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Abstract

The role of promoter methylation in the process of

cancer cell metastasis has not yet been studied. Re-

cently, methylation of the TPEF (transmembrane pro-

tein containing epidermal growth factor and follistatin

domain) gene was reported in human colon, gastric, and

bladder cancer cells. Using the Methylight assay, TPEF/

HPP1 gene methylation was assessed in primary colo-

rectal cancers (n = 47), matched normal colon mucosa,

as well as in the liver metastasis of 24 patients with

colorectal cancer, and compared to the methylation sta-

tus of the TIMP-3, APC, DAPK, caveolin-2, and p16

genes. TPEF was frequently methylated in primary co-

lorectal cancers (36 of 47) compared to the normal colon

mucosa (1 of 21) (P < .0001). Interestingly, promoter

methylation was significantly more frequent in proxi-

mal nonrectal cancers (P < .05). Furthermore, a high

degree of methylation of the TPEF gene was also ob-

served in liver metastasis (19 of 24). In summary, we

observed frequent TPEF methylation in primary colo-

rectal cancers and liver metastases, indicating that

epigenetic alterations are not only present in the early

phases of carcinogenesis, but are also common in meta-

static lesions. The high frequency of TPEF methylation

in this series of colorectal cancers underscores the im-

portance of epigenetic changes as targets for the devel-

opment of molecular tests for cancer diagnosis.
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Introduction

In the United States, the annual incidence of colorectal

cancer is approximately 150,000, with 56,600 individuals

dying from colorectal cancer each year [1,2]. The lifetime

risk of colorectal cancer in the general population is about

5% to 6%. Despite intensive efforts in recent years in the

screening and early detection of colon cancer, until today,

most cases have been diagnosed in an advanced stage with

regional or distant metastasis [3,4]. Although therapeutic

options include surgery and adjuvant or palliative chemo-

therapy, most patients die from progression of their cancer

within a few months. Identifying the molecular changes that

underlie the progression of colon cancer and the formation of

metastasis may help to develop new diagnostic and therapeu-

tic options that could improve the overall poor prognosis of

these patients [1–4].

The current model of colorectal cancer pathogenesis favors

a stepwise progression of adenomas, which includes the de-

velopment of dysplasia and, finally, signs of invasive cancer.

The molecular changes underlying this adenoma–carcinoma

sequence include genetic and epigenetic alterations of tumor-

suppressor genes (APC, p53, and DCC), activation of onco-

genes (K-ras), and inactivation of DNA mismatch repair

genes [1]. Recently, further molecular changes and genetic

defects have been revealed. Thus, activation of the Wnt sig-

nalling pathway not only includes mutations of the APC gene,

but may also result from b-catenin mutations [5]. Further-

more, alterations in the TGF-b signalling pathway, together

with its signal transducers SMAD4 and SMAD2, have been

linked to the development of colon cancer [6].

Apart from mutations, aberrant methylation of CpG islands

has been shown to lead to the transcriptional silencing of

certain genes that have been previously linked to the patho-

genesis of various cancers [7,8]. CpG islands are short se-

quences, which are rich in CpG dinucleotides and can usually

be found in the 5V region of approximately 50% of all human

genes. Methylation of cytosines in these islands leads to the

loss of gene expression and has been reported in the inactiva-

tion of the X chromosome and genomic imprinting [7,8].

Recently, several groups have also analyzed the methylation

of various genes in colorectal cancer and reported transcriptional
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silencing by promoter methylation for p16INK4, p14ARF,

p15INK4b, MGMT, hMLH1, GSTP1, DAPK, CDH1, TIMP-3,

and APC, among others [8–10]. In addition, Liang et al. [11]

reported the frequent methylation of the TPEF/HPP1 gene

in colorectal cancers. Recent studies confirmed that TPEF

methylation is a frequent event in other cancers as well,

such as gastric, bladder, and gallbladder cancers [11–14].

Thus, apart from mutational inactivation of certain genes,

the hypermethylation of several genes contributes signifi-

cantly to the pathogenesis of primary colorectal cancer.

However, the role of promoter methylation in the progres-

sion and formation of distant metastasis in colorectal cancer

is far less well known.

Materials and Methods

Subjects for Methylight Analysis

Colon tissues were obtained by surgical resection from

47 patients (29 males, 18 females) with colon cancer, with

a median age of 66 years (range: 31–93 years), from the

tumor and a tumor-free location, which was at least 2 cm

distant from the tumor and which was confirmed to be with-

out any tumor cell infiltration by histologic assessment. In

all 47 patients, tissue samples from the colon cancer were

obtained for molecular analysis; in 21 of these cases, a

matched noncancer colon sample was also obtained for

molecular analysis after tumor cell infiltration was ruled

out by histologic assessment. The metastatic lesions were

obtained from 24 patients (13 males, 11 females, median

age: 64.5 years, range: 41–79 years) with colorectal cancer,

who developed liver metastasis after prior successful colon

cancer resection. In one case, the primary colon cancer and

a single liver metastasis were resected at the same time

in a 74-year-old female patient. Immediately after surgery,

tissue samples were put in liquid nitrogen and stored at

�80jC until use. Formalin-fixed tissues were processed as

previously described and sections were stained with hema-

toxylin and eosin for histologic evaluation [15]. Tumor stages

were assessed using the WHO classification for tumors of

the digestive tract, and the study was approved by the Ethics

Committee of the University of Magdeburg.

Cell Lines and 5-Aza-2 V-Deoxycytidine Treatment

The metastatic colon cancer cell line, LoVo, and the pri-

mary colon cancer cell line, DLD-1, were obtained from the

American Type Culture Collection (ATCC; Manassas, VA),

and cultured in F-12K and RPMI 1640 media, respectively.

Incubation with 5-aza-2V-deoxycytidine was performed as

previously described [15]. Briefly, cells were seeded at a

density of 1 � 106 cells/60-mm dish. Twenty-four hours later,

they were incubated with 5-aza-2V-deoxycytidine (10�6 M)

for 24 hours (Sigma Chemical Co., Deisenhofen, Germany);

the medium was changed daily for 3 days. After 3 days, total

RNA was extracted for assessment of TPEF mRNA levels, as

outlined below. The same concentration of dimethyl sulfoxide

was also used as a control for nonspecific solvent effect on

cells as previously described [15].

Reverse Transcription Polymerase Chain Reaction

(RT-PCR) Analysis

TPEF mRNA levels were determined in the two colon

cancer cell lines after incubation with DMSO or 5-aza-2V-

deoxycytidine, and in nine colorectal cancer tissues of pa-

tients undergoing cancer surgery. Briefly, tissue specimens

were homogenized with an ultrasound homogenizer (Ultra-

Turrax T25; Janke and Kunkel, Köln, Germany) in the

presence of RNAzolB (CINNA/MRC, Cincinnati, OH) con-

taining RNase inhibitors. Total RNA extracted from cell lines

and frozen tissues by the acid/guanidinium and phenol/

chloroform extraction method was quantified by measur-

ing the optical density at 260 nm and was separated by

gel electrophoresis, as previously described [15]. Total

RNA (1 mg) was reverse-transcribed at 37jC for 1 hour

in a final volume of 20 ml of RT buffer (50 mM Tris–HCl,

pH 8.3, 50 mM KCl, 10 mM MgCl2, 0.5 mM spermidine, and

10 mM DTT) containing 4.8 U of AMV reverse transcrip-

tase (Promega, London, UK), 16 U of RNAase inhibitors,

200 pmol of random primers, and 1.0 mM dNTPs (Biomol

Feinchemikalien, Hamburg, Germany). The reaction was ter-

minated by incubating the mixture at 95jC for 10 minutes.

PCR amplification of the cDNA was performed as previously

described by Young et al. [12] using primers HPC and HPZ. A

306-bp fragment encoding a portion of the 5V-UTR and

coding sequence of TPEF was identified by gel electro-

phoresis and ethidium bromide staining. Loading was con-

trolled by coamplification of a fragment of b2 microglobulin,

as previously described [15].

DNA Extraction

Genomic DNA was extracted from the cell lines and tis-

sues using the proteinase K digestion method, as previ-

ously reported [15].

Methylight Analysis

Genomic DNA was analyzed by the Methylight tech-

nique after bisulfite conversion, as previously reported by

Eads et al. [16,17]. In this analysis, three oligonucleotides

are used in every reaction. Two locus-specific PCR primers

flank an oligonucleotide probe with a 5V fluorescent reporter

dye (6FAM) and a 3V quencher dye (BHQ-1). For this analy-

sis, primers and probes are specifically designed to bind to

bisulfite-converted DNA, which generally span 7 to 10 CpG

dinucleotides. The gene of interest is then amplified and nor-

malized to a reference set (b-actin (ACTB)) to normalize for

input DNA. The specificity of the reactions for methylated

DNA is confirmed using human sperm DNA (unmethylated)

and CpGenome Universal Methylated DNA (Chemicon

[subsidiary of Serologicals] catalog no. S7821; Chemicon,

Temecula, CA) (methylated). For standardization, the primers

and the probe for analysis of the ACTB gene lack CpG dinu-

cleotides so that amplification is possible regardless of meth-

ylation levels. TaqMan PCR reactions were performed in

parallel with primers specific for the bisulfite-converted meth-

ylated sequence for a particular locus and with the ACTB

reference primers. The ratio between the values was calcu-

lated in these two TaqMan analyses; using this approach,
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the degree of methylation at that locus was determined.

The extent of methylation at a specific locus was deter-

mined by the following formula: [(gene/actb)sample:(gene/

actb)SssI-treated genomic DNA] � 100. A cutoff value of 4% gave

the best discrimination between normal and cancerous sam-

ples, as previously reported [16,17]. Therefore, samples with

z4% fully methylated molecules were termed methylated,

whereas samples with <4% were considered unmethylated.

The primer and probe sequences are listed in Table 1 and

were used as previously reported by Eads et al. [16,17].

Statistical Analysis

The percentage of methylated reference (PMR) values

of the Methylight assays were dichotomized for statistical

purposes, as previously reported by Eads et al. [16,17].

PMR values above 4% were considered as methylation-

positive and classified as ‘‘1,’’ whereas PMR levels below 4%

were classified as ‘‘0’’ (no methylation). This dichotomization

should level off the quantitative impact of different levels of

hypermethylation per gene, and allow the cross-

gene comparison of methylation per gene in colon cancer

and metastasis. The different clinicopathologic features,

such as location of primary tumor, grade of differentiation,

or stage of cancer, were used as nominal variables in the

Fisher’s exact test or chi-square analysis. Otherwise, Stu-

dent’s t test was used to determine statistical difference.

All tests were two-sided, and P < .05 was considered sta-

tistically significant [15–17].

Results

Analysis of TPEF Gene Methylation in Primary and

Metastatic Colorectal Cancer

TPEF promoter methylation was analyzed in a set of

primary cancers, and matched normal colon mucosa as

well as the liver metastasis of 24 patients with colorectal

cancer. Using Methylight assays, we also assessed the

methylation status of five other genes in our series of pri-

mary and metastatic colon cancers. The cutoff of methyla-

tion was chosen to be a PMR of >4% (as previously reported

by Eads et al. [16,17]) and all samples with a PMR >4%

were classified as methylation-positive (‘‘1’’), whereas sam-

ples with a PMR below 4% were considered methylation-

negative (‘‘0’’). TPEF promoter methylation was observed in

36 of 47 primary cancers, whereas in the normal colon

mucosa, only 1 of 21 cases exhibited TPEF gene methyla-

tion (P < .001) (Figure 1A). Furthermore, 19 of 24 liver

metastases exhibited TPEF gene methylation (Figure 1B).

Next, we analyzed our tissues for gene methylation using a

set of genes that had been previously reported by other

groups to be associated with either colon cancer pathogen-

esis or development of cancer metastasis: p16/INK4A, APC,

caveolin-2, DAPK, and TIMP3. The results of the methyla-

tion analysis of the other genes in primary and colon cancers

are given in Table 2. In addition, the numbers were added,

giving the total numbers of methylated genes per sample.

Table 1. List of Primers and Probes Used for Methylight Analysis [15,16].

Gene Forward Primer (5V–3V) Reverse Primer (5V–3V) Probe Sequence (5V–3V)

caveolin-2 TTTCGGATGGGAACGGTGTA CTCCCACCGCCGTTACC 6FAM-CCCGTCCTAACCGTCCGCCCT-BHQ1

DAPK TCGTCGTCGTTTCGGTTAGTT CCCTCCGAAACGCTATCGA 6FAM-CGACCATAAACGCCAACGCCG-BHQ1

TPEF TTTTTTTTTCGGACGTCGTTG CCTCTACATACGCCGCGAAT 6FAM-AATTACCGAAAACATCGACCGA-BHQ1

p16 TGGAATTTTCGGTTGATTGGTT AACAACGTCCGCACCTCCT 6FAM-ACCCGACCCCGAACCGCG-BHQ1

APC GAACCAAAACGCTCCCCAT TTATATGTCGGTTACGTGCGTTTATAT 6FAM-CCCGTCGAAAACCCGCCGATTA-BHQ1

TIMP3 GCGTCGGAGGTTAAGGTTGTT CTCTCCAAAATTACCGTACGCG 6FAM-AACTCGCTCGCCCGCCGAA-BHQ1

Figure 1. (A) TPEF gene methylation in the normal colon mucosa and

matched colon cancers. (B) TPEF gene methylation in primary colon cancer

and colon cancer metastasis.
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Using this approach, we observed at least one methylated

gene in 39 of 47 primary cancers (Figure 2A). In contrast,

only 1 of 21 normal colon mucosa samples exhibited TPEF

gene methylation, whereas no other gene was found to be

methylated in the normal colon mucosa. In the metastatic

lesions all but one of the 24 cases exhibited at least one of

these methylated genes: TPEF, TIMP3, or APC (Figure 2B).

Association of Gene Methylation in Colon Cancer with

Clinicopathologic Features of Colon Cancer

To assess a potential association of the presence of

methylation with the location of the primary tumor, we clas-

sified our colorectal cancers into two groups: rectal cancers

(n = 10) and nonrectal cancers (n = 36). Using Fisher’s

exact test, we found that there was a statistically significant

difference in the presence of methylation with regard to the

location of the primary tumor. Although rectal cancers ex-

hibited no methylation at all in five cases and methylation

of at least one gene in five cases, the vast majority of colon

cancers (34 of 36) exhibited methylation in at least one gene

(P < .001). Thus, from this analysis, we can assume that

methylation is significantly more frequent in proximal parts

(i.e., nonrectal cancers of the large intestines; Figure 3A).

We analyzed not only the association between the loca-

tion of the primary and the overall presence of gene meth-

ylation per patient, but also analyzed each single gene with

regard to the association of location and gene methylation.

Interestingly, TPEF promoter methylation was—as opposed

to all other genes analyzed—linked to the location of the

primary tumor in the colon and was, thus, more frequently

methylated in colon cancers (31 of 36) compared to rectal

cancers (5 of 10) (P = .023) (Figure 3B).

Next, we analyzed the frequency of TPEF methylation

in our series of colorectal cancers with regard to clinical pa-

rameters of tumor progression and differentiation. However,

the presence of TPEF methylation in our series of colorectal

cancers was independent of the T-stage and the presence of

lymph node metastasis and/or distant metastasis. Further-

more, no association between TPEF methylation and overall

tumor stage (UICC) and/or grade of differentiation was found.

In addition, TPEF methylation was independent of age and

gender of the cancer patients.

TPEF mRNA Levels and Gene Methylation in

Colorectal Cancer

Next, we determined the expression of TPEF in colon

cancer cell lines and colon cancer tissues. Both colon

cancer cell lines, LoVo and DLD-1, did not exhibit TPEF

expression (Figure 4A). Methylight analysis of the TPEF

gene revealed a high degree of methylation in both cancer

cell lines (Figure 4B). Accordingly, incubation of the two

cancer cell lines with the methylation inhibitor, 5-aza-2V-

deoxycytidine, led to the restoration of TPEF mRNA levels

in both cell lines (Figure 4A). In addition, we also determined

the levels of TPEF mRNA in a subset of primary colorectal

cancers. Using total RNA and RT-PCR analysis, we identi-

fied various levels of TPEF mRNA in these cancer tissues

(Figure 4C). Interestingly, Methylight analysis revealed

a high frequency of gene methylation in this subset of

cancers (Figure 4D). However, we observed no clear corre-

lation of TPEF gene methylation with loss of expression in

the majority of these cancer cases. Apart from cancer cells,

the tissue specimens that were analyzed by RT-PCR analy-

sis were also composed of other noncancer cells, including

endothelial cells, fibroblasts, epithelial cells, and others.

Therefore, other cells that may have expressed TPEF may

have contributed to the overall level of TPEF mRNA in these

cases. Nonetheless, one case (number 9) with a low level

Table 2. Summary of Results from the Analysis of Gene Methylation in

Primary Cancer and Metastasis.

Gene Normal (n = 21) Tumor (n = 47) Metastasis (n = 24) Class

TPEF 1/21 36/47* 19/24 I

p16 0/21 15/47y 6/24 I

APC 0/21 10/47y 10/24z II

TIMP3 1/21 11/47 2/24 III

DAPK 0/21 1/47 0/24 III

caveolin-2 0/21 5/47 1/24 III

Class refers to the classification of gene methylation in liver metastasis, as

outlined in the text.

*Normal versus tumor: P < .0001.
yNormal versus tumor: P < .002.
zTumor versus metastasis: P = .045.

Figure 2. Number of methylated genes per patient with primary colorectal

cancer (A) and in metastasis (B).
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of TPEF methylation exhibited a strong degree of TPEF

mRNA expression (Figure 4, C and D).

Discussion

Using methylation-sensitive arbitrarily primed PCR (MS-

APPCR), a hypermethylated DNA fragment was isolated,

which was later found to be part of a gene encoding a

transmembrane protein containing EGF and follistatin do-

mains, thus, termed TPEF [11,12]. The gene maps to chro-

mosome 2q33, which is frequently identified as a region of

loss of heterozygosity (LOH) in various cancers, such as

esophageal cancer, colon, prostate, and breast cancers.

Further analysis revealed that TPEF, which is also known

as HPP1, is expressed in the normal colon mucosa; how-

ever, in colon cancers, the expression is frequently lost.

Interestingly, the loss of TPEF/HPP1 expression in colon

cancer is associated with hypermethylation of the 5V region

of the gene [12,18]. Further analysis revealed that TPEF

is frequently hypermethylated in various other cancer cell

lines and in primary bladder, gallbladder, and gastric can-

cers [11–14,18]. The exact function of TPEF is currently

unknown; however, from structural analysis, it has been

suggested that TPEF may function as an inhibitor of growth

factors [11]. The more detailed analysis of TPEF gene

methylation in colon cancer and its precursor lesions re-

vealed that promoter methylation, and thus its transcriptional

silencing, are present in hyperplastic and adenomatous

polyps, as well as in dysplasia of the colon mucosa asso-

ciated with ulcerative colitis, which indicates that TPEF

gene methylation is an early epigenetic alteration in colo-

rectal carcinogenesis [12,18].

Despite recent progress in the understanding of the

pathogenesis of adenomas and carcinomas of the colon

and their genetic and molecular changes, the genetic and

epigenetic changes underlying the development of metas-

tasis are less well understood. It is, however, generally

well accepted that the process of invasion and proteolysis

of the extracellular matrix, as well as infiltration of the

vascular basement membrane, involve adhesive proteins,

such as members of the family of integrin receptors, the

cadherins, the immunoglobulin superfamily, the laminin-

binding protein, and the CD44 receptor [19]. More recently,

other groups have compared the genetic and molecular

changes in metastatic lesions to the changes found in pri-

mary colorectal cancers. Thus, Kleeff et al. [20] reported the

loss of DOC-2, a candidate tumor-suppressor gene, both in

primary and metastatic colorectal cancers. Furthermore,

Zauber et al. reported that, in their series of 42 colorectal

cancers, Ki-ras mutations in the primary cancers were iden-

tical in all of the 42 paired primary and synchronous meta-

static lesions. Similarly, LOH at the APC locus was identical

for 39 paired carcinomas and synchronous metastases [21].

However, other groups have found genetic and molecular

changes in metastatic colon cancers, which are not present

in the primary cancers. Thus, the development of LOH of

chromosome 3p in colorectal metastasis has been reported

[22]. In addition, using comparative genomic hybridization,

several alterations that were unique to metastastic lesions

(�9q, �11q, and �17q) were found in liver metastases [23].

Furthermore, Saha et al. [24] reported the overexpression

of the PRL-3 tyrosine phosphatase in the metastasis of

colorectal cancers using global expression profiling by

SAGE technology.

To our knowledge, our study is the first to also address the

presence of gene methylation in metastatic colorectal cancers

using a panel of six genes—including TPEF—that have

previously been linked either to colon cancer pathogenesis

Figure 3. Analysis of methylation with regard to clinicopathologic features of colorectal cancers. (A) In cancers of the colon including the sigmoid, methylation was

significantly more frequent than in cancers of the rectum only. y-axis: number of patients; x-axis: number of methylated genes. (B) TPEFmethylation was significantly

more frequent in cancers of the colon including the sigmoid. Number of patients analyzed: colon cancer (without sigmoid colon): n = 23, sigmoid cancer: n = 13, rectal

cancer: n = 10. One patient with recurrent cancer was not included in this analysis. y-axis: number of patients; x-axis: number of methylated genes.
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or metastatic development: TPEF/HPP1, p16/INK4A, APC,

caveolin-2, DAPK, and TIMP3 [9,11,25–28]. Gene methyla-

tion was analyzed by the highly sensitive Methylight assay

and, using this assay, we found several genes to be meth-

ylated in both metastatic lesions and primary cancers, as well

as genes that were neither methylated in metastasis nor in

primary colorectal cancers. Although TPEF exhibited a high

frequency of methylation in primary colon cancer [11,12], p16

and APC were less frequently methylated and no relevant

methylation was observed for caveolin-2, DAPK, and TIMP3.

Of the 47 analyzed primary colon cancers, 39 exhibited

methylation of at least one of these three genes: TPEF,

APC, or p16. Although TPEF gene methylation was also very

frequent in metastatic lesions of colorectal cancer patients,

APC gene methylation increased in metastatic lesions com-

pared to primary cancers. Based on these findings, we can

classify the patterns of methylation in liver metastasis in

three groups: class I genes—high degree of methylation in

primary tumor and liver metastasis (TPEF and p16); class II

genes—higher degree of methylation in metastasis com-

pared to primary tumor (APC); and class genes III—low

degree of, or even no, methylation in either primary tumor or

metastasis (caveolin-2, DAPK, and TIMP3). Interestingly, all

but two of the 24 metastases exhibited methylation of either

the TPEF or APC gene, indicating that these two genes may

be valuable for the methylation-specific detection of liver

metastasis in colon cancer.

When cancers were grouped according to the location of

the primary cancer, overall gene methylation was more

frequently present in nonrectal cancers compared to cancers

of the rectum—an observation that has been reported by

other groups as well [29]. Furthermore, TPEF gene methyl-

ation was significantly more frequent in cancers of the colon

compared to cancers of the rectum, supporting previous

studies reporting a high degree of methylation in proximal

colon cancers.

Recent studies by Liang et al. [11], Young et al. [12], and

Sato et al. [18] indicate that TPEF gene methylation is

associated with reduction or loss of TPEF expression in

colon cancers. In our study, both colon cancer cell lines—

one from a primary colon cancer (DLD-1) and a further me-

tastastic cancer cell line (LoVo)—did not exhibit TPEF

Figure 4. (A) TPEF mRNA levels in two colon cancer cell lines (LoVo and DLD-1) after incubation with DMSO or the methylation inhibitor, 5-aza-2 V-deoxycytidine

(AZA). Treatment with 5-aza-2 V-deoxycytidine restored TPEF mRNA levels in both cell lines. (�) Negative control; L, DNA ladder. �2 Microglobulin levels were

determined to allow comparison of TPEF mRNA levels (B2M). (B.) Methylight analysis revealed high levels of TPEF gene methylation in both cancer cell lines. (C)

RT-PCR analysis of TPEF expression in nine human colorectal cancers revealed varying levels of TPEF mRNA. L: DNA ladder. �2 Microglobulin levels were

determined to allow comparison of TPEF mRNA levels (B2M). (D) Methylight analysis revealed a high degree of TPEF gene methylation in the majority of colorectal

cancers. PMR, percentage of methylated reference; numbers correspond to the cases in panel C.
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expression by RT-PCR analysis; however, after treatment

with the methylation inhibitor 5-aza-2V-deoxycytidine, ex-

pression was restored. In the colon cancer tissues, we ob-

served varying degrees of TPEF expression, despite the fact

that TPEF gene methylation was present in the vast majority

of cases. Although some cases exhibited a close correla-

tion of TPEF gene methylation and loss of expression, the

lack of association in the tissues as opposed to the cancer

cell lines may result from the source of tissues used for RT-

PCR analysis. Thus, apart from cancer cells, these tissue

specimens were composed of noncancerous epithelial cells,

endothelial cells, smooth muscle cells, and fibroblasts,

among others. Because previous studies by Young et al.

[12] have shown that these cells may express TPEF at

various levels, they may have contributed to the overall

TPEF mRNA levels that were measured by RT-PCR analy-

sis, despite the fact that TPEF methylation was present in

the cancer cells in these tissue specimens.

Interestingly, only one of the matched normal colon

mucosa tissue samples exhibited TPEF gene methylation,

indicating that the methylation of the TPEF promoter is an

epigenetic alteration, which is specific for the transforma-

tion of the epithelial cells of the colon and which may be,

therefore, considered a valuable marker for the early detec-

tion of neoplastic or preneoplastic lesions of the colon. This

observation confirms previous reports by Sabbioni et al. [30]

who demonstrated TPEF gene methylation in the tissue and

serum of patients with colorectal cancer. The biologic sig-

nificance of TPEF methylation in the normal mucosa, how-

ever, remains unclear. Although we found no significant

methylation of TPEF in the normal mucosa in all but one

case, Young et al. [12] reported low levels of TPEF methyl-

ation in the normal colonic mucosa in a large set of patients.

However, a higher degree of methylation was observed only

in a few individuals [12]. These divergent results may result

from methodological differences because in the study by

Young et al., the COBRA assay was used to screen larger

tissue series, whereas we and other groups used either

methylation-specific PCR or the Methylight assay. Further-

more, the biologic significance of low levels of methylation

with regard to the effect on gene expression is still under

discussion. Nonetheless, a subgroup of patients presented

with TPEF methylation in the colon mucosa independent

of age, sex, or site of colon. The biologic role of TPEF

methylation in the normal mucosa is, however, still under

investigation, especially because the function of TPEF is not

fully understood either. TPEF/HPP1 may present both as

a transmembranous or soluble molecule, with an EGF mod-

ule and two follistatin modules in the extracellular domain.

Furthermore, it contains a potential G protein–activating

motif in the cytoplasmic domain. Thus, TPEF may function

both as growth factor and/or receptor, and recent studies

indicate that tyrosine phosphorylation of erbB4 in gastric

cancer cells may be induced by TPEF [31]. Furthermore,

TPEF may also prolong the survival of neural cells [32].

Together, these data indicate that TPEF may have an

important role in proliferation, differentiation, and apop-

tosis. The biologic role of TPEF methylation in the normal

mucosa may indicate either the presence of a field effect

of the colonic mucosa in colon cancers because these

samples were obtained from the tumor-free region of colon

cancers, or an age-dependent effect that may imply an age-

dependent loss of TPEF-mediated differentiation, which

could contribute to colon cancer pathogenesis. Finally, be-

cause TPEF is expressed in pericryptal myofibroblasts in

the colon mucosa, loss of TPEF expression in cancers or

the tumor-free area next to the cancers may also result

from the disappearance of these fibroblasts in the course

of cancer pathogenesis [12].

In summary, our analysis revealed that TPEF gene meth-

ylation is a frequent event in colorectal cancer pathogenesis;

it is present in the majority of colorectal cancer metastasis;

and TPEF gene methylation is associated with gene silenc-

ing in colon cancer cell lines. Therefore, this epigenetic

alteration may contribute both to the pathogenesis of colo-

rectal cancer and the progression and formation of metasta-

sis in colorectal cancer. Together with a further set of genes,

TPEF methylation may allow the identification of primary and

metastatic colorectal cancers indicating that methylation-

based diagnostic tests may be helpful in the identification of

this and other malignancies and, thus, may improve the de-

tection and overall prognosis of patients with these cancers.
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