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Abstract

Noninvasive radiologic imaging has recently gained

considerable interest in basic and preclinical research

for monitoring disease progression and therapeutic ef-

ficacy. In this report, we introduce flat-panel volumet-

ric computed tomography (fpVCT) as a powerful new

tool for noninvasive imaging of different organ systems

in preclinical research. The three-dimensional visuali-

zation that is achieved by isotropic high-resolution

datasets is illustrated for the skeleton, chest, abdomi-

nal organs, and brain of mice. The high image quality of

chest scans enables the visualization of small lung nod-

ules in an orthotopic lung cancer model and the reliable

imaging of therapy side effects such as lung fibrosis.

Using contrast-enhanced scans, fpVCT displayed the

vascular trees of the brain, liver, and kidney down to the

subsegmental level. Functional application of fpVCT in

dynamic contrast-enhanced scans of the rat brain de-

livered physiologically reliable data of perfusion and tis-

sue blood volume. Beyond scanning of small animal

models as demonstrated here, fpVCT provides the abil-

ity to image animals up to the size of primates.
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Introduction

To simulate disease progression and develop new thera-

pies, it is desirable to scale clinical imaging modalities to

small animals. Ideally, small animal imaging modalities

would be minimally invasive, deliver anatomic accuracy

nearly at the histologic level, and enable the use of surrogate

markers such as contrast enhancement, tissue density, or

perfusion [1–3]. Prior to the development of high-resolution

small animal modalities, studying cancer and other diseases

using animal models was limited to ex vivo investigations.

Longitudinal examinations had to be carried out by using

biopsies, or by sacrificing animals at different tumor stages;

a large number of animals are therefore required for statisti-

cally significant results. A great emphasis has been placed on

adapting clinical imaging systems such as magnetic resonance

imaging (MRI) [3], ultrasound [4], computed tomography (CT)

[5], and nuclear medicine imaging devices [6,7]. Recently, a

number of instrumentation advances in these modalities ren-

der them powerful enough to monitor small animals [8], open-

ing new opportunities in high-resolution imaging [9–11].

A new approach, flat-panel volumetric computed tomog-

raphy (fpVCT), permits the acquisition of a large volume of—

rather than limited—slices per rotation, with intrinsically higher

resolution than is achievable with conventional CT [12]. The

system under investigation provides isotropic voxels at high

resolution, which facilitates three-dimensional (3D) visualiza-

tion of the imaged anatomy, and slices reformatted at arbi-

trary orientations with consistently high resolution.

Beyond these characteristics, the system offers a large

field of view (maximum, 33 cm) and shorter scanning times

(2–8 seconds per rotation) than microcomputed tomography

(mCT) system, which is desirable for animal imaging. Thus,

functional investigations like tissue perfusion are enabled,

in combination with high resolution and a large z-coverage

of fpVCT.

To demonstrate potential applications of fpVCT tech-

nology, in this report, we present images of mouse anatomy

and pathology obtained from an experimental fpVCT system.

Also, images of the same mouse, obtained from both a clini-

cal 16-slice multislice computed tomography (MSCT) at the

highest resolution and the fpVCT, are compared to each
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other and to the corresponding human anatomy. Finally,

quantitative analysis of brain perfusion is demonstrated

in the rat.

Methods

Animals and Pathologies

All experiments were approved by the governmental

review committee on animal care.

The animal models used and associated scan protocols

are summarized in Table 1.

Five adult nude mice were scanned by fpVCT to study

their anatomy. Inhalation anesthesia was induced and main-

tained with a mixture of isoflurane (1.5%), N2O (35%), and

O2 (60%) in freely breathing animals. Catheterization of

the tail vein was performed as described earlier [13] with a

30-gauge needle and an attached catheter. Scans were

performed both with and without contrast agent. When used,

contrast medium (0.2 ml of Iomeprol 400, 400 mg/ml iodine;

Bracco-Byk Gulden, Konstanz, Germany) was manually in-

jected starting 20 seconds before the scan, with 20 seconds

of injection time.

Five C57BL/6N mice with pulmonary nodules of Lewis

lung carcinoma (LLC) were examined as an example of a

systemic neoplasm [14]. The animals were inoculated with

LLC (LLC1; ATCC, Manassas, VA) through intratracheal

injection of 106 cells. The cells were routinely cultured in

tissue culture flasks containing RPMI 1640 medium (PAN

biotech GmbH, Aidenbach, Germany) supplemented with

2% fetal bovine serum (FBS; Greiner bio one, Nuertingen,

Germany), penicillin (100 U/ml), and streptomycin (0.1 mg/ml;

Gibco, Eggenstein, Germany), maintained at 37jC in a

humidified atmosphere containing 5% CO2 in air.

As an example of a structural disorder, five mice with

lung fibrosis induced by bleomycin were investigated [15].

Following anesthesia and orotracheal intubation, C57BL/6N

mice received 5 U/kg bodyweight bleomycin (Almirall Pro-

desfarma, Barcelona, Spain) in a total volume of 200 ml

using a microsprayer device (PennCentury, Inc., Philadel-

phia, PA) [16].

For scanning, the animals with both pulmonary diseases

were anesthetized with an intraperitoneal injection of 0.3 ml

of a solution containing 0.1 ml Rompun 2% (Bayer, Lever-

kusen, Germany), 0.1 ml of 100 mg/ml Ketavet (Pharmacia

GmbH, Erlangen, Germany), and 0.2 ml of NaCl. No intuba-

tion was performed and no contrast agent was used for

scanning either lung model.

As an example of fpVCT ex vivo imaging capabilities, a

cast of a heart and lung generated by vascular filling with

Microfil (Flow Tech, Inc., Carver, MA) was demonstrated.

Brain perfusion was studied in untreated Sprague-

Dawley rats. One milliliter of Iopromid 300 (Ultravist 300;

Schering, AG, Berlin, Germany) was injected into the tail

vein in 2 seconds. Injection was started 2 seconds after

the initialization of the first rotation. Scan interval was

2 seconds and 16 repetitions were performed. The animals

were scanned while freely breathing after intraperitoneal

anesthesia with Rompun/Ketavet. The head was kept firm

in a head holder to avoid motion artifacts.

fpVCT

The flat-panel volumetric computed tomograph used in

this study was developed and constructed by General Elec-

tric Global Research (Niskayuna, NY). A standard rotat-

ing anode X-ray tube with a focal spot size of 0.7 mm (W) �
0.6 mm (L) nominal focal spot value (IEC 336/93) is mounted

on a standard gantry. The collimated X-ray beam irradiates

two amorphous silicon flat-panel detectors. Each detector is

composed of (1024 � 1024) 200-mm square pixels and a

deposited CsI scintillator. The detectors are angled slightly

toward each other on the gantry rotor. The system can be

run either in ‘‘single-panel’’ or ‘‘dual-panel’’ mode, providing

a maximum scanning field-of-view of 13.5 cm in a single-

panel mode vs 32 cm in a dual-panel mode. As our subjects

had a maximum diameter of 3 cm, the acquisitions were

done using a single flat-panel detector. A source-to-detector

distance of 783 mm and a source-to-isocenter distance

Table 1. A Detailed Overview of the Studies and Models Described, along with the fpVCT Protocol Used for Each Model.

Animal Model Strain Number of

Animals

Intravenous Contrast

Medium

Anesthesia Scanning Parameters Reconstruction Kernel

Mouse anatomy

(no pathology)

Nude mice 5 Scanned both with no

contrast agent, and with

0.2 ml of Iomeprol 400

Inhalative Soft tissue: 70 kV/200 mA,

8 seconds per rotation,

after contrast medium

injection

Standard for soft tissue

and angiography

Bone/lung: 120 kV/40 mA,

8 seconds per rotation,

two rotations

Edge defining for the lung

and bone protocol

LLC C57BL/6N 5 None Intraperitoneal 120 kV/40 mA,

8 seconds per rotation,

one rotation

Edge defining

Lung fibrosis C57BL/6N 5 None Intraperitoneal 120 kV/40 mA,

8 seconds per rotation,

one rotation

Edge defining

Perfusion

(no pathology)

Sprague-Dawley 4 1 ml of Iopromid 300 Intraperitoneal 70 kVp/100 mA,

2 seconds per rotation,

a total of 16 rotations

Standard
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of 540 mm result in a geometric magnification factor of

1.45 at the isocenter. The subject to be imaged is placed

on a patient table that is stationary during the acquisition,

whereas the X-ray tube and detector rotate around the ob-

ject. For a large z-coverage investigation in multiple steps,

the patient table translates further into the gantry bore for

each step. A maximum z-coverage of 4.2 cm per step can

be obtained at rotation times between 2 and 8 seconds. To

obtain both optimal image quality and maximum z-coverage,

the longest rotation time is required. Therefore, in our inves-

tigations, we chose the 8-second rotation time, which per-

mits 1000 views and 4.2 cm of z-coverage per rotation.

Data can be acquired at X-ray energies in the range

of 70 to 140 kVp. Based on recent investigations [13], the

X-ray source was operated at 70 kVp with an anode current

of 200 mA and 8 seconds of rotation time for soft tissue

and angiographic imaging. Lung investigations were per-

formed with 120 kVp and 40 mA, again with 8 seconds per

rotation. For whole-mouse imaging, two rotations were re-

quired, with a total coverage of 8.4 cm, resulting in a total

acquisition time of 16 seconds. Spatial resolution of the

system was measured to be 20 to 25 lp/cm (dependent on

the reconstruction filter used) at 10% MTF using a 25-mm

tungsten wire in air. Raw images were reconstructed using

a cone beam algorithm with both standard and edge defin-

ing reconstruction filters. The voxel size used was 0.05 mm

in each spatial dimension; the reconstruction matrix was

512 � 512 for the lungs and 1024 � 1024 for whole-animal

imaging. Typically, a dataset of 1500 images resulted from

the reconstruction of the whole mouse, or 300 images for

the thorax. All data were transferred to an Advantage Work-

station 4.1 (General Electric Medical Systems Europe, Buc,

France) and processed with its 3D reconstruction tool (Vol-

ume Viewer, Voxtool 3.0.58c, Buc, France) or the perfusion

software (CT Perfusion Functool 2.6.0, Buc, France).

For mouse anatomy studies, the animals were anesthe-

tized, catheterized, and centered on the fpVCT gantry axis of

rotation. Baseline and contrast-enhanced fpVCT scans in

nude mice were performed using identical scan parameters.

Values of 70 kVp and 100 mA were used for perfusion

studies. The shortest possible rotation time in our system,

2 seconds, was used for 16 rotations, for a total scanning

time of 32 seconds. Investigation of the entire head was

enabled with a z-coverage per rotation of 4.2 cm. Therefore,

slices of any part of the brain could be reconstructed for

perfusion analysis. This analysis is based on a deconvolu-

tion algorithm to determine the cerebral blood flow (ml/100 g

per minute), blood volume (ml/100 g), and mean transit time

(seconds) as described by Eastwood et al. [17]. Color-coded

perfusion maps were produced to visualize the perfusion

values, and measurements in specified cerebral regions of

interest (frontal and parietal cortices and basal ganglia) were

performed in a consensus procedure by three observers

(S.G., F.K., and H.T.).

X-ray Dose Measurements in fpVCT

Dose measurements were performed using a 10-cm-long,

10-ml, CTDI-type ion chamber, placed along the axis of

rotation, at the isocenter. CTDIAir is reported as an indica-

tion of ‘‘skin dose.’’ To estimate the ‘‘whole-body dose’’ of a

mouse, 3-cm-diameter acrylic cylinders with various wall

thicknesses were placed over the ion chamber (Table 2).

The acrylic cylinders covered the entire ion chamber. The

exposed length, determined by X-ray source collimation, was

5.5 cm. The data show no significant difference between

these measurements and CTDIAir. Therefore, with the spec-

tra used, the whole-body exposure of a mouse can be es-

timated by the exposure in air: 137 mGy at 70 kVp/1600 mA s

and 96 mGy at 120 kVp/320 mA s (Table 3). For the per

fusion exam, a 70-kVp/3200 mA s technique was used, so

the dose was 274 mGy.

For reference purposes, although not relevant to mouse

scans, in the center of a 16-cm-diameter acrylic CTDI head

phantom, CTDI100 was measured to be 73.3 mGy (70 kVp/

1600 mA s) and 64.7 mGy (120 kVp/320 mA s) (Table 4).

MSCT

A 16-slice CT system (Aquilion 16; Toshiba, Neuss,

Germany) was used for exemplary comparison between

MSCT and fpVCT imaging capability. To match the MSCT

and fpVCT scan parameters as closely as possible, an axial

imaging mode with a minimal slice thickness of 0.5 mm was

chosen, the rotation time was set to 1500 milliseconds per

rotation, and the field-of-view was reduced to a minimum of

18 cm. The lowest possible voltage of 80 kVp was used with

a tube current of 200 mA. Contrast medium application was

the same as with fpVCT examinations.

Table 2. Dose Measurements Using a 10-cm Ionization Chamber in 3-cm-

Outside-Diameter Acrylic Phantoms, Simulating the Body of a Mouse.

Measured in 3-cm-Diameter Acrylic Cylinder, at 70 kVp/1600 mA s

Acrylic Cylinder Wall

Thickness (mm)

Measurement

(mGy cm)

Dose (mGy)

Texposed = 5.5 cm

0 (Air) 751.4 136.6

3.65 746.0 135.6

4.5 746.8 135.8

6 745.8 135.6

Dose was measured at 70 kVp/200 mA over 8 seconds in single-panel mode.

The dose is normalized to the X-ray exposure length along the z-axis (third

column).

Table 3. Dose Measurements Using a 10-cm Ionization Chamber in Air.

Measured in Air

kVp/mA s Measurement (mGy cm) Dose (mGy)

Texposed = 5.5 cm

70/1600 751.4 136.6

120/320 525.6 95.6

Dose was measured at 70 kVp/200 mA and 120 kVp/40 mA over 8 seconds

in single-panel mode.

The dose is normalized to the X-ray exposure length along the z-axis

(third column).
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Histology

Dedicated organs (brain, kidneys, liver, heart, lung, and

spleen) were removed from the animals for histology. All

organs were fixed in 4% paraformaldehyde overnight at

4jC and embedded in paraffin. They were cut in 5-mm-thick

slices and stained with hematoxylin and eosin (H&E). Tissue

sections were viewed using an Olympus AX-70 microscope

(Olympus Corp., Hamburg, Germany). Images were cap-

tured with an analySIS color view 12 digital camera (Soft

Imaging System, Muenster, Germany) and morphometric

analyses were performed at �100 magnification using the

analytic SIS (Soft Imaging System) software. The SIS soft-

ware was also used to perform distance measurements on

microscopic images. The inner diameters of the cerebral and

renal arteries and veins were determined. The ventricular sys-

tem of the brain was measured using the largest and shortest

diameters of the structures delineated by the parenchyma.

Fibrosis was proven with H&E and trichrome staining

in histology, quantification of collagen content by hydroxy-

proline assay, and functional compliance measurements.

Results

Animal Imaging

Contrast medium application and tomography were well

tolerated by the animals without any apparent clinical side

effects during a 1-week observation time. We did not observe

any changes in behavior, signs of distress, or stroke, nor did

we have a fatal complication following the scans. Measure-

ment of body weight was constant; therefore, severe renal

function was not indicated.

Bone

The large difference in attenuation between bone and

soft tissue was captured by fpVCT and therefore enabled

the selective 3D visualization of the skeleton (Figure 1). At

the limbs, the adjacent joints including the intra-articular

clefts down to the single tarsal and metatarsal bones were

well defined. In the spine, the spinal canal with the outlets

Figure 1. 3D imaging of the skeleton with a volumetric rendering technique based on thresholding of the fpVCT dataset (A and B) is shown. Excellent image quality

of the spine, with differentiation of every single vertebra, intervertebral discs (ivd), and intervertebral foramina (ivf), is achieved in nonenhanced scans. Small

elements like calcaneus (cc), metatarsal bones (mb), and phalanges (ph), as well as the joints of the long bones (t = tibia, f = fibula, p = patella), such as knee joints

and femoral articulations, can be studied in detail. High resolution becomes evident in a detailed depiction of the skull with differentiation of the coronal (cs), sagittal

(sas), and lambdoid suture (ls), or the external acoustic meatus (eam). On the magnification of the cranial bone (C), even the large foramina, such as the inlet for

the carotid (ca) and the optic nerve (on) or the internal acoustic meatus (iam), are clearly visualized. Bar = 1 cm.

Table 4. Dose Measurements Using a 10-cm Ionization Chamber in a

16-cm-Diameter Acrylic CTDI Head Phantom (Clinical Standard).

Measured in 16-cm-Diameter CTDI Head Phantom

kVp/mA s Measurement (mGy cm) Dose (mGy)

Texposed = 5.5 cm

70/1600 403.2 73.3

120/320 356.0 64.7

Here measurements were performed in dual-panel mode, deviating from the

other protocols, because this mode would be used for measurements of

larger subjects.

Dose was measured at 70 kVp/200 mA and 120 kVp/40 mA over 8 seconds.

The dose is normalized to the X-ray exposure length along the z-axis (third

column).
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for spinal nerves through the intervertebral foramina can

be studied. At lumbar vertebra corticalis and spongiosa,

the attached intervertebral and costovertebral joints were

clearly delineated (Figures 1, A and B, and 2). At the skull

base with its small foramina, the inlet of the carotid artery

and optic nerve as well as the internal acoustic meatus

can be identified (Figure 1C). In comparison with MSCT,

fpVCT shows a higher anatomic detail of bone structures

in the small animal (e.g., the corticalis of the bones and

vertebrae appear to be blurred on the MSCT but they are

sharply displayed in the fpVCT images). In addition, the in-

tervertebral clefts are clearly delineated only in the fpVCT

images (Figure 2).

Thorax

Imaging the lung architecture does not require contrast

medium application. Although the acquisition time is much

longer than the time of one breath of a normal active mouse

(respiration frequency f160 min�1 [18], or f21 breaths dur-

ing one scan), no visible motion artifacts were observed

and the lung structure was clearly displayed. Because the

scan times cannot realistically be reduced to the rest phase

of one respiration cycle, a future option for further improve-

ment of image quality could be retrospective respiratory

gating. Other alternatives are intubation and forced breath-

hold during the scan, although these are highly invasive pro-

cedures, which might not completely eliminate lung motion.

Visualization of ventilated lung parenchyma, from the bronchi

down to the third trunk generation and subsegmental pul-

monary arteries, was successfully achieved (Figure 3, A–D).

In some cases, even lung septa in healthy animals could be

identified, although they were most frequently seen in ani-

mals with lung fibrosis. The high isotropic resolution facili-

tated the 3D visualization, permitting segmentation of the

bronchial system, alveolar tissue, or the vasculature.

Besides normal lung anatomy, fpVCT can detect pulmo-

nary pathologies, which is exemplarily shown for nodules of

a LLC (Figure 3E ).

Figure 2. High-resolution images from a 16-slice MSCT (Aquilion 16; Toshiba) of a human thorax and spine (A) are compared to scans of a mouse with the same

system (B) and with the fpVCT (C). It is well demonstrated that the spine is shown in great detail in A1,2 and C1,2, although there is a 20-fold difference in size

between the species, but blurred images of the mouse spine in B1,2 do not permit the investigation of bone structure and density (arrow pointing on the

intervertebral foramen in A1–C1). The latter gives only a vague impression of the first sacral vertebra with the sacro-iliacal junction (B2), whereas a detailed view is

obtained with mouse fpVCT images and human MSCT images (arrows in A2–C2). With contrast medium application, the cardiovascular system is displayed in

detail, with sharp delineation of small vessels with fpVCT (C3). Comparable resolution is gained in MSCT of the human scan (A3), but this scanner cannot compete

with fpVCT concerning the resolution required for the scan of the mouse (B3). The same is true for visualization of the abdomen (A4–C4). Here, the lienal vein and

its confluence with the mesenteric vein into the portal vein, as well as the inflow of the small intestinal veins to the mesenteric vein, are only visible in the mouse with

fpVCT and in the human with MSCT (arrows in A4 and C4).
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As a second example, bleomycin-induced pulmonary

fibrosis at 14 days after bleomycin application is shown

(Figure 3F ). At this time, structural abnormality—starting

with ground glass opacity and septal thickening, then

progressing to severe consolidation of the tissue, fibrotic

strands, and secondary dilation of the bronchial system

(bronchiectasis)—could be visualized clearly. The animals

with severe lung changes showed clinical symptoms like

kyphosis, reduced activity, and tachypnea. However, early in-

dications of fibrosis could be identified in scans of clinically

asymptomatic animals.

After contrast medium injection, angiographies of the

mouse thorax were generated (Figure 4, A–C). Images of

cardiac structures with differentiation of the right and left

ventricles and atria as well as ingoing veins and outgoing

arteries were achieved in 3D reconstructions. Although in-

formation obtained concerning the coronary arteries in the

beating heart was limited, localization of these vessels in

ex vivo images obtained from a cast of the lung and heart

was possible (Figure 4D).

Abdomen

With fpVCT, parenchymal organs could be characterized

by the pattern of contrast medium uptake in mice, in detail

comparable to human images acquired with clinical MSCT.

In our examinations, liver segments were assigned using the

liver veins as landmarks, which formed the segment borders

and were clearly visible in all contrast-enhanced fpVCT

scans. The portal vein could be followed to the entrance into

Figure 3. Different aspects of thoracic imaging of mice are demonstrated. On a reformatted image in coronal view (A), the effect of isotropic resolution is

impressively demonstrated, as there is no deficit in spatial resolution or image distortion in the z-direction. Even in this baseline scan, the pulmonary arteries (pa)

are well delineated. After segmentation of the lungs from the thorax (threshold-based surface rendering in B), the airways are visualized in three dimensions

(minimum intensity projection image C, coronal view) and can be followed from the trachea (t) to the main bronchi (rb = right bronchus, lb = left bronchus), with the

segmental bronchi supplying the apical (ap), cardiac (ca), diaphragmatic (di), and azygous (az) lobes on the right side (left side in the image) down to the

subsegmental bronchi. This fpVCT image can be compared to a histologic slice of the left lung (D, coronal orientation). The left bronchus and its branches were

measured to be 1.81, 1.26, 2.04, and 1.21 mm in diameter. All structures are clearly delineated in fpVCT images. Orthotopic LLC model (E): the nodules (ln) and a

confluent tumor mass (tm) are clearly localized in the upper part of the right lung (left in the image). Lung fibrosis model (F): the typical manifestation of pulmonary

fibrosis is displayed in a mouse treated with bleomycin. The lung structure shows bronchiectasis (be), fibrotic threads (fs), and fibrotic consolidation of the left lobe

(llo). Bar = 1 cm.
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the hepatic portal after conjunction with the intestinal and

splenic veins (Figure 2, C3).

As in other mammals, iodinated contrast medium carries

the risk of renal toxicity when injected in mice. The contrast

medium dose was adapted to the body weight, and the

elimination of the substance by the kidneys through the

urogenital tract could be followed. The three phases of

kidney perfusion could be observed by repeated scanning.

Images acquired during the arterial phase displayed the

renal artery and its branches up to the subsegmental ves-

sels. Their inner diameter was measured with histology to

be an average of 46.2 mm. Scanning during the venous

phase allowed the differentiation of the cortex and the

medulla; in a third phase, the contrast medium elimination

into the pyelon, ureter, and bladder could be visualized

(Figure 5). In further examples of animal anatomic delinea-

tion, the adrenal glands were clearly shown above the

kidneys, and the ovaries were visible below. Neither organ

showed a detailed parenchymal differentiation, although, in

both cases, volumetry of the whole organ was possible.

The entire aorta could consistently be tracked from the

thorax to the abdominal cavity, down to its branching into

the two iliacal arteries. In the arterial phase, the outlet of the

renal arteries and even the adrenal arteries were identified

and assigned in 3D renderings.

Brain Anatomy

In fpVCT angiographic images of nude mice, the brain-

supplying arteries were tracked from their origin in the aor-

tic arch up to their entry into the skull base. Intracerebral

identification of the internal carotid artery and the anterior,

posterior, and middle cerebral arteries was achieved. In

addition, large veins like the superior sagittal sinus were

clearly visualized (Figure 6). Diameters of the basal arteries

were determined by comparison to histologic images and

ranged from 42 to 55 mm with an average of 47 mm (n = 5).

Parts of the ventricular system could be identified in non-

enhanced fpVCT images. Delineation of the third ventricle,

which was presented as a small slit between the thalami,

was improved by bright enhancement of the choroid plexus

Figure 4. These datasets are acquired after application of contrast medium. Sagittal reformatting (A) shows the contrast-filled right atrium (ra), left ventricle (lv), and

right ventricle (rv) of the heart. The aortic arch (ao) with outlet of the carotid arteries (ca) and subclavian arteries (sa) can clearly be delineated in the raw images.

Excellent vessel contrast determines the quality of 3D segmentation of the cardiopulmonary system (B and C) where the pulmonary arteries (pa) are clearly

rendered. Together with the prominent jugular bulbs (jb), the subclavian veins (sv), the inferior vena cava (icv), and the pairwise developed superior vena cava

(svc), the visibility of arterial and venous vessel contrasts is demonstrated. The vascular tree of the liver is well differentiated, revealing the hepatic veins (hv) and

the portal vein (not shown) after its formation by the intestinal, gastric, and splenic veins. In a cast of the heart and adjacent vessels (D), also the coronary arteries

(lca = left coronary artery) can also be visualized in a 3D segmentation.
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after contrast medium application. Also, the fourth ventricle,

with a maximal transversal dimension of 330 mm as deter-

mined by histology, was visualized in fpVCT, showing its

typical rhomboid shape.

Brain Perfusion

Due to smaller dimensions of mice, the display of mouse

anatomy was more challenging and therefore was chosen

for the previous anatomic examples. However, rats were

used for perfusion studies because these were the most

frequently used animals for stroke experiments.

Blood perfusion in different areas of the rat brain was

analyzed quantitatively. Three parameters—cerebral blood

flow (CBF), mean transit time (MTT), and cerebral blood

volume (CBV)—were calculated and their distribution was

displayed in color-coded maps (Figure 7). In this example,

mean CBV was determined as 3.7 ± 0.4 ml/100 g, CBF

was 97.3 ± 10.2 ml/100 g per minute, and the mean value

for MTT was 2.8 ± 0.5 seconds, calculated in the frontal

and parietal cortices and in the basal ganglia. These re-

sults match well with previously reported data from different

modalities and animal models [19,20]. In the first reference,

measurements were based on synchrotron radiation quan-

titative computed tomography. Mean CBV and CBF in the

parietal cortex were 2.1 ± 0.38 ml/100 g and 129 ± 18 ml/

100 g per minute vs 1.92 ± 0.32 ml/100 g and 125 ± 17 ml/

100 g per minute in the caudate–putamen. In this study,

MTT was not determined. MTT values measured in bea-

gles [20] with CT were determined in 2.4 to 3.0 seconds,

depending on the location of the measurements.

Comparing fpVCT with MSCT

Although, to some extent, MSCT allows the imaging of

anatomic structures in small animals, Figure 2 demonstrates

the considerable difference between resolutions in fpVCT and

MSCT. fpVCT images offer a sharply delineated view of the

circulation after injection of contrast medium, whereas only

a blurred view is achieved in MSCT. The latter specifically

Figure 5. Ten seconds after contrast medium injection (A), the inferior vena cava (cv) shows a prominent enhancement in this maximum intensity projection (MIP)

displayed in a coronal view. Renal vasculature can be followed from the renal artery and vein (rv) to the interlobar artery and vein, down to the interlobular level of

the vessels. Eight minutes later, another scan documents the elimination of the contrast medium into the pyelon (B). A clear cortico-medullar (cortex = rc, medulla =

rm) differentiation is evident. Now the parenchyma is diffusely enhanced, whereas the intrarenal vessels are not distinguishable anymore. Both phases (A and B)

can be used for 3D segmentation. In panel C, a 3D segmentation (volume rendering) of the first phase, the renal vasculature is tracked from its outlet. In this view,

feeding of the adrenal gland (ag) by an artery from the aorta (suprarenal artery = ga) is demonstrated. Another vessel, the ovarian vein, which drains the ovary (ov),

can be followed to the renal vein (rv). The renal pyelon (p; panel B) is contrast-filled after 8 minutes. The contrast flow can be followed through the ureters (u) down

to the urinary bladder (ub) after 3D segmentation with an MIP (D, left) or surface rendering (D, right), observing the excretion of the contrast medium in the third

phase of contrast elimination.
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fails in the visualization of the small arteries (e.g., the circula-

tion of the brain or kidneys). Finally, a 3D display or segmen-

tation of the anatomy in fpVCT, enabled by isotropic resolution

of fpVCT, provides additional topographic orientations and

yields more accurate delineations of anatomic fine structures

than can be achieved with MSCT. Comparison of fpVCT

Figure 7. Perfusion images of the rat brain were obtained after intravenous application of 1 ml of Iomeprol and scanning performed in cine mode with 2 seconds of

rotation time over 32 seconds. Panel A shows the attenuation curves of the artery (1), vein (2), and three regions of interest. Region (3) covers parts of the basal

ganglia; region (4) is located in the right parietal cortex; and region (5) is located in the left frontal cortex. The corresponding perfusion map for the cerebral blood

flow is given in panel C and measured values for CBF (ml/100 g per minute), CBV (ml/100 g), and MTT (seconds) are given in the table (B).

Figure 6. Cerebral imaging of the mouse. In panel A, the cerebral surface with the olfactory lobe (ol), the cerebral hemispheres (ch), the cerebellum (cb) with the

cerebellar hemispheres (cbh), as well as the optical nerve (on), resembling a protruded part of the cerebrum and the spinal chord (sc), are rendered. Techniques for

visualization of the vessels, like volume rendering (B and D) or MIP (C), enable angiographic images, assuming use of contrast agent. The main basal cerebral

arteries are labeled (aca = anterior cerebral artery, pca = posterior cerebral artery, mca = middle cerebral artery, ca = cerebellar artery), which can be tracked from

their origin from the basilar artery (ba) and from the internal carotid artery (ica). Parts of the venous systems can be followed, indicated by veins debouching into the

superior sagittal sinus (sss). Contrast enhancement of the choroid plexus (p) denotes the location of the cerebral ventricles. Bar = 1 cm.
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images of a mouse with clinical MSCT images of a human

clearly demonstrates a similar image quality. This confirms

that the objective to scale imaging capability from humans to

small animals is realized in many aspects by fpVCT.

Discussion

In this study, the morphologic appearance of mouse anat-

omy is shown using an experimental computed tomograph

equipped with flat-panel detectors. The details of the mouse

skeleton and vascular systems are resolved with fpVCT.

Comparison of the smallest visualized structures, like renal

arteries and cerebral ventricles, with histologic images gives

an estimate of the resolution capabilities and limitations of

the system. Images of the identical mouse, obtained with

the fpVCT, are compared with those from a clinical 16-slice

CT scanner, and also compared with images of the corre-

sponding anatomy of humans, obtained with the same clini-

cal scanner. Furthermore, preliminary data of successful

perfusion scanning of a rat brain are presented.

The detailed visualization of the mouse skeleton, with

clear contours of smaller bones and vertebrae, suggests that

high-resolution fpVCT can be effectively used for morpho-

logic animal phenotyping [21] and thus supplementation

of molecular imaging modalities for gene detection [22,23].

The differentiation between the cortex and the spongiosa

provided by fpVCT is a prerequisite for the detection of os-

seous lesions like metastases [24]. For fine structure analy-

sis, such as the evaluation of early osteoporotic disease and

the analysis of trabecular architecture, the resolution might

not be sufficient and may remain the domain of mCT [25].

Long-term studies of metastasizing tumor models and lon-

gitudinal observations of orthotopic lung tumor models [26,26]

require high-resolution lung imaging capability. In this context,

fpVCT is valuable because it can detect small pulmonary nod-

ules and structural changes such as fibrosis, which might

occur as a side effect from therapies. Short scanning times

allowed noninvasive anesthesia for follow-up studies.

CT perfusion (CTP) is a well-established and clinically

applied method in acute stroke, stroke follow-up studies, and

differentiation of brain tumors. The method quantifies re-

gional CBV and MTT, and allows the calculation of regional

CBF. Until now, one of the biggest drawbacks of CTP is in-

complete volume coverage of the organ of interest. fpVCT

allows blood flow measurements in whole organs of small

animals (e.g., the brain or the heart). Compared to com-

monly used experimental techniques like autoradiography

ormicrosphere techniques, CTP in thin slices allows perfu-

sion studies covering the whole brain, and therefore is the

first experimental method that permits noninvasive long-

term studies of whole-brain perfusion. The preliminary data

shown in this study indicate that fpVCT data on cerebral

blood flow parameters in rats are comparable to those

known from the literature. Quantitative analysis of perfu-

sion data is limited by the 2-second minimum rotation

time with this experimental fpVCT system. Depending on

the contrast medium dose, longer rotation times of up to

4 seconds produced reasonable accuracy in humans, as

recently described by Wintermark et al. [27]. However,

considering the short circulation time of small animals, the

minimum rotation time of this experimental fpVCT scanner

may have to be adapted to animal models. We have dem-

onstrated that the temporal resolution in dynamic scans is

sufficient to provide reliable data in the rat brain vascula-

rization, although this has to be evaluated in larger studies

and the accuracy may benefit from a slightly faster rotation

time (approximately 0.5 seconds). Then fpVCT could be-

come an important tool for stroke research, and also for

perfusion analysis of other organs as well as tumors.

Dedicated high-resolution animal mCT systems are com-

mercially available. In contrast to mCT, where scanning at a

resolution of 50 mm or less demands scanning times of sev-

eral minutes, the acquisition time with fpVCT is, at most,

8 seconds; therefore, the susceptibility to motion artifacts

is dramatically reduced. In addition and in contrast to mCT,

in vivo contrast medium application is effective due to short

scanning time, which does not exceed the animal’s vascular

elimination time. The combination of short scan times and

use of contrast agent permits functional imaging (e.g., per-

fusion studies as described above, which cannot be per-

formed with mCT). Even the use of some blood-pool contrast

agents may not be sufficient to provide a reliable contrast

because the iodine concentrations are much lower than in

conventional contrast media (300–400 mg/ml for conven-

tional contrast agents versus approximately 50 mg/ml for

currently available blood-pool agents). However, only high

concentration provides sufficient contrast to clearly delin-

eate not only the small primary vessels in small animals, but

also tumor neovasculature. Angiographic images can there-

fore be generated. In prior work, it has been shown that with

the use of contrast medium, even extremely small vessels

inside tumors can be visualized, permitting use of the system

for imaging angiogenesis [13] and therefore offering an

option in monitoring antiangiogenic approaches in tumor

therapy [28,29]. A further advantage of fpVCT over mCT is the

reduction of radiation dose. Risk of radiation dose–induced

biologic impact with mCT has been described [30–32]. Com-

pared to the dose for in vivo mouse scans reported in those

studies, in the range of 210 to 380 mGy, fpVCT dose is sub-

stantially lower (in the range of 96–137 mGy, as reported

above). Even in long-term studies on skeletal development,

with 11 to 14 scans over the course of up to 51 days, the dose

was below critical ranges on biologic integrity [33].

Conclusion

fpVCT provides a high spatial resolution imaging of rodents,

which is superior to clinical MSCT scanners but currently

lower than possible with mCT. However, as compared with

mCT, fpVCT enables shorter scan times, and is therefore less

invasive with respect to radiation dose and anesthesia. fpVCT

enables perfusion imaging at sufficiently high resolution to be

applicable to small animals. fpVCT also enables long-term

longitudinal studies, which, compared to mCT, employ mini-

mally invasive anesthesia and breath control protocols, and

substantially lower radiation dose. In summary, for small animal
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imaging, fpVCT fills a gap between clinical MSCT and preclin-

ical mCT systems, and is highly suited for studying orthotopic

and metastasizing tumor models, as well as for diseases re-

quiring short scan times like stroke and lung investigations.
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