhile, in a previous study, we have shown that

promoter hypermethylation in MGMT in retinoblastoma

DNA was associated with impaired or absent MGMT ex-

pression at both mRNA and protein levels [13]. In this study,

we investigated the presence of 5V promoter methylation

and sequence changes at the coding regions of RASSF1A

on 40 bilateral and 28 unilateral retinoblastoma cases and

characterized their clinical significance. Also studied was

the relationship between promoter hypermethylation of

RASSF1A and MGMT, as well as whether demethylation

and reactivation of the RASSF1A gene by 5-aza-2V-deoxy-

cytidine (5-AzaCdR) affect cell proliferation in retinoblastoma

cell lines.

Materials and Methods

Retinoblastoma Samples

Human retinoblastoma cell lines (WERI-Rb1, Y79) were

obtained from the American Type Culture Collection (ATCC,

Manassas, VA) and cultured according to the recommended

conditions. Retinoblastoma tumor tissues were collected

from 68 retinoblastoma patients treated at the Hong Kong

Eye Hospital (n = 36) and the New York Presbyterian

Hospital (n = 32). Among the patients, 40 (59%) were

bilateral and 28 (41%) were unilateral. We obtained normal

retinal tissues from four unrelated donor cadaver eyes as

controls. Informed consent and institutional IRB have been

obtained for this study.

Reese-Ellsworth (RE) Classification for Retinoblastoma

Intraocular retinoblastoma was classified according to

the RE classification for retinoblastoma: group I [a) solitary

tumor, smaller than four disc diameters in size, at or behind

the equator; or b) multiple tumors, none larger than four disc

diameters in size, all at or behind the equator]; group II [a)

solitary tumor, 4 to 10 disc diameters in size, at or behind the

equator; or b) multiple tumors, 4 to 10 disc diameters in size,

behind the equator]; group III [a) any lesion anterior to the

equator; b) solitary tumor, larger than 10 disc diameters in

size, behind the equator]; group IV [a) multiple tumors, some

larger than 10 disc diameters in size; or b) any lesion

extending anterior to the ora serrata]; and group V [a)

massive tumors involving more than one half the retina; or

b) vitreous seeding].

Laser Capture Microdissection (LCM)

We obtained over 90% tumor cells from the retinoblastoma

tissue samples by using the LCM system (PALM, Bernried,

Germany) to select cancerous tissue cells on slides accord-

ing to the manufacturer’s protocols. The procedure has been

described previously [13]. On average, about 20,000 tumor

cells from one specimen were yielded by LCM shots. DNA

was extracted by DNA extraction kit (Qiagen, Hilden, Ger-

many). Genomic DNA was also extracted from the corre-

sponding normal eye tissue cells.

Methylation-Specific Polymerase Chain Reaction (PCR)

For all retinoblastoma samples, normal control samples,

and the two retinoblastoma cell lines (WERI-Rb1 and Y79),

the 5V promoter DNA methylation status of RASSF1A and

MGMT was investigated by methylation-specific PCR (MSP)

assay as described previously [12,13]. Genomic DNA of the

microdissected specimens were modified by bisulfite treat-

ment, prior to MSP amplification [30]. Bisulfite-modified DNA

was also obtained from the retinoblastoma cell lines and

eight microdissected normal retinal tissues for MSP analysis.

Negative controls without DNA were included in each set of

assays. The methylation status was determined as a reflec-

tion of the presence of the methylated fraction of the exam-

ined genes. MSP analysis for each sample was repeated

three times. PCR products were analysed by 2% agarose gel

electrophoresis, stained with ethidium bromide, and visual-

ized under UV illumination.

DNA Sequencing

DNA was extracted from all 68 retinoblastoma samples

for direct sequencing to identify sequence alterations in all

RASSF1A coding exons and splicing regions using 10 PCR

amplicons [16]. The samples were sequenced by using the

dRhodamine Dye Terminator Cycle sequencing kit (Applied

Biosystems, Foster City, CA) on an automated ABI PRISM

377 Sequencer (Perkin Elmer).

Bisulfite Sequencing

DNA from the WERI-Rb1 and Y79 cell lines and four nor-

mal control retinal tissues were subjected to bisulfite se-

quencing to detect the methylation status of the promoter

region of RASSF1A. Genomic DNA were modified by bisulfite

treatment and purified using the CpGenome DNA Modifica-

tion Kit (Intergen, Purchase, NY) according to the manufac-

turer’s recommendations. Seminested PCR amplification

was performed on 100 ng of bisulfite-modified genomic

DNA as described by Dammann et al. [14]. The amplified
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fragments were subcloned. Ten clones of each sample were

selected for sequencing.

Reverse Transcription Polymerase Chain

Reaction (RT-PCR)

Total mRNA was prepared from the tumor tissue sections

and normal adjacent retinal tissues obtained after microdis-

section of the retinoblastoma specimens by an RNeasy kit

(Qiagen). PCR was carried out with cDNA synthesised from

total mRNA using Superscript II reverse transcriptase (Gibco

BRL, Bethesda, MD) with 1 mM sense and antisense primers

as previously reported [16]. The RNA samples were also

amplified by the primers of the GAPDH gene as control.

5-AzaCdR Treatment and RT-PCR

To determine whether RASSF1A expression could be

restored by application of a demethylating agent, the

WERI-Rb1 and Y79 cell lines were subjected to 5-AzaCdR

treatment. Cells were grown in suspension culture and

incubated for 2 and 4 days with 3 or 5 mM 5-AzaCdR (Sigma

Chemical Co., St. Louis, MO). The medium and 5-AzaCdR

were replaced every 24 hours. Expression of the RASSF1A

transcript in the cell lines was examined by RT-PCR [16].

Cell Cycle Analysis

For flow cytometry analysis, cells (f5 � 106) were

harvested and washed with Hank’s balanced salt solution

(HBSS; Sigma-Aldrich, St. Louis, MO) and fixed in 70%

ethanol at 4jC for 2 hours. After passing through a 40-mm

cell strainer (Falcon; Becton Dickinson, Franklin Lakes,

NJ), cells were adjusted to 1 � 106 ml�1 and stained with

propidium iodide (50 mg/ml). The cellular DNA content was

assessed by the System II software in a Coulter EPICS XL

MCL flow cytometer (Coulter Corporation, Miami, FL) and

analyzed with the Multicycle software (Phoenix Flow Sys-

tems, San Diego, CA).

Statistical Analysis

Fisher’s exact test or chi-square analysis was conducted

to estimate the relationships between hypermethylation and

the pathologic and clinical features of retinoblastoma.

Results

Methylation Status of the RASSF1A Promoter in

Retinoblastoma Samples

Of the 68 retinoblastoma carcinoma samples, 56 (82%)

showed hypermethylation at the CpG sites of the RASSF1A

promoter (Figure 1A). The retinoblastoma cell lines WERI-

Rb1 and Y79 were completely methylated (Figure 2A).

No RASSF1A promoter hypermethylation was detected

among the four normal control retinal specimens and the

microdissected normal retinal tissue sections adjacent to

the tumor tissues of the retinoblastoma specimens. Direct

sequencing further confirmed the 16 CpG sites of the

RASSF1A promoter from each of the two retinoblastoma

cell lines to be extensively methylated. There was no CpG

island methylation among the four normal retina tissues

examined (Figure 1B). These findings suggest that promoter

hypermethylation of the RASSF1A gene is a common epi-

genetic event in human retinoblastoma cells.

Figure 1. Methylation analysis of RASSF1A in retinoblastoma. (A) Representative MSP results of RASSF1A for retinoblastoma cancers. The PCR products in lane

U showed the presence of unmethylated templates, whereas, in lane M, they indicated the presence of methylated templates. In vitro SssI methyltransferease-

treated (positive) and untreated (WBC) DNA from normal lymphocytes were used as positive control for hypermethylation and unmethylation, respectively. (B)

Summary of 5-methylcytosine levels of the RASSF1A promoter detected by bisulfite sequencing. Two cell lines (WERI-Rb1 and Y79) and four normal and

nonmalignant retina tissues were examined. N1 and N2 are representative samples from normal retina.
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Mutation Screening of the RASSF1A Gene

Direct DNA sequencing after PCR of the RASSF1A

coding exons and splicing regions confirmed the presence

of polymorphisms at codons 53 (CGC to CGT), 56 (CCC to

CCT), and 57 (GCG to GCA) in our study samples [16]. No

somatic RASSF1A mutation has been detected in any of the

68 retinoblastoma tumor samples.

Expression of RASSF1A in Retinoblastoma Cell

Lines and Tissues

The WERI-Rb1 and Y79 cell lines and tumor specimens

with RASSF1A promoter hypermethylation did not express

the RASSF1A transcript (Figure 2B). However, expression of

RASSF1A mRNA was detected in all four control normal re-

tinal tissue samples and in all unmethylated retinoblastoma

tumors. Restoration of the gene expression was observed

in the retinoblastoma cell lines WERI-Rb1 and Y79 after

2 days of treatment with 5 mM 5-AzaCdR (Figure 2B). Fur-

thermore, demethylation of the promoter region was de-

tected (Figure 2A). These results confirmed that loss of

expression in the retinoblastoma cell lines was associated

with promoter hypermethylation (Figure 2A). Flow cytometry

examination of the cells after partial reactivation of

RASSF1A by 5-AzaCdR treatment showed that WERI-Rb1

had a slight (less than 7 ± 3%) increase in G2/M phase cells

on day 4 after treatment. No change in cell cycle was ob-

served for Y79 (Figure 2C). In both cells, no significant in-

crease of apoptosis was detected.

Relationship between RASSF1A and MGMT Methylation

Status in Retinoblastoma

Although promoter hypermethylation was detected in 56

(82%) of 68 retinoblastoma samples for RASSF1A, hyper-

methylation of the MGMT promoter was detected in 10 of

68 retinoblastoma samples (15%). There was no MGMT

hypermethylation detected in the retinoblastoma cell lines

WERI-Rb1 and Y79. There were no significant difference in

the ages at presentation, family history, sex, tumor staging,

or laterality between RASSF1A-methylated and unmethyl-

ated cases. Among the 56 retinoblastoma specimens with

promoter hypermethylation at RASSF1A, nine of them also

had MGMT hypermethylation. However, when the frequen-

cies of MGMT hypermethylation in retinoblastoma with

and without RASSF1A hypermethylation were compared

(9/56 vs 1/12), they were statistically insignificant. Clini-

cal information on tumor staging by RE classification was

available for 47 retinoblastoma tumors. Patient character-

istics were summarized in Table 1. Most of them were

at RE stage V (74%; 35/47) and RE stage IV (17%; 8/47);

only a few were at stage III (4%; 2/47) and stage II (3%;

2/47). Due to the small number of retinoblastoma cases

at individual RE stages II and III, we grouped them together

and compared with retinoblastoma tumors at RE stages

IV and V. MGMT or RASSF1A hypermethylation was found

in all tumor stages (RE II–V). MGMT hypermethylation

was frequently detected in RE stages II to III (50%; 2/2)

or stage IV (50%; 6/12), but significantly less among 6%

(2/35) RE stage V tumors (P = .002; Fisher’s exact test).

Meanwhile, RASSF1A hypermethylation was commonly

detected (63–100%) among tumors at all different RE

stages (Table 1).

Discussion

In this study, we detected promoter hypermethylation of

RASSF1A in 56 of 68 (82%) human retinoblastoma tumors.

The frequency is higher than the 59% reported in a

previous study, which involved 17 retinoblastoma samples

and provided no information on RASSF1A expression [12].

We showed for the first time that there was a complete

concordance between promoter hypermethylation and ex-

pression of RASSF1A in retinoblastoma cells. Our finding

showed that RASSF1A was not hypermethylated in normal

Figure 2. (A) Methylation analysis of RASSF1A in RB cell lines showing

demethylation by 5-AzaCdR resumed the unmethylated sequence (U). (B)

RT-PCR analysis of RASSF1A expression in retinoblastoma. Cell lines

(WERI-Rb1 and Y79) expressing RASSF1A transcripts after 2 days

treatment with 5 �M 5-AzaCdR. Examples of completely methylated

retinoblastoma tumors (Arb22 and Yu44) showing the absence of RASSF1A

mRNA expression. Presence of RASSF1A transcript in unmethylaed

retinoblastoma (Yu54). HeLa cells were used as positive control. Glycer-

aldehyde-3-phosphate dehydrogenase (GAPDH), housekeeping gene, was

used as a control for RNA integrity. (C). FACS cell cycle profiles of RB cell

lines treated with 5 �M 5-AzaCdR for 4 days. The x-axis measures the DNA

content of the cell (FL2A). The y-axis represents the number of cell counts

(events). A slight increase of G2/M-phase fraction was observed in WERI-

Rb1. However, there was no significant difference in the G2/M fraction

between the two cell lines after treatment.
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and nonmalignant retinal tissues adjacent to the tumor

tissues in retinoblastoma specimens, clearly indicating that

promoter hypermethylation of RASSF1A occurs specifically

in cancer. Our results thus implicated that alteration in

activity of the RAS signal transduction pathways

(RASSF1A) may play an important role during the patho-

genesis of retinoblastoma. There is mounting evidence that

RASSF1A functions as a tumor-suppressor gene. Trans-

fection and expression of RASSF1A in lung and renal

carcinoma cells have been shown to suppress colony

formation, anchorage-independent soft agar growth, and

nude mouse tumorigenicity [14,20,22,23]. RASSF1A is

frequently inactivated by hypermethylation in a variety of

tumors, including those in which 3p21 allele loss is com-

mon (lung, breast, and nasopharyngeal carcinomas) or

rare (papillary renal cell carcinoma) [14–16,31]. Its occur-

rence is different in specific types of tumors. In uterine

cervix cancer, it occurred at a high frequency in adeno-

carcinoma, but was not found in squamous cell carcinoma

[18]. Alternated DNA methylation at the CpG promoter

region could be a potentially promising molecular marker

for making early cancer diagnosis, predicting cancer risk,

and monitoring prognosis [32]. Methylated RASSF1A was

associated with impaired patient survival and poor prog-

nosis in non small cell lung cancer [15]. However, we

found no such association in retinoblastoma. The tumor-

suppressive properties of RASSF1A may therefore be

variable in different cancer types.

Previously, Shivakumar et al. [19] have demonstrated

that RASSF1A induced G0/G1 cell cycle arrest in H1299

lung carcinoma cells by decreasing cyclin D1 accumulation.

In this study, we found that both WERI-Rb1 and Y79 reti-

noblastoma cell lines carried a completely methylated

RASSF1A promoter and did not express RASSF1A. But

the RASSF1A gene was reactivated and was able to express

RASSF1A transcript after treatment with 5-AzadCdR, which

inhibited DNA methylation (Figure 2, A and B). No significant

alterations in cell cycle or apoptosis that were associated

with the reactivation of RASSF1A were found. Only a slight

increase in the G2/M-phase fraction was observed in the

WERI-Rb1 cell line, in which RASSF1A was reactivated after

4 days of 5-AzadCdR treatment (Figure 2C). This suggested

that the G2/M cell phase changes identified in the WERI-Rb1

cell line might not be a specific tumor-suppressing effect

caused by RASSF1A reactivation. However, the lack of

effects on cell growth or cell cycle may be due to the limited

amount of RASSF1A transcript that was reexpressed. Our

results indicated that 5-AzadCdR could not completely re-

store RASSF1A because there was still presence of meth-

ylated alleles (Figure 2A). To understand the functional role

of RASSF1A in retinoblastoma development, it is important

to study the effects of the exogenous expression of

RASSF1A on retinoblastoma tumor cell phenotype. Whether

loss of RASSF1A may affect spindle function and hence

mitotic aberrations in retinoblastoma should be investigated.

MGMT promoter hypermethylation was associated with a

significant increase in overall survival in diffuse large B-cell

lymphomas [33] and gliomas [34]. The pathogenesis of

retinoblastoma is known to involve inactivation of both

copies of the RB1 gene and other genetic or epigenetic

alterations in independent molecular pathways. In this

study, the presence of MGMT methylation was significantly

less among RE stage V tumors (Table 1). Consistent with

our previous report, which indicated that MGMT hyper-

methylation might be related to poor differentiation [13], in

this study, hypermethylation of MGMT promoter was more

frequently identified among undifferentiated cases (60%)

than differentiated tumor samples (40%). When MGMT

methylation status was correlated with clinical staging, there

was greater frequency of hypermethylation in lower-stage

diseases (Table 1). However, the relatively low frequency of

cases (10 of 68, 15%) with MGMT hypermethylation pre-

cluded us from making statistical inference, although it is

known to be significantly associated with longer progression-

free survival time in diffused large B-cell lymphomas [33].

The levels of MGMT activities and protein levels vary widely

Table 1. Clinicopathologic Characteristics of Retinoblastoma Tumor as a Function of RASSF1A and MGMT Promoter Methylation Status.

RASSF1A Gene Status P MGMT Gene Status P

Methylated Unmethylated Methylated Unmethylated

Laterality

Bilateral 32 8 .543 6 34 .935

Unilateral 24 4 4 24

Histology

Differentiated 21 5 .297 4 32 .730

Undifferentiated 29 6 6 22

N/A 6 1 0 4

RE classification

II to III 4 0 .180 2 2 .002*

IV 5 3 4 4

V 31 4 2 33

N/A 16 5 2 19

Optic nerve invasion 8 1 .567 1 8 .826

MGMT hypermethylation is significantly less among 6% (2/35) RE stage V tumors ( P = .002; Fisher’s exact test) compared to RE stage II, III, or IV.

N/A = not available.

*All P values <.05 are considered statistically significant.
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in tumors, are abundant in B-cell lymphomas, and are unde-

tectable in gliomas [33,34]. MGMT deficiency increased the

sensitivity of brain tumor to alkylating agents [34]. In retino-

blastoma, alkylating agents such as the platinum compounds

carboplatin or cisplatin have been commonly used for treat-

ment [34,35]. Therefore, MGMT inactivation may render the

retinoblastoma cells more prone to genotoxic effects of

alkylating agents, as has been proposed in glioma [34].

Besides, the presence of MGMT may confer increased

resistance on the elimination of transformed retina cells to

methylating and chloroethylating agents. Effects of MGMT

hypermethylation on response to chemotherapy should be

investigated in retinoblastoma.

In contrast, we found the presence of RASSF1A pro-

moter hypermethylation in a very high proportion (82%) of

retinoblastoma cases regardless of age at presentation,

sex, laterality, histology, family history, tumor staging, or

optic nerve involvement (Table 1). Our data showed that

loss of RASSF1A expression by promoter hypermethylation

is the most common epigenetic change that is known in

retinoblastoma. Such epigenetic silencing was not detected

among normal or nonmalignant retina tissues, further sug-

gesting the contribution of inactivation of RASSF1A to the

progression of retinoblastoma.

In conclusion, the large proportion of retinoblastoma cases

with RASSF1A and MGMT promoter hypermethylation as

well as the absence of mutations in the RASSIFIA sequences

that cause retinoblastoma clearly show the important role of

epigenetic mechanism on retinoblastoma progression.
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