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Abstract

Malignant astrocytomas are the most common and

highly vascularized of all primary adult brain tumors.

The histopathological hallmarks of malignant astro-

cytomas are microvascular proliferation and formation

of vascular entities, which are referred to as ‘‘glomeru-

loid bodies.’’ The significance of glomeruloid bodies

and the molecular mechanisms driving the abnormal

vascular architecture in malignant astrocytomas are

not understood. We have observed that overexpres-

sion of angiopoietin-1 (Ang1) in both subcutaneous

and intracranial xenograft models of malignant astro-

cytomas reproduces many of the vascular features of

these tumors, including glomeruloid bodies. To con-

firm that the formation of glomeruloid bodies was di-

rectly dependent on Ang1, we performed experiments

where levels of Ang1 expression were regulated under

tetracycline control, and we found a direct correlation

between levels of Ang1 expression and the occurrence

of glomeruloid bodies in xenografts. Additionally, we

inhibited the action of Ang1 by blocking its cognate re-

ceptor Tie2, and we found that the formation of glome-

ruloid bodies was inhibited. Collectively, these results

support our hypothesis that Ang1 is a key molecular

regulator of pathological vascularization characteristic

of malignant astrocytomas.
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Introduction

Astrocytomas are the most common primary brain tumor.

According to World Health Organization classification, the

most malignant grades are anaplastic astrocytoma (AA;

grade III) and glioblastoma multiforme (GBM; grade IV) [1].

Malignant astrocytomas are histopathologically character-

ized by microvascular proliferation—a feature that rep-

resents a switch to a malignant growth phase of an

astrocytoma [1,2]. Microvascular proliferation is character-

ized by hyperproliferation and piling of endothelial cells

(ECs) around a vessel lumen—forming entities referred to

as glomeruloid bodies—because they phenotypically re-

semble renal glomeruli [1,2]. To date, there has been very little

investigation on the significance of glomeruloid bodies and the

molecular regulators responsible for this florid pathological

vascular development in GBMs. Although vascular endothelial

growth factor-A (VEGF-A) and its receptors (vascular endo-

thelial growth factor receptors) have been clearly demonstrated

to play a uniform potent proangiogenic role in the malignant

progression of astrocytomas, it has not been directly associ-

ated with the formation of glomeruloid bodies [1–3]. Expanding

on our previous observations that angiopoietins are also im-

portant regulators of astrocytoma angiogenesis [4–6], in this

study, we examined the role of angiopoietin-1 (Ang1) as a po-

tential key molecular regulator of glomeruloid body formation

in malignant astrocytomas.

Angiopoietins act with VEGF-A in a closely coordinated

fashion to regulate normal vessel development and angio-

genesis [7–10]. Unlike VEGF-A, angiopoietins are not mito-

genic for ECs but are involved in the maturation of newly

formed vessels by regulating interactions between ECs and

mesenchymal supportive cells such as pericytes (PCs) and

smooth muscle cells (SMCs) of the extracellular matrix (ECM)

[7–10]. Ang1 is a highly soluble activating ligand [10–12] and

is secreted by parenchymal cells, activating the Tie2 receptor

expressed by ECs in a paracrine fashion and thus leading

to stabilization and maturation of the newly formed vascula-

ture. Additional mechanisms by which angiopoietins regulate

vessel biology beyond the above paradigm have been identi-

fied, with angiopoietins shown to regulate EC survival, adhe-

sion, motility, and development of the lymphatic system [13–21].

To date, the role of angiopoietins in tumor angiogenesis has

been seemingly contradictory, as they have shown different

angiogenic effects in varying tumor models [11,21–28]. Their

role in astrocytoma angiogenesis has been investigated by a
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few groups, including our own; however, their specific contribu-

tion to pathological vessel formation has not been explored.

We previously established that angiopoietin expression

and Tie2 activation increase with increasing malignancy

grade of astrocytomas [29]. Furthermore, we demonstrated

that inhibiting Tie2 activation can significantly decrease

the growth of GBM xenograft models, through disruption of

tumor angiogenesis [4]. We found that, in GBMs, Ang1 acts

in a proangiogenic capacity in the presence of VEGF-A,

synergizing the vascular response triggered by VEGF and

promoting the overall growth of GBMs [30]. In this study, we

have focused on the role of Ang1 in regulating the forma-

tion of glomeruloid bodies, which is characteristic of human

malignant astrocytomas.

Materials and Methods

Cell Lines

Established human GBM cells (U87-MG) were obtained

from the American Type Culture Collection (ATCC; Rockville,

MD) and maintained in Dulbecco’s minimal essential medium

(DMEM; Cellgro, Herndon, VA) supplemented with 10% FBS

and penicillin–streptomycin. Human umbilical vein endothe-

lial cells were obtained from ATCC and maintained in Ham’s

medium. 3T3-Tie2 cells were a gift from Chris Kontos (Duke

University, Durham, NC) and were maintained in DMEM plus

500 mg/ml G418. All of the above cells were grown in 37jC at

5% CO2. Sf9 insect cells were grown and maintained as

described previously [4].

Stable Clones

Constitutively overexpressing angiopoietin clones Full-length

human Ang1 cDNA was a gift from K. Alitalo (Helsinki, Finland)

and was subcloned into the mammalian expression vector

pSECTagB/Myc-HIS (Invitrogen, Mississauga, Ontario,

Canada). The Ang-Myc/HIS sequence was subcloned into

the pCAGG vector, containing a Cytomegalovirus promoter

with a chicken b-actin enhancer. Stable cell lines were gen-

erated by transfection of this vector into the U87-MG cells

using Lipofectamine-2000 (Gibco/BRL, Burlington, Ontario,

Canada), as per the manufacturer’s instructions. Stable clones

were selected with 1 mg/ml Zeocin (Invitrogen), and cells were

expanded. Twenty stable clones were examined for Ang1 ex-

pression levels using immunoprecipitation and Western blot

analysis, as described below. Two of the highest-producing

Ang1 clones (A1-1 and A1-2), plus one pooled clone (A1-p),

were selected for in vivo studies (Figure 2A). Potential clonal

variability was accounted for by using multiple clones, pooled

clones, and empty vector transfectants. These stable clones

were expanded and maintained in DMEM plus 300 mg/ml

Zeocin. For control stable lines, a similar transfection was

undertaken with empty vector constructs.

Tetracycline-inducible clones overexpressing angiopoietins

As described previously, stable Tet-Off U87-MG cells have

been established [31,32]. Briefly, U87-MG cell lines were trans-

fected with the pTet-Off (Clontech, Palo Alto, CA) vector, and

stable clones were selected and maintained in 1 mg/ml and

500 mg/ml G418, respectively. Thirty of the Tet-Off clones were

assayed by transfecting with pTRE-LUC and, using a lucifer-

ase assay, the highest tetracycline-inducible clone was se-

lected for generating double-stable Tet-Off cell lines (data not

shown). Double-stable Tet-Off U87-MG cell lines overexpress-

ing Ang1 were generated by cotransfecting U87-MG:Tet-Off

stable cells with pTRE-Ang1 using the pTK-puromycin vec-

tor. Stable clones were selected in 3 mg/ml puromycin, and

20 clones were tested for induction of Ang1 expression using

immunoprecipitation followed by Western blot analysis, as de-

scribed below. For control U87-MG:Tet-Off double-stable cell

lines, pTRE-Red vector (Clontech) expressing the dsRed

fluorescent protein was used. In vitro testing of tetracycline

induction was determined using varying doses of doxycycline

(Dox), with the most tightly regulated clones expressing Ang1

selected for in vivo experiments (Figure 2B).

Characterization of Angiopoietins Secreted by

Stable Clones

Stable clones of Ang1 were plated (P100) to the same

number of cells as that of control empty vector transfec-

tants. After 96 hours, the conditioned medium (CM) was col-

lected and centrifuged to clear debris. For Tet-Off clones,

the cells were plated to an equal number in P100 plates

and exposed to varying doses (0 ng/ml, 10 ng/ml, 100 ng/ml,

500 ng/ml, 1 mg/ml, and 5 mg/ml) of Dox (Sigma, St. Louis,

MO), according to standard protocol, for 36 hours. The CM

was subsequently collected, and protein levels were quanti-

fied using the bicinchoninic acid assay to ensure equal load-

ing for immunoblot analysis of Ang1, as outlined below.

Immunoprecipitation of Ang1 was performed with 5 mg of

Ang1 antibody (Santa Cruz Biotechnology, Santa Cruz, CA)

recovered by protein G Sepharose beads (Invitrogen) at

4jC. Beads were recovered, washed with HNTG buffer three

times, eluted with twice-concentrated SDS sample buffer,

boiled at 100jC for 10 minutes, separated using SDS–

polyacrylamide gel electrophoresis, and transferred to a

polyvinylidene difluoride membrane. Standard Western blot

analysis using anti-Ang1 antibody at 1:5000 dilution in 5%

skim milk–Tris-buffered saline Tween 20 was performed. A

horseradish peroxidase–conjugated anti–protein G antibody,

coupled with an enhanced chemiluminescence system re-

agent (NEN Life Science Products, Boston, MA), was used to

visualize specific bands for Ang1 at approximately 70 kDa.

In Vivo Tumor Models

Subcutaneous models Subcutaneous xenografts were

generated by growing U87-MG stable clones overexpress-

ing Ang1 in the flanks of NOD-SCID mice. For each stable

clone, seven mice were injected with 10E7 cells suspended

in 300 ml of PBS, with five mice injected with control empty

vector transfectants. Tumor growth was measured biweekly,

using calipers, by two observers in a blinded fashion. Tumor

volume was calculated using the formula: (diameter2 �
length)/2. As per animal protocol, mice were sacrificed by

cervical dislocation after 100 mg/kg bromodeoxyuridine

(BrDu) (Sigma-Aldrich, Toronto, Canada) injection. Tumors
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were cut in cross sections, with two cross sections kept in

formaldehyde for paraffin blocks and immunohistochemical

analysis and with the remaining tumor stored in liquid nitro-

gen. All in vivo tumor models were repeated in duplicate.

Intracranial models For orthotopic xenograft models, Tet-

Off–regulated human U87-MG:Ang1 cells (10E6) were ste-

reotactically injected 3 mm deep into the frontal cortex of

NOD-SCID mice. Mice were treated with Dox in drinking

water, with doses of 0, 1, and 10 mg/ml. These doses were

selected based on prior published studies demonstrating

that Dox crosses the blood–brain barrier efficiently to regu-

late gene expression in the brain [32]. When animals ex-

hibited symptoms consistent with failure to thrive or when

their intracranial pressure increased, the mice were sacri-

ficed by perfusion fixation after BrDu injection and tail vein

injection of 2% Evans blue solution (2 ml/kg) to determine

intraluminal blood flow and vessel permeability. The time in-

terval between the injection of Evans blue and the perfusion

and killing of the mice was approximately 30 minutes [32].

All in vivo experiments were repeated in duplicate.

Inhibition of Ang1 in Orthotopic Intracranial Tumor Models

ExTek is a soluble protein that contains only the extra-

cellular portion of the Tie2 receptor, which we have shown

to inhibit Tie2 activation both in vitro and in vivo [4]. ExTek is

purified using a baculovirus expression system, as detailed

previously [4]. To inhibit the effect of Ang1, ExTek treatment

was started 2 weeks after intracranial injection of U87-MG:

Ang1 cells, with repeat delivery into the tumor center using

a guide-screw technique, as described previously [4]. A total

of 30 to 50 mg of purified ExTek, suspended in 10 to 20 ml

of PBS, was delivered into the tumor center every other day,

as described previously, with a 32% decrease in tumor

growth rate in intracranial U87-MG xenografts [4]. A total

of 15 mice received ExTek, 5 received PBS, and 5 received

no treatment. When animals exhibited symptoms consistent

with failure to thrive, as per animal care protocols, the mice

were sacrificed by perfusion fixation after BrDu and Evans

blue injections. The brain and the tumors were analyzed in

a fashion similar to the subcutaneous xenografts above.

Tumor Vascularity

Four different tumor portions were each cut at 5-mm con-

secutive paraffin sections and stained with the EC-specific

marker anti– factor VIII (1:2000; Dako, Carpinteria, CA), fol-

lowed by detection with an avidin–biotin complex method,

3,3V-diaminobenzidine (VectaStain Elite; Vector Laborato-

ries, Burlingame, CA) system. Microvessel density (MVD)

was calculated by counting the number of hollow lumen

vessels in 10 high-power fields (HPF; �500) and in 5 HPF

at vascular ‘‘hot spots.’’ Areas that included abnormal vas-

cular structures, such as glomeruloid bodies, were not in-

cluded in the MVD count as the functional status of these

vascular units in both human and xenograft tumors is

not known. All analyses were carried out using the Micro-

Computer Image Device (MCID-Imaging Research, Inc.,

St. Catharines, Ontario, Canada) linked to a color charge-

coupled device camera (DXC 970 MD; Sony, Crofton, MD)

mounted on a transmitted-light microscope (Zeiss Axioskop,

Carl Zeiss AG, Vertrieb, Germany). The extent of EC and

SMC colocalization in a vessel was determined by double

staining using fluorescein isothiocyanate–conjugated factor

VIII antibody and chromogenic smooth muscle antigen

(SMA) staining. Paraffin sections were analyzed using laser

microscopy to detect the red fluorescence of Evans blue that

was injected through the tail vein prior to animal sacrifice. This

technique allowed for the detection of blood flow in vessel

lumens and the extent of plasma leakage from vessels.

Immunohistochemistry

Standard hematoxylin and eosin (H&E) staining and

immunohistochemical analysis were performed on 5-mm

tissue sections from paraffin-embedded tissue blocks. Pri-

mary antibodies used include the following: Ki-67 (polyclonal

rabbit antibody no. A0047, used at 1:400; Dako), factor VIII

(rabbit polyclonal antibody no. A0082, used at 1:2500,

Dako), CD34 (human monoclonal antibody), polyclonal goat

anti-Ang1 and anti-Ang2 antibody (1:200 and 1:400;

Santa Cruz Biotechnology), and rabbit polyclonal anti-Tie2

(1:400; Santa Cruz Biotechnology). The secondary antibody

was a goat antimouse antibody (Zymed, Markham, Ontario,

Canada) used at 1:200, and antigens were detected using the

avidin–biotin complex method (Vector Laboratories) and

diaminobenzidine substrate. All slides were reviewed inde-

pendently by two observers and our neuropathology col-

league (P.S.).

Statistical Analysis

All analyses were completed using StatView 4.1 for

Macintosh (Abacus Concepts, Berkeley, CA). All errors were

calculated as the standard error of the mean (SEM). One-

tailed Student’s t test was used to compare means (two

samples, unequal variance), with P < .05 considered statis-

tically significant.

Results

Characterization of Human GBM–Associated

Glomeruloid Bodies

Human GBM vasculature demonstrates a wide range

of architectural aberrations, with a repertoire of pathological

alterations as illustrated in Figure 1A. The vessels are di-

lated, take on ectatic serpentine forms (Figure 1A, i and ii ),

and are often thrombosed when present in association with

regions of tumor necrosis [1,33]. Additionally, the vessel

lumens are lined with multiple layers of ECs, instead of a

single layer of ECs, as seen in normal vessels. Piling of

vascular ECs leads to formation of structures that resemble

glomeruloid bodies and are otherwise also referred to as

vascular tufts [Figure 1, A (iii and iv) and B]. The structure of

glomeruloid bodies has not been characterized extensively

in the past, and their pathophysiology and significance

remain to be deciphered. Although, on H&E (Figure 1B),

cells composing a glomeruloid body have the phenotypic
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Figure 1. Characterization of human GBM glomeruloid bodies. (A) The repertoire of pathological vascular structures seen in GBMs is illustrated in this figure. EC-

specific immunohistochemical staining of human GBM sections allows identification of vascular structures. There are microvascular proliferation and piling of ECs

around the vessel lumen (arrowheads) with dilated, ectatic, and serpentine structures (i and ii). The vessels form structures referred to as glomeruloid bodies that

are generated from the piling of ECs around vessel lumens and by mimicking of glomeruli seen in human kidneys (arrow) (iii and iv). (B) H&E sections of human

GBM illustrating the vascular units called glomeruloid bodies that very closely resemble renal glomeruli. The cells composing a glomeruloid body, as seen on H&E,

correspond to ECs. (C) Immunohistochemical characterization of the expression profile of cells composing glomeruloid bodies shows a mixed population of ECs

(as illustrated by EC-specific stain: CD34) and smooth muscle stains (as illustrated with smooth muscle actin stain: SMA). A majority of cells of a glomeruloid body

express Tie2 uniformly, regardless of whether they are EC- or SMA-positive. However, Ang1 expression is restricted to astrocytoma cells surrounding the

glomeruloid bodies, as illustrated by the parallel staining pattern for GFAP and Ang1.
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appearance of ECs, they do not stain uniformly for EC-

specific markers, as seen with the patchy CD34 staining

pattern (Figure 1C), suggesting diversity of cells compos-

ing glomerular bodies in GBMs. Another population of cells

within the heterogeneous population of cells in glomeruloid

bodies are the SMCs, positively staining for SMA (Figure 1C).

Of interest, all of the cells within the glomeruloid bodies

uniformly express Tie2, the receptor for Ang1, regardless of

whether the cells are ECs or SMCs (Figure 1C). As predicted,

human glomeruloid bodies do not stain positively for the as-

trocyte marker glial fibrillary acidic protein (GFAP) (Figure 1C).

More importantly, we found that astrocytes surrounding glo-

meruloid bodies express Ang1 uniformly, as seen with con-

secutive GFAP and Ang1 staining (Figure 1C).

Characterization of U87-MG Cells Overexpressing Ang1

We have previously published studies on the expression

profile of VEGF and angiopoietin in U87-MG cells [29]. U87-

MG:Control cells express moderate amounts of endogenous

VEGF and Ang1, without any detectable Tie2 expression.

Overexpression of Ang1 did not alter the in vitro proliferation

rate, extent of apoptosis, morphology of U87-MG cells, or

baseline VEGF-A expression, compared to parental controls

(data not shown). The two highest clones of the constitutively

overexpressing U87-MG:Ang1 stable transfectants (A1-1

and A1-2), plus one pooled clone (A1-p), were selected for

in vivo studies (Figure 2A). Tet-Off–regulated U87-MG:Ang1

stable clones were also established, with the most tightly

regulated clones selected for in vivo studies (Figure 2C). In

U87-MG:Ang1 Tet-Off clone, 10,000 ng/ml Dox decreased

Ang1 levels to close to parental levels of Ang1 expression

(Figure 2, A and C). The levels of Dox required to regulate

the decrease in Ang1 expression in U87-MG cells were

found to be higher than those reported for other cell types,

likely due to some degree of leakiness of the Tet-Off system

and the presence of moderate amounts of endogenous Ang1

expressed by parental U87-MG cell lines.

We have previously established and published the char-

acteristics of the stable cell lines used in this study and have

demonstrated that the exogenous Ang1 secreted in the CM

of the stable clones is biologically active using two in vitro

assays [4,30]. Briefly, established Tie2 phosphorylation and

microtubule bioassays were used to ensure that the exoge-

nous Ang1 can activate the Tie2 receptor and induce ECs to

grow as tubule structures on a fibrin matrix.

Effect of Ang1 on Tumor Growth and Proliferation

We have previously shown that Ang1 overexpression con-

fers a growth advantage on U87-MG xenografts, with an

overall increase in tumor cell proliferation and a decrease in

apoptosis rate [30]. This was also observed in this study with

both subcutaneous xenografts (f3.5- and 5-fold increase

in tumor size and proliferative index, respectively; Figure 2B,

Table 1) and intracranial xenografts (f2.6-fold increase in

proliferative index and decreased survival; Table 2). How-

ever, the growth advantage in response to Ang1 was not dose-

dependent, as seen by our Tet-Off–regulated U87-MG:Ang1

clones (Figure 2D, Table 2). Varying levels of Ang1 expression

did not alter the overall survival, proliferative index, or MVD. At

all three levels of Ang1 expression above, baseline tumor

growth and proliferation were significantly increased com-

pared to control tumors. The lack of tight in vivo regulation

of Tet-Off stable clones and the leakiness of the system

can be potential explanations for this apparent lack of dose-

dependent response to Ang1. However, these results may also

Figure 2. In vivo growth effect of Ang1 on subcutaneous and intracranial

xenograft models of GBMs. (A) The level of Ang1 expressed above baseline

control by the corresponding stable U87-MG:Ang1 clones (A1-1, A1-2, and one

pooled clone A1-p) is demonstrated at the bottom of the growth curve. (B) U87-

MG:Ang1 astrocytoma stable clones grown as subcutaneous xenograft

models in NOD-SCID mice demonstrate a faster growth rate and a final tumor

size comparable to that of control empty vector – transfected clones. (C)

Varying levels of Ang1 expression by addition of Dox (bottom) did not result in a

statistically significant difference in survival, which were all decreased

compared to control. (D) Intracranial xenografts of Tet-Off – regulated U87-

MG:Ang1 tumors demonstrate decreased survival concordant with a faster

growth rate, compared to U87-MG:Control (vector transfectants).
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indicate that even small amounts of Ang1 above the baseline

parental levels are sufficient to stimulate an increased growth

of the U87-MG xenografts.

Effect of Ang1 on Tumor Vascularity

Tumor vascularity is increased with overexpression of

Ang1. In both subcutaneous and intracranial models of U87-

MG:Ang1, there was an increase in tumor angiogenesis, as

measured by MVD, which was elevated by f1.7-fold in both

subcutaneous and intracranial tumors (Tables 1 and 2). The

striking and intriguing finding was the alteration of vascular

architecture with overexpression of Ang1. In the U87-MG:

Ang1 xenografts, many of the vessels take on a highly serpen-

tine structure and abnormal multilayering of ECs (Figure 3),

mimicking the characteristic glomeruloid bodies seen in hu-

man GBMs (Figure 1, A and B). In comparison, the U87-MG

control xenografts had normal vascular architecture, with the

lumens being well formed and lined with a single layer of ECs

(Figure 3). Although present in the subcutaneous U87-MG:

Ang1 xenografts, the number and the size of the glomeruloid

bodies and overall abnormal vascular structures were more

prominent in the intracranial xenografts (Figure 3). We postu-

late this difference to be due to the impact of microenviron-

mental factors and the physical confines of the intracranial

space. The occurrence of these pathological vascular alter-

ations was not restricted to a particular site within the xeno-

grafts, as they were present equally at the center and at the

periphery of the tumor, and no direct correlation with necrotic

zones was observed.

Characterization of Glomeruloid Bodies Seen in

U87-MG:Ang1 Xenografts

The cells composing glomeruloid bodies seen in U87-

MG:Ang1 xenografts are principally ECs (Figure 4A) and a

few SMCs (Figure 4F ). These ECs uniformly express Tie2

(Figure 4D), similar to glomeruloid bodies in human GBM

specimens (Figure 1C). Similar to human GBMs, the glo-

meruloid bodies in U87-MG:Ang1 xenografts do not stain for

GFAP, whereas the surrounding GFAP-positive tumor cells

express Ang1, suggestive of a paracrine stimulation of ECs

and SMCs to form glomeruloid bodies (Figures 1 and 4). We

also examined the correlation of SMCs and ECs in our

xenografts by double labeling with fluorescent factor VIII

(Figure 4E ) and chromogenic SMA stain (Figure 4F ). There

was no significant pattern or correlation observed between

ECs and SMCs within a glomeruloid body, similar to our

observation in human glomeruloid bodies (Figure 1C). Using in-

travascular injection of Evans blue, detected as a red fluores-

cence signal, the extent of blood flow through the vascular

lumens of glomeruloid bodies was assessed (Figure 4C).

The glomeruloid bodies had areas with EC piling with no

effective blood flow, as well as regions where the ECs ap-

peared to form multiple small channels and lumens with ef-

fective blood flow.

Glomeruloid Bodies Are Ang1-Dependent

To determine whether the abnormal vascular structures

seen in U87-MG:Ang1 xenografts are a direct consequence

of Ang1 upregulation, we used several strategies. First, vary-

ing the levels of Ang1 expression using the Dox-regulated

Tet-Off system, we found the extent of glomeruloid body or

tufting in the U87-MG:Ang1 intracranial xenografts to be de-

pendent on levels of Ang1 expression (Figure 5). At 0 mg/ml

Dox (high Ang1 expression; Figure 2B), 88% of the intra-

cranial xenografts had glomeruloid bodies present, com-

pared to only 16% of tumors with 10 mg/ml Dox (low Ang1

expression; Figure 2B). This figure is comparable to that

seen in U87-MG:Control xenografts (10%) that have basal

endogenous Ang1 expression (Figure 5C). The formation of

glomeruloid body was dependent on levels of Ang1 expres-

sion, as illustrated with the tetracycline-regulated xenografts,

despite Ang1 levels not altering the overall tumor growth or

angiogenesis, as discussed above. This would suggest that

glomeruloid bodies may not directly contribute to the vascu-

lar growth of GBMs.

Our second strategy to confirm that glomeruloid body for-

mation was directly Ang1-dependent was to inhibit the ac-

tivation of Ang1’s cognate receptor Tie2, using a soluble

kinase-dead dominant-negative Tie2 construct ExTek [4].

Intracranial U87-MG:Ang1 xenografts treated with ExTek

showed loss of abnormal EC piling and glomeruloid body

formation (Figure 5, C and D). Third, and to further support

our postulate that Ang1 is the primary molecular regulator of

Table 1. Effect of Ang1 on Subcutaneous Xenografts Models of GBM.

U87-MG:Control (n = 10) U87-MG:Ang1 (n = 15)

Tumor size 2.01 (0.3) 6.96 (0.5) [P = 6 � 10�5]

Proliferation index 0.23 0.90 [P = .001]

MVD 2.12 (0.1) 3.9 (0.2) [P = .001]

SEM values are presented inside parentheses.

Table 2. Effect of Ang1 on Intracranial U87-MG Xenografts.

U87-MG:Control (n = 10) U87-MG:Ang1

No Dox (n = 10) 1 mg/ml Dox (n = 10) 10 mg/ml Dox (n = 10)

Overall survival (days) 63.7 (2.3) 35.2 (1.6)* [P = 4.5 � 10�9] 35.7 (0.9)* [P = 5.1 � 10�6] 32.7 (0.4)* [P = 6.1 � 10�9]

Proliferation index 0.040 (0.01) 0.107 (0.01)* [P = .0007] 0.104 (0.01)* [P = .0018] 0.094 (0.01)* [P = .0007]

MVD (vessels/HPF; mean of 10 counts) 5.8 (0.55) 9.5 (0.48)* [P = .0017] 9.4 (1.14)* [P = .0093] 9.8 (1.59)* [P = .0016]

SEM values are presented inside parentheses.

*Statistically significant compared to control.
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Figure 3. Effect of Ang1 on tumor vascularity. Vascular structures in U87-MG:Ang1 xenografts stained with factor VIII demonstrate pathological piling of ECs,

serpentine and ectatic vessels, and vascular structures that closely resemble glomeruloid bodies or tufts. This was not observed in the U87-MG:Controls and was

more prominent in intracranial (i) versus subcutaneous (ii) xenografts.

Figure 4. Characterization of glomeruloid bodies in U87:Ang1 xenografts. (A) The extent of ECs composing the glomeruloid bodies was confirmed by EC-specific

stains. Consecutive sections of tumors were stained for factor VIII, fluorescent factor VIII (B), and intraluminal injection of Evans blue (C). The extent of blood flow

through the glomeruloid bodies was determined by Evans blue injection, showing areas where ECs form multiple lumens with blood flow and no increase in vessel

permeability. The cells of a glomeruloid body stain strongly for Tie2 (D), and these correspond directly with the factor VIII – positive cells. Double staining with

fluorescent factor VIII (E) and chromogenic SMA (F) demonstrated minimal SMCs present in the glomeruloid bodies.
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glomeruloid bodies in GBMs, are our observations in xeno-

grafts, which we had generated previously to express low

levels of VEGF-A while still maintaining overexpression of

Ang1 [29]. These xenografts had decreased growth and

angiogenesis, however, without any alterations in the inci-

dence of glomeruloid bodies [30].

Collectively, these experimental results, in addition to

the expression profile of angiopoietins and Tie2 in human

GBM–associated glomeruloid bodies, are highly supportive

of our hypothesis that glomeruloid bodies result from in-

creased expression of Ang1 in GBM tumor cells, which, in a

paracrine manner, activate the Tie2 receptors present in the

tumor ECs.

Discussion

Astrocytomas are the most common brain tumor in adults,

with necrosis and vascular proliferation differentiating malig-

nant astrocytomas from their lower-grade counterparts

[2,34]. The pathognomonic features of malignant astrocyto-

mas are increase in microvascular proliferation and piling

of ECs around a vessel lumen, forming glomeruloid bodies

or vascular tufts (Figure 1A, i, iii, and iv) [2,34]. Glomeru-

loid bodies are thought to be vascular channels lined by

hyperplastic ECs, surrounded by basal lamina and an in-

complete layer of PCs. The molecular pathogenesis of

glomeruloid bodies is not well understood, and their func-

tional significance is yet undetermined [2,3]. Results from

our study suggest that Ang1 expressed by astrocytoma

cells, through a paracrine stimulation of its receptor Tie2,

regulates the occurrence of glomeruloid bodies seen in

human malignant astrocytomas.

It is established that there is overexpression of Ang1 and

Tie2, as well as increased activation of Tie2, with increasing

malignancy grade of astrocytomas [11,16,26,28,29,35,36].

We have previously demonstrated that overexpression of

Ang1 in human GBM xenografts promotes tumor angio-

genesis and growth in a VEGF-A dependent manner [30].

During these experiments, we also observed an associa-

tion between Ang1 overexpression and glomeruloid body

formation, and that the formation of these vascular struc-

tures was not dependent on concomitant VEGF-A expres-

sion [30]. These observations led to our hypothesis and current

study that Ang1-mediated activation of Tie2 in a paracrine

manner is an important molecular regulator of glomeruloid

body formation in human malignant astrocytomas.

The glomeruloid bodies seen in human GBMs and our

U87-MG:Ang1 xenografts demonstrate a very similar vascu-

lar architecture and expression profile for Ang1 and Tie2,

supporting our U87-MG:Ang1 model as a useful model for

studying the pathogenesis of the pathological vascular struc-

tures seen in human GBMs. All cells of these glomeruloid

bodies uniformly express Tie2, whereas Ang1 expression is

restricted to the surrounding astrocytoma cells. We postulate

that activation of Tie2 by Ang1, in a paracrine fashion, leads

to increased EC survival and accumulation, thereby gener-

ating these vascular tufts or glomeruloid bodies [37,38]. In

support of our postulate, using the Tet-Off system, we have

demonstrated that there is a direct correlation between the

level of Ang1 expression and the extent of glomeruloid body

Figure 5. Glomeruloid body formation is directly dependent on Ang1. There was a direct correlation between the extent of glomeruloid body formation in U87-

MG:Ang1 xenografts and the level of Ang1 expression induced. With high levels of Ang1, or (A) 0 mg/ml Dox in the drinking water, typical EC piling (tortuous,

thrombosed, and serpentine vessels with an increase in MVD) was present in 88% of the tumors. With low levels of Ang1 expression ((B)10 mg/ml Dox), only

(C)16% of tumors illustrated glomeruloid body formation, comparable to the extent of glomeruloid bodies seen in control tumors (10%). (D) Inhibition of Ang1-

activating Tie2 using ExTek, a kinase-deficient dominant-negative soluble Tie2 peptide, resulted in loss of glomeruloid body formation and other pathological

vascular structures induced by Ang1.
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formation. Furthermore, inhibition of Ang1-mediated activation

of Tie2, using the soluble kinase-deficient dominant-negative

mutant ExTek protein, results in a loss of glomeruloid body

formation. To date, there has been only one study where

the possible mechanism of glomeruloid body formation was

investigated [3]. In this study, adenoviral-mediated delivery

of VEGF-A to the skin of mice resulted in vascular structures

resembling glomeruloid bodies. However, a similar experi-

mental paradigm by another group with intracranial VEGF-

A injection failed to induce glomeruloid body formation [39].

Of relevance, we have found that VEGF-A upregulation in

GBM cells leads to cross-modulation and spontaneous over-

expression of Ang1, although the contrary (upregulation of

VEGF by Ang1) is not seen (data not shown). Therefore, we

speculate that the glomeruloid bodies induced by adenoviral

VEGF-A injection into the skin [3] may also, in fact, be due to

a secondary elevation of Ang1 rather than a direct conse-

quence of VEGF-A. In addition, our prior published results,

with VEGF-A demonstrating decreased tumor angiogenesis

and overall growth but with preservation of glomeruloid body

formation in U87-MG:Ang1 intracranial xenografts, also sug-

gest that glomeruloid body formation is primarily linked to

Ang1, rather than to VEGF-A [30].

In summary, our cumulative data strongly suggest that

Ang1 is a key molecular regulator of glomeruloid bodies, as

seen in malignant human astrocytomas. First, we have seen

that there are many structural and cellular similarities be-

tween the glomeruloid bodies induced by Ang1 overexpres-

sion in human GBM xenografts and those found in human

astrocytomas. Second, Ang1 induced glomeruloid bodies in

a dose-dependent process. Third, inhibiting Ang1 activation

of Tie2 led to a loss of glomeruloid body formation. These

and our previous observations suggest that Ang1, in addition

to playing an important proangiogenic and growth-promoting

role in malignant astrocytomas, is also a key molecular

regulator of glomeruloid body formation. The functional sta-

tus of glomeruloid bodies as vascular units still remains un-

known, with the U87-MG:Ang1 xenografts providing a good

model to further understand the biologic relevance of this

process in human astrocytomas. In this study, we were able

to establish that components of the glomeruloid bodies have

effective blood flow through the luminal channels, as evi-

denced by Evans blue intraluminal tracing. A noteworthy

observation is that, despite blood flow within the vascular

channels, there was no correlation between the extent of

glomeruloid body formation and tumor growth. However, we

do know that the presence of glomeruloid bodies in patho-

logical examinations of human adult astrocytomas is closely

linked with malignant progression and ultimate prognosis.

Ongoing additional studies utilizing the U87-MG:Ang1 model

are necessary to help better understand the functional

relevance of glomeruloid bodies.
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