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Abstract

Array comparative genomic hybridization (aCGH) and

microarray expression profiling were used to sub-

classify DNA and RNA alterations associated with dif-

ferential response to chemotherapy in ovarian cancer.

Two to 4 Mb interval arrays were used to map geno-

mic imbalances in 26 sporadic serous ovarian tumors.

Cytobands 1p36, 1q42-44, 6p22.1-p21.2, 7q32.1-q34

9q33.3-q34.3, 11p15.2, 13q12.2-q13.1, 13q21.31,

17q11.2, 17q24.2-q25.3, 18q12.2, and 21q21.2-q21.3

were found to be statistically associated with chemo-

therapy response, and novel regions of loss at 15q11.2-

q15.1 and 17q21.32-q21.33 were identified. Gene

expression profiles were obtained from a subset of

these tumors and identified a group of genes whose

differential expression was significantly associated

with drug resistance. Within this group, five genes

(GAPD, HMGB2, HSC70, GRP58, and HMGB1), previ-

ously shown to form a nuclear complex associated

with resistance to DNA conformation–altering chemo-

therapeutic drugs in in vitro systems, may represent a

novel class of genes associated with in vivo drug

response in ovarian cancer patients. Although RNA

expression change indicated only weak DNA copy

number dependence, these data illustrate the value of

molecular profiling at both the RNA and DNA levels to

identify small genomic regions and gene subsets that

could be associated with differential chemotherapy

response in ovarian cancer.
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Introduction

Ovarian cancer is the second most frequently diagnosed

gynecologic malignancy, and causes more deaths than any

other cancer of the reproductive system. The lack of reliable

methods of early detection and the absence of specific symp-

toms result in late-stage diagnosis in 70% of patients. Although

initial response rates to conventional chemotherapy among

advanced stage patients are high, resistance to chemotherapy

remains the primary factor accounting for the low 5-year sur-

vival in this patient population [1].

Ovarian cancer chemotherapy most commonly involves a

first-line combination of platinum-based compounds plus pac-

litaxel following cytoreductive surgery. Response to chemo-

therapy varies among patients, and initial treatment response

is often the most important consideration in choosing second-

line therapies. The role of CA 125 serum levels as a surrogate
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marker to assess chemotherapy response is well established

(reviewed in Ref. [2]). Both the rate of decline as well as the

absolute value of CA 125, determined after the first courses

of chemotherapy, are generally considered predictors of the

final clinical response [3].

Most investigations of drug resistance in ovarian cancer

have used anticancer drugs in vitro to select for subclones of

cell lines with resistance to the selected agent [4–9]. A

disadvantage of these approaches is that the cultured cells

used are often genomically unstable and may have acquired

in vitro genetic and epigenetic alterations that are not repre-

sentative of in vivo conditions. In addition, such models pri-

marily address acquired drug resistance, and do not provide

direct insights into the expression and genomic alterations

associated with intrinsic drug resistance.

In recent years, cytogenetic study of solid tumors has

been directed toward the identification of recurrent chromo-

somal rearrangements and patterns of copy number imbal-

ance that may pinpoint genomic regions involved in cancer

initiation, progression, drug resistance, and patients’ outcome

[10,11]. Molecular cytogenetic methods such as spectral

karyotyping and comparative genomic hybridization (CGH)

have provided useful insights concerning genomic alterations

in ovarian cancer [12,13]. However, because metaphase CGH

has a resolving power of 10 to 20 Mb [14], it has not been

possible to determine genomic imbalance patterns within

cytobands. Recently, genomic and cDNA arrays (reviewed

in Ref. [15]) have provided more detailed maps of genomic

copy number alterations in tumors and, in due course, will

provide comprehensive maps of genomic imbalance in a

variety of tumors [16–18]. Moreover, high-resolution maps

of copy number imbalance are now being integrated with

expression profile data to identify clinically relevant subsets

of genes based on concomitant alterations at the DNA and

RNA levels [19–23]. Microarray expression profiling has

been utilized in a number of recent studies in ovarian cancer

(reviewed in Ref. [24]). However, no study to date has per-

formed parallel microarray expression and array compar-

ative genomic hybridization (aCGH) analyses to address

genomic imbalance and concurrent expression alterations

associated with intrinsic drug resistance in ovarian cancer.

Materials and Methods

This study was designed in three phases (Figure 1). In the

first phase, a 2- to 4-Mb genomic interval aCGH map of

genomic imbalance in 26 serous epithelial ovarian cancer

(SEOC) tumors was generated. In the second phase, sta-

tistical analysis of aCGH data sets was used to identify

cytobands in which imbalance was associated with drug

resistance. In the third phase, gene expression profiles were

obtained from a subset of tumors, patterns of gene expres-

sion associated with drug response were identified, and a

concordance analysis of the relationship between genomic

imbalance and expression levels was performed. Finally,

expression microarray prediction analysis was carried out

to identify a subset of classifier genes that could predict

chemotherapy response in ovarian cancer patients.

SEOC Tumor Samples

Snap-frozen tumor tissue samples from 26 sporadic SEOC

tumors naı̈ve to chemotherapy were selected from the Toronto

Ovarian Tissue Bank and Database. No patient included in this

study had a family history of either breast or ovarian cancer.

All samples were acquired according to the institutional guide-

lines of the Research Ethics Board. The tumor specimens

selected for this study contained at least 75% tumor content

as assessed by the surface area of histology slides cor-

responding to the snap-frozen tissues (the available clinical

data are summarized in Table 1). Patients received standard

SEOC chemotherapy (carboplatin + taxol). To be classified as

sensitive, CA 125 values from patient tumor samples had to

meet two criteria. First, the CA 125 values had to fall to below

the normal reference (f35 U/ml) within three cycles of chemo-

therapy, regardless of the initial baseline. Second, the values

had to remain below the normal reference of a period of at

least 6 months from the initiation of chemotherapy. Using

these criteria within our group of samples, 16 met the criteria

for sensitivity and 10 were thus classified as resistant. Due to

the accepted variability of CA 125 values, especially in those

classified as resistant, a subset of samples was used for a

more detailed class comparison. In this group of six sensitive

and four resistant samples, the resistant tumors displayed

Figure 1. Flowchart of the experimental design.
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CA 125 levels that failed to decline below 50% of their orig-

inal postsurgical values, whereas the selected subset of sen-

sitive samples comparatively displayed the highest rate of

decline from initial baseline [3].

Tissue Arrays

A tissue array comprising 1-mm-diameter bores through

tumor-rich areas of formalin-fixed paraffin-embedded (FFPE)

tumors was designed following published methods [25] and

constructed using a standard arraying device (Beecher In-

struments, Sun Prairie, WI). Duplicate tissue cores from each

donor block were included in the tissue microarray, and sec-

tions (5 mm) were cut from the recipient tissue array block for

hematoxylin and eosin staining and interphase fluorescence

in situ hybridization (FISH) analysis.

FISH

Interphase FISH was performed on unstained 5-mm sec-

tions from the FFPE tissue array using a commercially avail-

able Spectrum Green RB1 locus probe mapping to cytoband

13q14 (Vysis, Downers Grove, IL) according to the manu-

facturer’s instructions. Slides were imaged using the Vysis

Quips SmartCapture (Vysis) imaging system. The scoring

criteria used for the interpretation of FISH results on the

FFPE sections have been previously described [19]. Chro-

mosomal gains were assigned when more than 10% of the

nuclei exhibited more than two signals.

aCGH

Genomic DNA was obtained from all tumor samples

using standard phenol chloroform extraction methods. The

normal human reference DNA was comprised of an equi-

molar mixture of DNA derived from multiple male donors

(Promega, Madison, WI). The genomic array slides were

obtained from Spectral Genomics (Houston, TX) and com-

prised 1300 large insert clones (BACs/PACs) spaced f2 to

4 Mb apart. Supplier-recommended protocol was used. In

brief, 2 mg each of genomic tumor and normal DNA was di-

rectly labeled with Cy3-dCTP or Cy5-dCTP (Amersham, Baie

D’Urfe, Canada) using random priming. Following hybridiza-

tion, the microarrays were washed using 50% formamide/2�
SSC (20 minutes), 0.1% Igepal/2� SSC (20 minutes), and

0.2� SSC (10 minutes), all prewarmed to 50jC. A final wash

with deionized distilled water was carried out. Air-dried micro-

array slides were scanned with an Axon GenePix 4000A

confocal scanner, and fluorescence intensities were quanti-

fied with the GenePix Pro 3.0 software (Axon Instruments,

Union City, CA). Hybridizations were carried out in duplicate

with fluor reversals to ensure that labeling differences did

not affect imbalance assignments. Repetitive spots show-

ing >20% variation in their signal ratio were removed prior

to value averaging. Details concerning software, normaliza-

tion, and imbalance assignments have been described pre-

viously [16,18] and are available at http://www.utoronto.ca/

cancyto/. The analysis software provides data in two for-

mats: 1) the raw normalized data for each feature on the

array, and 2) the feature intensity data represented as

significant gain (two baseline standard deviations) and loss

per individual experiment. This second output was the pri-

mary analysis format used in the aCGH portion of the study.

To compensate for possible interexperimental variability,

data were normalized to show areas of significant gain or

loss in relation to each given experiment. Individual array

features were assigned a positive value for significant gain

and a negative value for significant loss based on 2 SD from

a baseline determined for each individual experiment. The

baseline threshold for each experiment is determined by the

software using the largest chromosomal region of contiguous

clones having the smallest deviation in their intensity ratios.

Spots with fluorescence intensity ratios of greater than ±2 SD

threshold are assigned as copy number imbalance and given

a score of +1 for gain and �1 for loss.

For group comparisons, the differences in log2 ratios as

well as the Fisher exact test were used to determine whether

there was any significant gain or loss of genomic content

within particular cytobands between resistant and sensitive

tumors. The Fisher exact test utilized three categories (gain,

loss, and no change), with the null hypothesis that the rela-

tive proportions of each of the three imbalance categories

would be expected to be the same in both groups. The sta-

tistical package S-Plus was used for these group compari-

sons. We reported uncorrected P values and used the

permutation-based stepdown method to correct the P values

for multiple comparisons [26].

Expression Microarrays

RNA was extracted using Trizol (Invitrogen Canada,

Burlington, Ontario, Canada). RNA quality and concentra-

tion were verified using an Agilent Bioanalyzer (Agilent

Table 1. Patient Sample Information.

Sample Number Stage Grade Surgery Age Classification

OVCA 3 IIIB 3 SOPT N/A R

OVCA 8 IIIC 2 SOPT N/A S

OVCA 33* IIIB 2 SOPT N/A S

OVCA 38 III 2 SOPT 66 R

OVCA 46* IIIB 3 N/A N/A S

OVCA 93 IIIC 3 SOPT 67 S

OVCA 123* III 3 OPT 59 R

OVCA 130* III 3 OPT 46 R

OVCA 161* IIC 3 SOPT 78 S

OVCA 162* III 3 SOPT 44 S

OVCA 180 IIC 3 OPT 88 S

OVCA 209* III 1 OPT 46 S

OVCA 237 III 3 SOPT 57 R

OVCA 239 III 3 OPT 63 S

OVCA 249* III 3 N/A 52 R

OVCA 261 IV 3 SOPT 50 R

OVCA 263 III 3 OPT 44 S

OVCA 304 III 1 SOPT 57 R

OVCA 329 III 3 SOPT 59 S

OVCA 354 III 2 SOPT 65 S

OVCA 363 III 3 SOPT 55 S

OVCA 365 III 3 SOPT 68 R

OVCA 371* III 3 N/A N/A S

OVCA 384 III 3 SOPT N/A S

OVCA 390 III 1 N/A 37 S

OVCA 498* IIIC 3 OPT 52 S

N/A: not available; NC: no change; OPT: optimally debulked; SOPT: sub-

optimally debulked.

*Extreme responders to chemotherapy.
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BioTechnologies, Palo Alto, CA). High-quality RNA was

obtained from 22 of 26 tumors. Standard optimized pro-

tocols and a full description of the cDNA arrays used in

this study can be found at the University Health Network

(UHN) Microarray Centre (http://www.microarrays.ca). Ten

micrograms of ovarian tumor total RNA or Human Univer-

sal Reference (HUR) RNA (Stratagene, La Jolla, CA) was

reverse-transcribed with Superscript II reverse transcriptase

(Invitrogen Canada) while incorporating Cy3-dCTP or Cy5-

dCTP (NEN, Boston, MA). The fluorescently labeled cDNA

were cohybridized overnight at 37jC to human 19K UHN

microarrays comprising 19,200 sequence-verified cDNA

fragments spotted in duplicate. Each of the 22 samples

was assayed with dye reversal microarray hybridizations

(to control for potential labeling differences) for a total of

44 hybridizations. Microarrays were scanned by a confocal

laser reader (ScanArray 4000; Packard BioScience, Meri-

den, CT) after stringent washes. Quantification was carried

out using GenePix Pro 3.0 (Axon Instruments). Low-quality

spots were filtered using GenePix Pro 3.0 and by visual

examination of the images. Paired dye reversal correlations

were examined by unsupervised cluster analysis. Samples

displaying correlation less than .65 were repeated (data

not shown).

Expression Microarray Data Analysis

Data warehousing, filtering, and normalization were per-

formed using the GeneTraffic software (version 2.7, Iobion;

Stratagene). Hybridizations were annotated according to

the Minimum Information About a Microarray Experiment

(MIAME) guidelines (http://www.mged.org/Workgroups/

MIAME/miame.html and Ref. [27]). The initial data set was

filtered to exclude spots flagged in the quantification pro-

cess, spots whose raw intensity was less than the local

background in either one of the two channels, spots that had

an intensity-to-background ratio of less than 2, and spots

whose raw intensity was less than 500. Locally Weighted

Scatter Plot Smoother (LOWESS) normalization by subarray

(for background, see http://www.stat.berkeley.edu/users/terry/

zarray/Html/normspie.html and GeneTraffic 2.7 Manual, Io-

bion; Stratagene) was used for normalization between the

arrays. Expression array data are available at http://www.

utoronto.ca/cancyto/OVCA2004NEO/.

Unsupervised two-dimensional hierarchical clustering

was carried out as described in Ref. [28], using Cluster 2.01

available at http://rana.lbl.gov/EisenSoftware.htm, on gene

expression values that were present in at least 80% of the

tumors (10,806 genes). Gene expression ratios were median-

centered across all samples and arrays before agglomerative

average linkage clustering using uncentered Pearson cor-

relation. All observations for a given item were weighted

equally. Clustering results were visualized using the Tree-

view software available at http://rana.lbl.gov/EisenSoftware.

htm. Significance analysis of microarrays (SAM) (Ref. [29]

and http://www-stat.stanford.edu/ftibs/PAM/) and predic-

tion analysis of microarrays (PAM) (Ref. [30] and http://

www-stat.stanford.edu/ftibs/PAM/) were performed using

the software available and published methods.

Validation by Real-Time Reverse Transcription Polymerase

Chain Reaction (RT-PCR)

Two micrograms of total RNA from six sensitive and four

resistant ovarian tumors classified as extreme responders

according to the patients’ CA 125 profiles was reverse-

transcribed in a 100-ml reaction mixture comprising 5.5 mM

MgC12, 500 mM of each dNTP, 2.5 mM random hexamers,

0.4 U/ml RNase inhibitor, and 3.125 U/ml MultiScribe Reverse

Transcriptase (Applied Biosystems, Foster City, CA) under

the following conditions: 25jC for 10 minutes, 48jC for

30 minutes, and 95jC for 5 minutes. Real-time relative

quantitative PCR was performed in triplicate using the ABI

PRISM 7900HT Sequence Detection system (Applied Bio-

systems) according to the manufacturer’s instructions. A

subset of genes was chosen for validation using commer-

cially available Assays-on-Demand probe primer sets with

provided master mix (Applied Biosystems). The following

PCR conditions were used: 50jC for 2 minutes, 95jC for

10 minutes, followed by 40 cycles of 95jC for 15 seconds

and 60jC for 1 minute. Human cyclophilin A was used as an

endogenous control because it resulted in minimum varia-

tion throughout the samples and has been previously used

to validate cancer microarray expression data by real-time

RT-PCR [31]. The initial copy numbers of RNA targets can

be quantified using real-time PCR analysis based on thresh-

old cycle (Ct) determinations. Ct is defined as the cycle at

which a statistically significant increase in fluorescence

(above background signal contributed by the fluorescence-

labeled oligonucleotides within the PCR reaction) is de-

tected. The threshold cycle is inversely proportional to the

log of the initial copy number. The Ct value of human cyclo-

philin A was subtracted from each Ct value of OVCA or HUR

sample for normalization and the ratio of OVCA tumor:HUR

RNA expression was calculated so that real-time RT-PCR

and microarray data could be compared.

Results

In this study, aCGH analysis improved the resolution of

such regions including 9q21.11-q33.1 and 11p15.1-pter, as

well as identified novel regions of loss at 15q11.2-q15.1 and

17q21.32-q21.33 that have not been reported in ovarian

cancer. When imbalance profiles of resistant tumors were

compared to sensitive tumors, 13 regions of the genome

were strongly associated with differentiating responses. Par-

allel expression analysis by cDNA microarrays revealed a

nuclear complex comprised of GAPD, HMGB2, HSC70,

GRP58, and HMGB1 whose RNA levels were lower in the

resistant tumors in comparison to the sensitive group.

Overall aCGH Analysis of 26 SEOC Tumors

The patterns of genomic imbalances of DNA overrepre-

sentation and underrepresentation at 2- to 4-Mb intervals in

26 SEOC tumors were identified by aCGH (Figure 2). All

imbalance data from individual aCGH profiles of each tumor

are published as supporting information at http://www.

utoronto.ca/cancyto/OVCA2004NEO/. Losses at 1p, 4q,

6q, 8p, 9q, 13q, 16q, 17p, and 18q were present. Gains at
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1q, 3q, 8q, 12p, and 20q were also detected, but no focal

high copy number gene amplification was evident within

this study group. To validate the imbalances detected at

13q14 by aCGH, interphase FISH analysis was performed

using a 13q14-specific probe (RB1 gene) (data not shown).

In 17 of 23 samples studied by interphase FISH, imbalances

were in agreement with aCGH. For three samples, alter-

ations in ploidy levels or cellular heterogeneity within tissue

sections were identified. The remaining three samples could

not be scored as a result of poor signal intensity.

DNA Copy Number Changes Associated with Differential

Treatment Response

The samples were divided into sensitive and resistant

groups, as described earlier, for a more detailed analysis of

the patterns of genomic imbalances associated with differ-

ential responses to chemotherapy (Figure 3). Based on the

number of BAC clones subject to imbalance, in comparison

to the total number of clones analyzed, a group analysis of

the overall percentage of the genome altered indicated that

the resistant group had an increased level of genomic

imbalance (8.3% gain, 2.4% loss) compared to the sensitive

group (4.4% gain, 1.1% loss) (data not shown). Moreover,

consistent with this elevated percentage of genomic change,

twice as many imbalances were identified in the resistant

group (55 losses/gains) compared to the sensitive group

(28 losses/gains). The Fisher exact test was used to com-

pare the resistant and sensitive groups in three categories

(gain, loss, and no change) to determine which contiguous

genomic regions were statistically concordant with differen-

tial treatment response (Table 2, Figure 3). Three particular

regions of imbalance are identified as 13q12.2-13q13,

1p36.33, and 17q11.2.

Microarray Expression Profiling

Unsupervised two-dimensional hierarchical clustering

(Figure W1) was performed using expression data derived

from 22 of 26 SEOC tumor cohorts classified as sensitive

or resistant based on their CA 125 patterns. The clustering

pattern observed did not clearly separate tumors based on

response to chemotherapy and, consistent with these find-

ings, supervised analysis using SAM only identified a limited

number of genes differentially expressed in this group com-

parison (data not shown). A subset of 10 tumor samples was

then selected from patients exhibiting the most extreme differ-

ences in CA 125 response. Unsupervised two-dimensional

hierarchical clustering (Figure 4) clearly stratified this subset

into a resistant and a sensitive group. A cluster of 1301 genes

(highlighted in yellow) largely overlapped with those of a

similar-sized gene cluster apparent in the hierarchical cluster-

ing performed on the complete sample cohort (highlighted in

yellow in Figure W1).

Figure 2. Summary of all aCGH findings using 26 SEOC samples. Overall gains and losses as determined by mean values for individual features are shown to the

right of each chromosome ideogram as green and red bars, respectively. In this analysis, closely linked BACs that consistently exhibited fluorescence intensities

that deviated by 2 SD or more were used to generate the average imbalance profile (traced in red).
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Identification of Differentially Expressed Genes Associated

with Treatment Response

The large discriminating gene cluster identified in Figure 4

contains a majority of the statistically significant expres-

sion changers identified by SAM analysis, and this large

cluster contains child nodes with a preponderance of genes

involved in: 1) nucleus/DNA binding; 2) nucleus/metal ion

binding; 3) cell cycle/cyclin–dependent protein kinase; 4)

Table 2. Fisher Exact Test: Differential Cytoband Regions Between Resistant and Sensitive Groups.

Cytoband Mb Size (Mb Range) P Range* Gene of Interest within

Cytoband (Cytoband)y
Relative Copy

Nb Change (R/S)z
Copy Nb-Resistant

Versus Normal§
Copy Nb-Sensitive

Versus Normal§

1p36.33 0.515 (1.164 – 1.679) 0.049 – 0.056 TP73 (1p36.3) U � NC

1p36.13 1.448 (19.705 – 18.257) 0.0009 – 0.04 U � NC

1q42-44 20.518 (222.771 – 243.289) 0.001 – 0.06 LGALS8 (1q43) O + NC

6p22.1-p21.2 11.491(28.342 – 39.833) 0.019 – 0.09 BAK1 (6p21.31) U NC +

7q32.1-q34 11.873 (126.656 – 138.529) 0.012 – 0.029 BRAF (7q34) U NC +

9q33.3-q34.3 13.285 (122.613 – 135.898) 0.006 – 0.09 O NC �
11p15.2 1.559 (14.206 – 15.765) 0.043 – 0.043 RRAS2 (11p15.2) O NC �
13q12.2-q13.1 5.22 (25.719 – 30.939) 0.004 – 0.0062 BRCA2 (13q12.3) O NC �
13q21.31 0.385 (61.538 – 61.923) 0.025 – 0.046 O NC �
17q11.2 1.421 (30.848 – 32.269) 0.017 – 0.059 NF1 (17q11.2) O NC �
17q24.2-q25.3 13.974 (64.589 – 78.563) 0.021 – 0.15 BIRC5 (17q25.3) O NC �
18q12.2 1.143 (31.407 – 32.550) 0.011 – 0.043 U � NC

21q21.2-q21.3 3.982 (23.885 – 27.867) 0.0085 – 0.080 U � NC

(+) Gain in copy number when compared to normal; (�) loss in copy number when compared to normal.

*Uncorrected P values from the Fisher exact test for the features representing the region.
yBAK1: BCL2-like 7 protein cell death inhibitor 1 apoptosis regulator BAK Bcl-2 homologous antagonist/killer; BIRC5: baculoviral IAP repeat-containing protein 5,

survivin; BRAF: v-raf murine sarcoma viral oncogene homolog B1; BRCA2: breast cancer 2, early onset; LGALS8: lectin, galactoside-binding, soluble, 8 (galectin 8);

NF1: neurofibromin 1 (neurofibromatosis, von Recklinghausen disease, and Watson disease); RRAS2: related RAS viral (r-ras) oncogene homolog 2; TP73: tumor

protein p73.
zU: underrepresented copies in resistant compared to the sensitive group; O: overrepresented copies in the resistant compared to the sensitive group.
§NC: no change in copy number when compared to normal.

Figure 3. Whole genome plot of the relative difference in normalized log2 average ratios between the 10 resistant and 16 sensitive samples. Positive (above

baseline) and negative (below baseline) deflections of the profile indicate the mean overrepresentation and underrepresentation of the region in resistant versus

sensitive samples, respectively. The vertical pale gray bars correspond to the contiguous array features differentially identified using the Fisher exact test (see

Table 2), with bars above the profile indicating overrepresentation and bars below indicating underrepresentation. Horizontal dark gray bars above (gain) and below

(loss) the profile highlight the features with fluorescence intensity ratios greater than threshold.
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microtubule/cytoskeleton; and 5) nucleus/actin cytoskel-

eton engineering.

Class comparison by statistical supervised analysis using

SAM identified 173 clones (corresponding to 123 unique iden-

tified genes), which were statistically differentially expressed

between the two classes with a fold change (FC) difference

of at least 2 and a false discovery rate (FDR) <1%. The com-

plete list of differentially expressed genes identified is avail-

able in supplementary materials (Table W1).

Microarray Prediction Analysis

We employed the ‘‘nearest shrunken centroid’’ method-

ology [30] that employs leave-one-out cross validation

(LOOCV) to identify the most relevant classifier genes ca-

pable of predicting chemotherapy resistance in SEOC pa-

tients. When applied to the present expression data set from

the 10 extreme cases, the PAM algorithm identified a set of

22 genes and ESTs that could predict with 100% accuracy

the class of the test sample during LOOCV on this patient

Figure 4. Analysis of the 10 extreme responders using unsupervised hierarchical clustering. (A) The relative expression patterns of genes that are color-coded in

red (up), green (down), black (no change), or grey (data missing) clearly stratifies the sensitive (S; pink) and resistant (R; blue) samples into two major nodes. A

major gene cluster that includes most genes identified by SAM analysis is highlighted with a vertical yellow bar. (B) A magnified view of subclusters that include

large numbers of genes belonging to functional categories of 1) nucleus/DNA binding; 2) nucleus/metal ion binding; 3) cell cycle/cyclin –dependent protein kinase;

4) microtubule/cytoskeleton; or 5) nucleus/actin cytoskeleton engineering. (C) Relative position and expression patterns of genes identified by PAM analysis.

Genes identified by PAM analysis are indicated by an asterisk (*). Genes identified only by SAM analysis are indicated by two asterisks (**).
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sample set. The complete list of these clones is presented

in Table 3.

Data Mining

The possible functional roles of 15 of 22 clones were

examined. Seven clones could not be further analyzed be-

cause ambiguity in their DNA sequence prevented their proper

annotation. By applying a data mining software (Pathway-

Assist, Iobion Informatics; Stratagene) to the list of 22 clones

identified by PAM, a nuclear complex comprised of two pre-

dictive genes identified by PAM (GAPD and HMGB2) and

three additional genes identified by SAM (HSC70, GRP58,

and HMGB1) was revealed. This nuclear complex was pre-

viously reported as being involved in resistance to DNA

conformation–altering chemotherapeutic drugs [32].

To validate the expression findings derived from micro-

array analysis, the levels of expression of GAPD, HMGB2,

HSC70, GRP58, and HMGB1 were measured by real-time

RT-PCR. The results obtained are shown in Figure W2 and

both real-time RT-PCR and microarray data agree in the

direction of expression (i.e., up or down). All five genes dis-

played lower expression levels in resistant samples than in

sensitive samples.

Correlation between Overall Pattern Gene Expression

and DNA Copy Number

The level of agreement between expression and copy

number changes was tested with the simple j coefficient

(Table W2). Overall comparison between expression level

and aCGH copy numbers, including the no changers, showed

91% agreement. If expressed genes identified as differen-

tial in the two groups were solely considered, 8.2% of the

genes agreed with copy number differences. When cor-

rected for chance agreement for the two methods by Cohen’s

j, a slight agreement between the two data sets (j^ =

0.0230; 0 < j^ < 1) was indicated but was not statistically

significant (j^* = 0.1316; j^* < 1.96).

Discussion

In keeping with classic cytogenetic studies and metaphase-

based CGH findings, the imbalance profiles identified in this

study are complex and characterized by low-level gains and

losses that affect all chromosomes except chromosome 10.

The consensus pattern of imbalance was, in general, con-

sistent with findings previously reported in ovarian cancer by

metaphase CGH (reviewed in Ref. [33] and available from

CGH databases: http://www.ncbi.nlm.nih.gov/; http://www.

progenetix.net; http://amba.charite.de/fksch/cghdatabase/

index.htm; and http://www.helsinki.fi/cmg/cgh_data.htm).

aCGH permitted identification of cytoband imbalances

(Table W3) within the larger genomic intervals identified in

published metaphase CGH studies [34,35] and allelic imbal-

ance findings [36,37]. For example, losses at distal 1p have

been consistently reported, but aCGH localizes the minimal

region of consistent loss to 1p36.11-pter in 18/26 tumors.

Similarly, the recurrent gain at 6p was localized to two inter-

vals at 6p21.1-p21.31 and 6p22.1-pter. Moreover, aCGH

identified small focal genomic imbalances not previously de-

tected by metaphase CGH, such as losses at 15q11.2-q15.1

Table 3. List of Genes Identified by PAM Analysis That Discriminate between Resistant and Sensitive Groups.

Clone ID or

Accession Number*

Fold Changey Name Symbol Cytoband

Upz

BM976649 2.01892 Sphingosine-1-phosphate lyase 1 SGPL1 10q21

Down§

162892 10.39 Highly similar to Ig lambda chain C regions N/A N/A

182721 6.24 Immunoglobulin lambda joining 3 IGLJ3 22q11.1-q11.2

135961 4.99 Solute carrier family 25 SLC25A5 Xq24-q26

5922013 4.84 Tubulin, beta polypeptide TUBB 6p25

300017 4.18 Apolipoprotein B APOB 2p24-p23

4876644 4.08 Tubulin, beta 5 TUBB5 19p13.3

261822 3.79 Homo sapiens, clone IMAGE: 5728597 N/A 22q11.23

AL536766 3.72 Tubulin, beta polypeptide paralog MGC8685 6p25

5806720 3.31 Glyceraldehyde-3-phosphate dehydrogenase GAPD 12p13

5740157 3.26 Tyrosine 3-monooxygenase/tryptophan

5-monooxygenase activation protein

YWHAQ 2p25.2-p25.1

5556148 3.23 Small nuclear ribonucleoprotein polypeptides B and B1 SNRPB 20p13

504180 2.75 H. sapiens, clone IMAGE: 5742072, mRNA N/A N/A

267145 2.74 High-mobility group box 2 HMGB2 4q31

471144 2.64 Electron transfer flavoprotein, beta polypeptide ETFB 19q13.3

270849 2.48 H. sapiens– transcribed sequences N/A N/A

AL558551 2.48 Glutathione peroxidase 4 (phospholipid hydroperoxidase) GPX4 19p13.3

5932330 2.2 SH3 domain binding glutamic acid-rich protein like 3 SH3BGRL3 1p35-p34.3

N/A: not available.

*Four of 22 PAM clones are not listed above because they were redundant or not sequence-verified.
yRelative fold change between the two classes (resistant/sensitive).
zList of genes whose transcript levels are greater in the resistant group compared to the sensitive group.
§List of genes whose transcript levels are lower in the resistant group compared to the sensitive group.
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and 17q21.32-q21.33. Imbalances such as gains at 1q11-

q25.3, 3q22.3-qter, 8q11-qter, and 20q12-qter have been

previously detected in a wide variety of epithelial tumors [33]

including ovarian cancer, but improved resolution has been

obtained in other areas including losses at 9q21.11-q33.1

and 11p15.1-pter.

Resistant tumors were found to have twice as much

genomic imbalance as sensitive tumors. These data suggest

that the resistant group of SEOC tumors would have a

greater capacity to adapt to the selective pressures of

chemotherapy by virtue of their elevated frequency of ge-

nomic rearrangement in comparison to the sensitive group.

The interval 13q12.2-13q13.1, which comprises f400 kb

of DNA, contains the BRCA2 gene (13q12.3), a tumor-

suppressor gene known to be mutated in a high percentage

of hereditary ovarian cancers [38]. This region was subject to

loss in 72% of the 16 sensitive tumors. It is possible that

acquired loss of BRCA2 and cognate cellular repair functions

could enhance susceptibility to chemotherapy. In this con-

text, Kudoh et al. [34] investigated ovarian tumors resistant

or sensitive to chemotherapy using metaphase CGH, and

found that the region 13q12-14 was more often gained in the

resistant ovarian cancer in comparison to sensitive tumors.

The f500-kb region, 1p36.33, was found to be under-

represented in resistant tumors relative to sensitive tumors

(Table 2). This small region of chromosome 1 contains the

TP73 gene, and it has recently been reported that dereg-

ulation and overexpression of specific p73 isoforms are asso-

ciated with reduced overall survival in ovarian cancer [39]. By

analogy with p53, it is plausible that genomic imbalance (loss

or gain) of 1p36.33 may alter the spectrum of TP73 isoforms

and influence treatment response. Similarly, the NF1 gene

situated in 17q11.2 has also been studied previously in ovar-

ian cancer cell lines [40]. The authors of this study reported

that overexpression and imbalance of type II and type I iso-

forms of NF1 were associated with differentiation arrest and,

potentially, treatment response. The observation of over-

representation of 17q11.2 in resistant tumors may implicate

a role for NF1 in chemotherapy resistance.

Unsupervised two-dimensional hierarchical clustering

(Figure 4) analyses of expression microarray data using a

subset of 10 tumor samples exhibiting the most extreme

differences in CA 125 response revealed a large cluster of

1301 genes (highlighted in yellow) that was particularly

important in the segregation of these two groups. Interest-

ingly, the genes in this cluster largely overlap with those of a

similar-sized gene cluster apparent in the hierarchical clus-

tering performed on the complete sample cohort (highlighted

in yellow in Figure W1). However, it is likely that, due to the

relative heterogeneity of the 22 samples, the influence of this

cluster was insufficient in completely stratifying the two groups.

Class comparison by SAM identified 173 clones, which in-

cluded 123 unique identified genes (Table W1). Importantly,

there was a significant difference (P < .05) in the proportion

of genes involved in DNA binding, regulation of transcrip-

tion, cell cycle and growth, and metal ion binding between

the 173 differentially expressed genes and the gene popula-

tion on the H19K microarray (data not shown). An in-depth

analysis of the 123 genes differentially expressed between

sensitive samples and resistant samples is beyond the

scope of this study. We have focused instead on the subset

of these genes that can predict chemotherapy response as

described below.

We employed the ‘‘nearest shrunken centroid’’ method-

ology [30] to identify the most relevant classifier genes

capable of predicting chemotherapy resistance in SEOC

patients. This approach was used by Tibshirani et al. [30]

on microarray data obtained by Khan et al. [41] on blue cell

tumors of childhood and by Golub et al. [42] on leukemia.

Tibshirani et al. demonstrated that this method was supe-

rior to both a neural network method and to the approach

taken by Golub et al. [42]. The complete methodology of

PAM is described in details in Ref. [30] and uses a LOOCV, a

strategy particularly useful when identifying classifiers genes

in smaller sample sizes [43]. When applied to the present

expression data set from the 10 extreme cases, the PAM

algorithm identified a set of 22 genes and ESTs that could

predict with 100% accuracy the class of the test sample

during LOOCV. The complete list of these clones is pre-

sented in Table 3.

Of the 22 clones identified by PAM analysis, possible

functional roles for 15 of the clones were examined (seven

had ambiguous DNA sequence, which prevented their

proper annotation). b-Tubulin subtypes accounted for 3 of

15 discriminating identified genes differentially expressed

between the sensitive and resistance groups. This is of

interest because taxanes are thought to function by stabiliz-

ing microtubules—a process that eventually leads to apop-

tosis. Previous studies have indicated that resistance to

taxanes may be a consequence of altering the relative

amount of the various subtypes of b-tubulin, thereby decreas-

ing the efficiency of microtubule stabilization by taxol (re-

viewed in Ref. [44]). In these studies, altered levels of the

different b-tubulin isotypes were observed as a conse-

quence of acquiring resistance to chemotherapy. Because

the SEOC tumors in the present study were naı̈ve to chemo-

therapy, the results presented here suggest that, before

chemotherapy, some patients may already express varying

levels of b-tubulin isotypes, which could result in differential

response to taxol.

With PathwayAssist, a software that identifies links be-

tween the user’s genes of interest based on mining Pub-

Med’s abstracts and public biologic databases, a nuclear

complex comprised of two predictive genes identified by

PAM (GAPD and HMGB2) and three additional genes

(HSC70, GRP58, and HMGB1) was revealed. This nuclear

complex was previously reported as being involved in re-

sistance to DNA conformation–altering chemotherapeutic

drugs [32]. In contrast, Sugimura et al. [45] reported in-

creased in vitro expression of HSC70 in a human ovarian

adenocarcinoma cell line rendered resistant to paclitaxel.

Concordant with our results, Vargas-Roig et al. [46] reported

decreased HSC70 levels in breast cancer patient tumors

resistant to DNA-targeting drugs. In addition, it was shown

that the potency of platinum-related drugs could be in-

creased by inducing HMGB1 transcription [47].
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Although HSC70, GRP58, and HMGB1 were not identi-

fied by PAM as predictive of drug resistance, HSC70 was

identified by SAM as significantly differentially expressed

between resistant and sensitive samples (Table W1).

GRP58 and HMGB1 were also found to be differentially ex-

pressed between the two groups, but with FCs of 1.7 and 1.3,

respectively, and with a slightly higher FDR (5–10%). The

present finding, that all five genes are significantly down-

regulated in patients resistant to chemotherapy, strongly

suggests their involvement in ovarian cancer resistance to

cisplatin-related drugs. Although overall comparison be-

tween expression level and aCGH copy numbers, including

the no changers, showed 91% agreement, when expressed

genes identified as differential in the two groups were solely

considered, 8.2% of the genes agreed with copy number

differences. This level of agreement was not statistically

significant (n^* = 0.1316; j^* < 1.96) by Cohen’s j method.

Because the general distribution of the clones on the H19K

arrays was not significantly different from the distribution of

genes in the genome (based on Build 34b, version 2), lack of

concordance cannot be due to poor representation of the

genome in the H19K clone set. Previous studies that exam-

ined concordance between expression changes and geno-

mic imbalance have been conflicting [23,48,49], eluding to

varying degrees of epigenetic regulation in different can-

cers. The class comparison presented in this report was

applied to a homogeneous group of advanced stage SEOC

tissues that were prospectively identified as resistant or sen-

sitive to chemotherapy. Although a subset within this study

group identified a set of genes predictive for extreme non-

responsiveness, this same subset did not provide any fur-

ther information at the DNA level. It is possible that partial

chemotherapy response may be determined based on copy

number differences at the DNA level. However, extreme

nonresponsiveness may be mediated by different processes

more dependent on RNA expression.

In conclusion, these data illustrate the value of molecular

profiling at both the RNA and DNA levels to identify small

genomic regions, and gene subsets that could be associated

with differential chemotherapy response in ovarian cancer.
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