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Abstract

P311, an 8-kDa polypeptide, was previously shown

to be highly expressed in invasive glioma cells. Here,

we report the functional characteristics of P311 with

regard to influencing glioma cell migration. P311 is

constitutively serine-phosphorylated; decreased phos-

phorylation is observed in migration-activated glioma

cells. The primary amino acid sequence of P311

indicates a putative serine phosphorylation site (S59)

near the PEST domain. Site-directed mutagenesis of

S59A retarded P311 degradation and induced glioma

cell motility. In contrast, S59D mutation resulted in the

rapid degradation of P311 and reduced glioma cell mi-

gration. Coimmunoprecipitation coupled with matrix-

assisted laser desorption/ionization time-of-flight

mass spectrometry analysis identified Filamin A as a

binding partner of P311, and immunofluorescence

studies showed that both proteins colocalized at the

cell periphery. Moreover, P311-induced cell migration

was abrogated by inhibition of b1 integrin function

using TACb1A, a dominant-negative inhibitor of b1
integrin signaling, suggesting that P311 acts down-

stream of b1 signaling. Finally, overexpression of P311

or P311 S59A mutant protein activates Rac1 GTPase;

small interfering RNA–mediated depletion of Rac1

suppresses P311-induced motility. Collectively, these

results suggest a role for levels of P311 in regulating

glioma motility and invasion through the reorganiza-

tion of actin cytoskeleton at the cell periphery.
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Introduction

Glioblastoma multiforme (GBM) is the most common pri-

mary malignant tumor of the adult central nervous system

and has a median survival time of < 1 year. The highly

lethal nature of this tumor partly derives from the acquisi-

tion of an invasive phenotype, which allows the tumor cells

to infiltrate surrounding brain tissues [1,2]. Accordingly,

localized treatments of GBM are palliative, but there is lack

of success in eradicating this invasive disease. Conse-

quently, identification and characterization of proteins that

drive the invasive behavior of GBM may serve as reliable

diagnostic and prognostic markers, as well as potential

targets for effective therapy.

Gene expression profiling using mRNA differential display

and cDNA-based microarrays has been used to identify the

spectrum of genes differentially expressed coincident to glioma

migration [3,4]. Among these invasion-regulated genes was

P311 (PTZ17) [5]. P311 codes for an 8-kDa intracytoplasmic

protein initially identified in neurons and muscles [6]. P311’s

amino acid sequence contains a conserved PEST domain

(Pro, Glu, Ser, and Thr) [7], which plays a role in targeting

proteins for degradation by the ubiquitin/proteasome system or

plays a function in protein–protein interactions [8]. The rapid

decay of P311 protein has been described in both smooth

muscle and neural cells [9]. The half-life of P311 is 5 minutes or

less, with the rapid degradation being directed by the ubiquitin/

proteasome system and an unidentified metalloprotease [9].

The identification of P311 as a glioma invasion candidate

gene is supported by expression levels that correlate with

glioma motility [5]. Antisense oligonucleotides downregulated

P311 mRNA and protein levels, and resulted in the reduction of

glioma cell migration. Immunohistochemical staining of human

glioblastoma specimens indicated elevated staining of P311 in

glioma cells at the invasive edge of the tumor, compared to the

absent expression in normal brain cells [5].

In this study, the role of P311 protein and its potential

interactions with the cytoskeleton as a mediator and/or prog-

nostic marker of glioma invasion are described. Overexpres-

sion of P311 enhances glioma cell motility; P311 activity and

stability are regulated by the phosphorylation of serine 59

located near the PEST domain. Site-directed mutagenesis

of S59A stabilizes the P311 protein and induces glioma cell

migration. In addition, immunoprecipitation coupled with matrix-

assisted laser desorption/ionization time-of-flight mass spec-

trometry (MALDI-TOF MS) analysis identified Filamin A (a b1

integrin actin binding protein that regulates cell motility) as a

P311 binding partner. Both P311 and Filamin A colocalize at

Abbreviations: ECM, extracellular matrix; FBS, fetal bovine serum; GBM, glioblastoma

multiforme; HRP, horseradish peroxidase; PBS, phosphate-buffered saline; PMSF, phenyl-

methylsulfonyl fluoride; MALDI-TOF MS, matrix-assisted laser desorption/ionization time-of-

flight mass spectrometry; BIM-1, bisindolylmaleimide-1; Pak1, p21-activated kinase 1; GST,

glutathione S-transferase; PKC, protein kinase C

Address all correspondence to: Michael E. Berens, Division of Neurogenomics, The

Translational Genomics Research Institute, 445 North Fifth Street, Phoenix, AZ 85004.

E-mail: mberens@tgen.org
1This work was supported by National Institutes of Health grant NS42262.
2Wendy S. McDonough and Nhan L. Tran contributed equally to this work.

Received 17 February 2005; Revised 31 May 2005; Accepted 1 June 2005.

Copyright D 2005 Neoplasia Press, Inc. All rights reserved 1522-8002/05/$25.00

DOI 10.1593/neo.05190

Neoplasia . Vol. 7, No. 9, September 2005, pp. 862 – 872 862

www.neoplasia.com

RESEARCH ARTICLE



the leading edge of migrating glioma cells, and overexpres-

sion of P311 induces Rac1 activation. Depletion of Rac1

expression by small interfering RNA (siRNA) oligonucleo-

tides abrogates P311-induced migration. Thus, these results

indicate that P311 may function in the reorganization of the

actin cytoskeleton at the cell periphery necessary for cell

migration and that P311-induced cell migration and protein

stability are dependent on S59 phosphorylation.

Materials and Methods

Cell Culture Conditions and Extracellular Matrix (ECM)

Preparation

Human glioma cell lines G112 [10], SF767 [11], T98G, and

U118MG (American Type Culture Collection, Manassas, VA)

were maintained in minimum essential medium (MEM; Invi-

trogen Corp., Carlsbad, CA) supplemented with 10% heat-

inactivated fetal bovine serum (FBS; Hyclone Laboratories,

Inc., Logan, UT) in a 37jC, 5% CO2 atmosphere at constant

humidity. U118–P311–FLAG and U118 vector-only stably

transfected glioma cells (Dr. Gregory Taylor; Duke University,

Durham, NC) were cultured under G418 selection (200 mg/ml)

in MEM supplemented with 10% heat-inactivated FBS in a

37jC, 5% CO2 atmosphere at constant humidity. Glioma-

derived ECM was prepared as previously described [11].

Radial Cell Migration Assay

Quantification of cellular migration was performed using

a microliter scale migration assay [12]. Approximately

2000 cells were plated onto 10-well slides precoated with

glioma-derived ECM using a cell sedimentation manifold

(CSM, Inc., Phoenix, AZ) to establish a confluent 1-mm-

diameter monolayer. Cells were allowed to disperse for

24 to 48 hours. Measurements were taken of the area oc-

cupied by the cells at regular intervals over 48 hours. The

average migration rate of 10 replicates was calculated as

the increasing radius of the entire cell population over time.

Site-Directed Mutagenesis and Adenovirus Production

and Infection

P311 cDNA (pRcCMV, human P311) was excised and

ligated into pcDNA3.1 (Invitrogen Corp.) using HindIII and

ApaI. Mutagenic primers were designed specifically for the

region of the gene-flanking serine codon 59 (TCC) as

follows: GCC (coding for alanine), GAC (coding for aspar-

tate), and GAG (coding for glutamate) (Table 1). The Quick

Change Kit (Stratagene, La Jolla, CA) was used according

to the manufacturer’s instructions on copying this region of

the gene. These primers were designed: to flank the site of

mutation by 10 to 15 bases, to have a 62.5% GC content, to

terminate in one or more G or C bases, and to have a

calculated melting temperature of 82.1jC as per manufac-

turer’s instructions. After the primers were used to generate

double-stranded copies of the plasmid containing mutated

P311 insert, the original vector/insert DNA was digested

using DpnI to destroy the methylated parental template,

leaving a new circular, nicked dsDNA copy of the plasmid

containing the mutated gene of interest. This plasmid was

transformed into XL-1 Blue supercompetent cells to repair

the nicks in the mutated plasmid. The cells were scaled up,

and new plasmids were isolated for subsequent transforma-

tion or shuttling into mammalian expression vectors contain-

ing a CMV promoter for the transformation of glioblastoma

cells with the mutated P311 gene.

Primers were designed to add the FLAG sequence and to

incorporate an XhoI restriction site to the existing plasmids

(forward 5V-CAG AAT TCC GGA CCA TGG TTT ATT ACC

CAG AAC TCT TT-3V and reverse 5V-CAT CTA GAC TGA

TGT TCC TGC TGC TAC TGT TCA TCA GAT CTA C-3V). All

sequences were verified by DNA sequencing. Restriction

digestion using XhoI and BglII was performed to subclone

the plasmids into the pShuttle-CMV to prepare recombinant

E1-deleted adenoviruses using the Ad-Easy system, as

described [13]. Viruses were propagated in HEK 293 cells

(ATCC CRL 1573), clonally isolated, and titered as previ-

ously described [14]. Dominant-negative TACb1A integrin

adenoviral construct [15] was obtained from Dr. Joseph

Loftus (Mayo Clinic, Scottsdale, AZ). Cells were infected at

matched multiplicity of infection (MOI), as noted in the

Results section.

Antibodies and Immunoblotting

A mouse monoclonal antibody, anti –FLAG M2, was

obtained from Eastman Kodak Co. (Rochester, NY). Poly-

clonal anti-FLAG antibodies were purchased from Sigma

(St. Louis, MO). Monoclonal antibodies to the human b1 in-

tegrin subunit were purchased from Chemicon International

(Temecula, CA). Polyclonal antibodies to phosphoserine

were obtained from Zymed (South San Francisco, CA).

Monoclonal antibodies to protein kinase C (PKC) ~ and poly-

clonal antibodies specific to PKCa, PKCb1, PKCy, PKCq, and

Table 1. Site-Directed Mutagenesis of P311.

Mutation Strand Primer or Gene Sequence (all 5V to 3V)

None Complimentary P311 strand cc gtcgtcactt gaggcgaggg gttcttagtc

Sense P311 strand (locate at base 359) gg cagcagtgaa ctccgctccc caagaatcag

Serine!alanine (S59A) Forward mutagenic primer gg cagcagtgaa ctccgcGccc caagaatcag

Reverse mutagenic primer ctgattcttg gggCgcggag ttcactgctg cc

Serine!aspartate (S59D) Forward mutagenic primer gg cagcagtgaa ctccgcGACc caagaatcag

Reverse mutagenic primer ctgattcttg gGTCgcggag ttcactgctg cc

Serine!glutamate (S59E) Forward mutagenic primer gg cagcagtgaa ctccgcGAGc caagaatcag

Reverse mutagenic primer ctgattcttg gCTCgcggag ttcactgctg cc
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PKCg were purchased from Santa Cruz Biotechnology,

Inc. (Santa Cruz, CA). Monoclonal antibodies to alpha tu-

bulin were purchased from Upstate Biotechnology (Lake

Placid, NY). Anti–mouse IgG and anti–rabbit IgG antibodies

coupled to horseradish peroxidase (HRP) were purchased

from Promega (Madison, WI). Immunoblotting and protein

determination experiments were preformed as previously

described [16]. Briefly, cells were washed in phosphate-

buffered saline (PBS) containing 1 mM phenylmethylsulfonyl

fluoride (PMSF), as described above. The cells were then

lysed in 2� sodium dodecyl sulfate (SDS) sample buffer

(0.25 M Tris–HCl, pH 6.8, 2% SDS, and 25% glycerol) con-

taining 10 mg/ml aprotinin, 10 mg/ml leupeptin, 0.7 mg/ml

pepstatin, 20 mM NaF, and 1 mM PMSF. Protein concen-

trations were determined using the BCA assay procedure

(Pierce, Rockford, IL), with bovine serum albumin as a stan-

dard. Thirty micrograms of total cellular protein was loaded

per lane, separated by 12% SDS polyacrylamide gel elec-

trophoresis (PAGE) or 16% Tricine gels for P311 analysis,

and then transferred to nitrocellulose (Schleichter&Schuell,

Keene, NH) by electroblotting. The nitrocellulose membrane

was blocked with 5% nonfat dry milk in Tris-buffered saline

(pH 8.0) with 0.1% Tween-20 prior to addition of the pri-

mary antibody and then HRP-conjugated anti–mouse/rabbit

IgG (Promega). Bound secondary antibodies were detected

using a chemiluminescence system (NEN Life Science Prod-

ucts, Boston, MA). Densitometric analysis of the bands was

conducted using Scion Image.

PKC Inhibitors and Phosphatase Inhibitors

Cells were plated at 50% confluency. PKC-specific inhib-

itor bisindolylmaleimide-1 (BIM-1), Go6976, or R0-32-0432

was added to the cells 30 minutes prior to cell lysis at

10 mM—an IC50 that has been previously shown to inhibit

selective PKC isoforms [17]. BIM-1 inhibits classic Ca2+-

dependent PKC isoforms a and bI, as well as novel PKC

isoforms y, q, and ~ with this same ranked order of potency

[18]. Go6976 inhibits PKC with particular specificity for

the classic PKC isoforms a, bI, and bII but also for atypical

PKCm [19], whereas Ro-32-0432 selectively inhibits iso-

forms a and bI [20]. In certain experiments, Calyculin A

(20 nM) and okadaic acid (100 nM) were added to cells

30 minutes prior to cell lysis to inhibit protein phosphatases

PP1 and PP2A, respectively. Each experiment was per-

formed in triplicate.

Immunofluorescence Microscopy

Cells were grown on 10-well glass slides previously

coated with glioma-derived ECM until they reached about

50% confluency, fixed for 5 minutes in 4% paraformalyde-

hyde in PBS. Cells were then permeabilized with 0.1% Triton

X-100 in PBS. After washing with PBS, cells were blocked

with 1% bovine serum albumin and 3% goat serum, and

incubated with primary antibody for 1 hour at 25jC. Following

washing with 0.1% BSA in PBS and incubation with Cy3-

conjugated anti–mouse IgG or fluorescein isothiocyanate–

conjugated antirabbit Ig, cell nuclei were stained with 4V,

6-diamidino-2-phenylindole (DAPI) from (Sigma) in PBS

for 15 minutes at 37jC, and mounted with SlowFade from

Molecular Probes (Eugene OR). Immunofluorescent sam-

ples were examined under a laser scanning confocal micro-

scope (LSM 410) equipped with helium, neon, and argon

lasers (Zeiss, Thorton, NY) using appropriate filters.

Immunoprecipitation and MALDI-TOF MS

Cells were plated onto 60-mm plates, grown to 70%

confluency, and, in certain experiments, labeled in Cys/

Met–free Dulbecco’s modified Eagle’s medium (Invitrogen

Corp.) supplemented with 10% FBS (vol/vol) and 0.5 mCi

[35S]EXPRE35S35S protein labeling mix (NEN Life Science

Products). Prior to lysis, cells were incubated for 30 minutes

with lactacystin (10 mm) and o-phenanthroline (1.26 mM) to

block P311 proteosome degradation [9], or left untreated.

Cell were washed in PBS containing 1 mM PMSF and then

lysed in NP40 buffer (10 mM Tris–HCl, pH 7.4, 0.5% Nonidet

P-40, 150 mM NaCl, 1 mM PMSF, 1 mM EDTA, 2 mM

sodium vanadate, 10 mg/ml aprotinin, and 10 mg/ml leupep-

tin). Protein concentrations were determined using the BCA

assay procedure (Pierce), with bovine serum albumin as a

standard. Equivalent amounts of proteins were precleared

and immunoprecipitated from the lysates, and washed with

lysis buffer followed by S1 buffer (10 mM HEPES, pH 7.4,

0.15 M NaCl, 2 mM EDTA, 1.5% Triton X-100, 0.5% deoxy-

cholate, and 0.2% SDS) (Tran NL 2002). Samples were

resuspended in 2� SDS sample buffer (0.25 M Tris–HCl,

pH 6.8, 2% SDS, and 25% glycerol) and boiled in the pres-

ence of 2-mercaptoethanol (Sigma). Samples were sepa-

rated on 16% tricine gels and silver-stained or blotted onto

nitrocellulose for immunoblot analysis.

For MALDI-TOF MS, protein bands were stained with the

silver stain kit from (Bio-Rad, Hercules, CA) [21]. Briefly,

proteins in gels were fixed with 50% methanol and 10%

acetic acid, then oxidized in a solution of potassium dichro-

mate in diluted nitric acid, washed with water, and treated

with silver nitrate solution. Color development was stopped

with 5% acetic acid once the desired staining intensity had

been achieved. Unique bands were excised from the gel and

washed twice in 100 nM NH4HCO3 buffer, followed by

soaked in 100% acetonitrile for 5 minutes, aspiration of the

acetonitrile, and drying for 30 minutes. After rehydration of

the pellet, the proteins were digested using 20 mg/ml trypsin

(Promega) suspended in 25 mM NH4HCO3 buffer, incubated

at 37jC for 20 hours, and dried under vacuum. Trifluoro-

acetic acid (TFA) (5%, 120 ml) was added to the tube and

incubated at 40jC for 1 hour in a water bath. After collecting

the supernatant, another 120 ml of TFA solution (2.5% TFA

and 50% acetonitrile) was added to the tube and incubated

at 30jC for 1 hour in a water bath. The supernatants were

combined and dried to a powder under vacuum. The sam-

ples of generated peptides were dissolved in 5 ml of 0.5%

TFA and measured by MALDI-TOF MS analysis at the Uni-

versity of Arizona Proteomic Core Facility (Tucson, AZ). Data

searches were performed using the NCBI protein data bank

with a minimum matching peptide setting of four, a mass

tolerance setting of 50 to 200 ppm, and a single trypsin miss

cut setting.
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siRNA Preparation and Transfection

siRNA oligonucleotides specific for Rac1 and GL2 lucif-

erase were previously described [22]. siRNA oligonucleo-

tides specific for PKCa, PKCq, and PKC~ were designed

according to Elbashir et al. [23] and purchased from Qiagen

(Valencia, CA). siRNA sequences to PKC isoforms used

were: PKCa (regions 494–514, 5V-CTG CGG AAT GGA

TCA CAC TGA), PKCq (regions 2631–2651, 5V-AAC TCA

TTG GGT CAG CAA TTA), and PKC~ (regions 482–502, 5V-

AAC GGG AGA AGA CAA ATC TAT). Transient transfection

of siRNA was carried out using Lipofectamine 2000 (Invitro-

gen Corp.) according to the manufacturer’s protocol. Cells

were plated in a six-well plate at 2.0 � 105 cells/well in 1.5 ml

of MEM, supplemented with 10% serum without antibiotics.

Transfections were carried out according to the manufac-

turer’s protocol after cells were fully spread (6 hours post-

plating). Cells were infected with Rac1 siRNA oligonucleotides

at a concentration of 20 nM, and PKCa, PKCq, and PKC~
siRNA oligonucleotides at a concentration of 40 nM. No cell

toxicity was observed at these concentrations of siRNA.

Using quantitative PCR, we verified that the siRNA oligo-

nucleotides to PKCa, PKCq, and PKC~ specifically inhibited

the expression of PKCa, PKCq, and PKC~, respectively. In

addition, Rac1 siRNA was previously shown to specifically

inhibit the expression of Rac1 [22]. Maximum inhibition was

achieved by days 2 to 3 after transfection, and cells were

assayed on day 3 or day 4 posttransfection.

Rac1 and Cdc42 Activity Assays

The activity assays for Rac1 and Cdc42 were performed

according to the manufacturer’s protocol (Pierce). Briefly,

equal numbers of cells were seeded and infected with the

P311 wild-type (wt) or mutant adenoviral constructs. Cells

were serum-starved for 16 hours, lysed, and centrifuged for

10 minutes. The supernatant (500 mg of protein) was added

to 20 mg of glutathione S-transferase (GST) human p21-

activated kinase 1 (Pak1) binding, rotated at 4jC for 1 hour,

and followed by three washes of protein complexes with lysis

buffer. Pak1-bound proteins were dissociated and denatured

by heating in sample buffer at 98jC for 5 minutes and

subjected to gel electrophoresis. Bound proteins were visu-

alized using either anti –Rac1 or anti –Cdc42 antibody

(Pierce) and chemiluminescence techniques.

Results

P311 Enhances Glioma Cell Migration and Localizes

at the Leading Edge of Cell Migration

Previous data from antisense oligonucleotide studies

suggested that P311 plays a role in migrating glioma cells

[5]. To examine the effect of P311 expression on cell

migration, stably expressing P311–FLAG–tagged U118

glioma cells and their matched vector controls were depos-

ited using a cell sedimentation manifold onto 10-well glass

slides previously coated with glioma-derived ECM [24].

Glioma-derived ECM has been previously shown to enhance

the motility behavior of these cells [4,24]. The U118–P311–

FLAG–tagged glioma cells migrated one and a half times

faster than the vector-only control cells (Figure 1A). P311-

transfected glioma cells show a reduction of stress fiber actin

cytoskeleton compared to controls and an increase in corti-

cal actin deposits (Figure 1B, a and d). In addition, immuno-

cytochemistry revealed P311 localization at the leading edge

of cell migration (Figure 1B). Thus, the data corroborate the

previous study suggesting that overexpression of P311

induces glioma cell motility.

Actively Migrating Glioma Cells Display Decreased

Serine Phosphorylation of P311

Analysis of P311 amino sequence using the Expert

Protein Analysis System (ExPASy) Prosite proteomics data-

base (http://au.expasy.org/prosite/) predicted that codon

59 serine is a putative PKC phosphorylation site. U118

glioma cells respond to different substrates with different

migration behaviors. On glioma-derived ECM, the cells

Figure 1. P311 expression increases glioma cell motility. (A) U118–P311–FLAG– transfected cells and U118 mock-transfected cells were plated onto 10-well

glass slides precoated with glioma-derived ECM. Cell migration was assessed over a period of 48 hours. (B) Mock-transfected U118 cells (panels a, b, and c) and

U118–P311–FLAG– tagged cells (panels d, e, and f) were grown on 10-well glass slides, fixed, and costained for F-actin (phallodin–Cy3 conjugate; panels a and

d) and FLAG-tagged P311 using anti –FLAG M2 antibodies (fluorescein isothiocyanate–stained). Arrowhead represents cortical actin. Arrow represents P311 at

the cell periphery. Coimmunolocalizations of cortical actin and P311 are indicated by asterisks. Bar = 20 �m.
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migrate, whereas on standard tissue culture, plastic cell

motility is minimal. Cells were grown either on unmodified

culture dishes (stationary nonmotile) or in flasks precoated

with glioma-derived ECM (migration-promoting environ-

ment). Total cellular lysates were prepared, and P311 was

immunoprecipitated using an anti–FLAG M2 antibody, fol-

lowed by an immunoblot analysis for phosphoserine. Serine

phosphorylation of P311 was two-fold higher for stationary

cells compared to cells plated on a motility-activating sub-

strate (Figure 2A), suggesting that phosphorylation modifi-

cation of P311 accompanies glioma cell motility. To control

for effects related to the composition of the ECM, we exam-

ined the serine phosphorylation levels of P311 in glioma cells

plated on glioma-derived ECM at high cell density, which

prevents cell movement, and at low density, which pro-

motes cell motility. A three-fold decrease of serine phosphory-

lation was detected in actively migrating glioma cells

compared to migration-restricted cells on the identical sub-

strate (Figure 2B). This suggests that altered serine phos-

phorylation of P311 is, in part, a migration-associated effect.

Because a putative PKC phosphorylation site is identified

at codon 59 of P311, we investigated whether the serine

phosphorylation of P311 is a consequence of PKC activa-

tion. Western blot analysis from four glioma cell lines re-

vealed differential expression of various PKC isoforms in

the different glioma cell lines (Figure 2C). Specifically in

U118 cells, PKCa and PKCq are expressed at high levels,

and PKCb1 and PKC~ are detected at moderate levels,

whereas minimal expression of PKCg and PKCy was de-

tected (Figure 2C). The activity of different PKC family mem-

bers was targeted using selective PKC inhibitors Go6976,

Ro-32-0432, and BIM-1 [18–20]. U118 cells were grown

sparsely on standard tissue culture flasks then treated with

the various PKC inhibitors at 10 mM concentration. P311 was

immunoprecipitated from cell lysates using anti–FLAG M2

antibodies. Western blot analysis using specific antiphos-

phoserine antibodies showed that serine phosphorylation

of P311 was reduced three-fold in the presence of BIM-1

(Figure 2D; cf. lanes A and E ). Additionally, no phosphory-

lation changes were affected by Go6976 and Ro-32-0432

(Figure 2D, lanes F and G, respectively). Moreover, because

decreased serine phosphorylation is observed in migrating

glioma cells, we examined the effect of specific phosphatase

inhibitors of PP1 and PP2A [17]. Treatment of cells cultured

on glioma-derived ECM with Calyculin A (Figure 2D, lane c)

and okadaic acid (Figure 2D, lane d) prevented the loss of

Figure 2. Actively migrating cells display reduced serine phosphorylation of P311. (A) U118–P311–FLAG– transfected cells were cultured on tissue culture plastic

(P) or glioma-derived ECM (E). Cells were then preincubated with proteosome inhibitors lactacystin and o-phenanthroline for 30 minutes prior to cell lysis. P311

was immunoprecipitated with an anti –FLAG M2 antibody and immunoblotted with phosphorylated serine or FLAG M2–specific antibodies. Relative protein

densities of P311 phosphoserine to total P311 ratio were determined. Each relative protein value was further normalized to the P311 phosphorylation levels in cells

cultured on tissue culture plastic. Data represent the average of three independent experiments. (B) U118–P311–FLAG– transfected cells were cultured on

glioma-derived ECM at high cell density (1 � 105 cells/cm2; D, dense) or low cell density (1 � 104 cells/cm2; S, sparse), and phosphoserine levels of P311 were

evaluated as described above. (C) Immunoblot analysis of various PKC isoforms on whole cell lysates from four glioma cell lines. (D) U118–P311–FLAG–

transfected cells were cultured on tissue culture plastic (P) or glioma-derived ECM (E). Cells were then incubated with the indicated PKC inhibitors at 10 �M or

solvent DMSO control and proteosome inhibitors for 30 minutes prior to cell lysis, and phosphoserine levels of P311 were evaluated as described above.
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P311 serine phosphorylation levels compared to solvent

treatment (Figure 2D, lane b). These outcomes suggest a

role for phosphatases such as PP1 or PP2A in P311 activity,

and further support the regulated serine phosphorylation of

P311 impacting the migration of glioma cells.

siRNA-Mediated Depletion of PKCq and PKC~ Results

in Loss of P311 Serine Phoshorylation

The effect of BIM-1 on P311 suggests that the novel class

of PKC isoforms, particularly y, q, and ~ , may play a role in

P311 serine phosphorylation. Because PKCq and PKC~ are

detected in U118 cells, we examined whether these two

isoforms are critical for the serine phosphorylation of P311.

siRNA oligonucleotide duplexes were specifically designed

against either PKCa, PKCq, or PKC~ . The degree of pro-

tein knockdown in U118–P311–FLAG–tagged glioma cells

was f85% to 90%, as verified by Western blot analysis

using antibodies specific to either PKCa (Figure 3A), PKCq

(Figure 3B), or PKC~ (Figure 3C). As expected, high serine

phosphorylation of P311 was detected in migration-restricted

cells (Figure 3D, lane a), whereas decreased levels of P311

serine phosphorylation were detected in migration-activated

cells (Figure 3D, lane b). Interestingly, siRNA-mediated

depletion of either PKCq (Figure 3D, lane d ) or PKC~
(Figure 3D, lane e) resulted in a decrease in P311 serine

phosphorylation in migration-restricted cells, whereas no

loss of P311 serine phosphorylation was detected in

PKCa-depleted cells. Taken together, our results show that

the serine phosphorylation of P311 is dependent on the

function of both PKCq and PKC~.

Serine Phosphorylation at S59 Is Important for

P311-Induced Cell Migration and P311 Protein Stability

To determine whether serine phosphorylation at S59 of

P311 influences migration, site-directed mutants of P311

were generated and propagated into replication-deficient

adenoviruses (Figure 4A). Each construct also contained

a FLAG epitope at the carboxyl terminus. Alanine (S59A)

Figure 3. Depletion of either PKCe or PKCn inhibits P311 serine phosphory-

lation in migration-restricted cells. Western blot analysis determining the

protein expression of PKCa (A), PKCe (B), and PKCf (C) after siRNA trans-

fection, as described in Materials and Methods. (D) U118–P311–FLAG–

tagged cells were plated on either tissue culture plastic (P) or glioma-derived

ECM (E). Cells were then transfected with siRNA directed against either PKCa,
PKCe, PKCf, or control luciferase (ctrl siRNA), and cultured for an additional

24 hours. Proteosome inhibitors were then added 30 minutes prior to cell

lysis, and P311 was immunoprecipitated with an anti –FLAG M2 antibody and

immunoblotted for phosphorylated serine or FLAG M2–specific antibodies.

Figure 4. Site-directed mutagenesis of P311 at a putative PKC serine

phosphorylation domain at codon 59. (A) Site-directed mutagenesis of serine

codon 59 (serine to alanine, S59A; serine to aspartate, S59D; and serine to

glutamate, S59E, respectively). (B) Titer-dependent expression of P311wt

adenovirus at various MOI concentrations. U118 cells were infected with

various concentrations of adenovirus expressing FLAG-tagged P311wt for

48 hours. Cells were incubated with the proteosome inhibitors lactacystin

and o-phenanthroline, then total cellular lysates were collected and immuno-

blotted using anti –FLAG M2 antibody. (C) Confirmation of expression of

P311–FLAG adenoviral constructs in U118 cells infected for 48 hours with an

MOI of 20 by immunoblotting with anti –FLAG M2 antibody. Lysates were

collected in the presence of the proteosome inhibitor. (D) Serine codon 59 is

the sole active phosphorylation site of P311. U118 cells were infected with the

different adenoviral constructs for 24 hours. Cells were incubated with the

proteosome inhibitors lactacystin and o-phenanthroline, then cellular lysates

were immunoprecipitated with anti –FLAG M2 antibody, immunoblotted, and

probed for phosphorylated serine or FLAG, as indicated.
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substitution was constructed to eliminate phosphorylation

at S59, whereas aspartate (S59D) and glutamate (S59E)

were designed to mimic a constitutively phosphorylated

serine at S59 (Figure 4A). U118 glioma cells infected with

varying MOIs of P311wt showed a titer-dependent induc-

tion of the P311 protein (Figure 4B). In addition, expression

of all mutated constructs was verified by immunoblot analy-

sis for the FLAG epitope (MOI = 20; Figure 4C). The substi-

tution of P311 S59 for S59A, S59D, and S59E eliminated

the detection of any serine phosphorylation (Figure 4D),

demonstrating that S59 is the only active phosphoregulated

serine in P311.

To determine the effect of P311 S59 mutations on glioma

cell migration, we examined the migratory capacity of cells

expressing either wild-type or phosphorylation site mutants

of P311. Cells expressing wild-type P311 or the S59A

mutant displayed enhanced migration rates in four different

glioma cell lines, ranging from 1.4- to 2-fold induction

(Figure 5A). Glioma cells expressing P311 S59D or S59E

mutants showed a decreased migration rate relative to

uninfected or LacZ-infected controls (Figure 5A). These

results indicate that glioma cell migration, in part, requires

serine phosphorylation of P311 and that serine phosphory-

lation of P311 at S59 is a potential mediator of P311-

regulated glioma cell migration.

A previous study by Taylor et al. [9] showed that P311 was

targeted for degradation by multiple proteolytic pathways,

including the ubiquitin/proteasome pathway, resulting in an

extremely short protein half-life. Because S59 is flanked by a

PEST sequence, we investigated the effect of the S59 muta-

tional substitution on P311 protein stability. U118 glioma cells

were infected with the adenoviral P311 mutant constructs

and cultured in the presence or absence of the proteosome

inhibitors lactacystin and o-phenanthroline. Whole cell lysates

were collected and immunoblotted for anti–FLAG M2. In the

absence of proteosome inhibitors, P311wt was rapidly de-

graded (Figure 5B). Blocking the ubiquitin/proteosome deg-

radation pathway resulted in a nearly two-fold rise in P311wt

protein levels. In contrast, the levels of P311 S59A and S59E

mutants were unaffected by the absence of the proteosome

inhibitors; the P311 S59D mutant showed degradation of

the protein, similar to P311wt (Figure 5B). The stability of the

P311wt and each P311 mutant protein was observed in the

presence of the ubiquitin/proteosome inhibitors. Confirmation

of the effect of S59 mutations on P311 protein stability was

performed by 35S methionine labeling of proteins in U118

cells. Densitometric analysis of the autoradiogram revealed

an approximately two-fold (P < .001) increase in the protein

stability of P311 S59A and S59E compared to P311wt and

S59A mutant in the absence of the ubiquitin/proteosome

inhibitor (data not shown).

Identification of Filamin A as a Binding Partner to P311

Because P311 is not a member of any known family of

proteins, clues suggesting function based on analogy are

not available. To determine possible mechanisms by which

P311 regulates cell migration, we sought potential binding

partners of P311 in an immunoprecipitation pulldown experi-

ment coupled with MALDI-TOF MS analysis. U118–P311

cells were cultured under migration-restricted or migration-

activated states. Total cellular lysates were prepared and

P311 protein was immunoprecipitated using an anti–FLAG

M2 epitope antibody. Coimmunoprecipitated proteins ac-

companying P311 showing differential abundance under

Figure 5. Site-directed mutation of P311 S59A induces glioma cell migration and P311 protein stability. (A) Glioma cells were infected with the indicated P311

mutant constructs at an MOI of 20 for 24 hours prior to migration analysis. Cell motility was assessed over an additional 48 hours. (B) Evaluation of protein stability

of P311 mutant constructs. U118 cells were infected with the indicated P311 mutant constructs (MOI of 20) in the presence or absence of the ubiquitin inhibitors

(lactocystin and o-phenanthroline). Total cell lysates were collected and analyzed for FLAG and alpha tubulin expression. Relative protein blot densities of P311

were normalized to alpha tubulin and further corrected to P311wt without inhibitor treatment. Data are representations of three independent experiments. WB,

Western blot; IP, immunoprecipitation.
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migration-restricted or migration-activated states were de-

tected on a standard one-dimensional SDS-PAGE system

(Figure 6A). Three putative P311-binding proteins were

uniquely detected in migration-activated glioma cells. Band

2 was a contaminant and band 3 was identified by MALDI-

TOF MS analysis as a GAPDH homolog protein. Interest-

ingly, band 1, a 230-kDa protein, was identified as Filamin A,

a b1 integrin cytoskeletal-binding protein (Figure 6A). Co-

immunoprecipitation of P311 with Filamin A was verified by

immunoprecipitation with a Filamin A antibody, suggesting

that Filamin A interacts with P311. Interestingly, Filamin A

immunoprecipitation studies showed that P311 binds equally

to Filamin A in migration-activated and migration-restricted

cells (Figure 6B ). To further confirm the association of P311

with Filamin A, P311 and Filamin A were immunolocalized in

glioma cells. P311 immunofluorescence showed strong lo-

calization at the leading edge of cell migration in lamellipodial

structures as anticipated (Figure 6C; panel e, arrow). When

cells were coimmunolabeled for Filamin A and P311, Filamin

A was also detected at the leading edge of cell migration

(Figure 6C; panel d, arrowhead ). Merging of the two confocal

images revealed identical patterns of colocalization (Figure 6C;

panel f, asterisk). Thus, these data support an association be-

tween the two proteins, P311 and Filamin A.

Inhibition of �1 Integrin Function Suppresses

P311-Induced Cell Motility

b1 Integrin has been previously shown to play a role in

glioma cell motility and invasion [25–28]; blocking b1 integrin

function resulted in decreased glioma adhesion and migra-

tion [26,27]. Because Filamin A is a cytoskeletal protein that

interacts with the b1 integrin, we investigated whether the

inhibition of b1 integrin function by a dominant-negative b1

protein, TACb1A, would suppress P311-induced cell motility.

The TACb1A chimeric receptor contains the b1 integrin

intracellular domain coupled to a reporter consisting of the

transmembrane and extracellular domains of the small, non-

signaling subunit of the interleukin-2 receptor [29]. TACb1A

was previously shown to disrupt b1 integrin adhesion and

signaling [15,29]. Expression of the TACb1A protein in U118

cells resulted in a two-fold decrease in cell migration on

glioma-derived ECM compared to LacZ-infected control

(Figure 7A). As expected, overexpression of P311wt en-

hances glioma migration (Figure 7A). However, coexpres-

sion of P311wt and TACb1A suppresses P311-induced cell

migration, suggesting that regulation of P311-induced cell

motility is dependent on functional b1 integrins.

We next determined whether interfering with the b1

integrin function by TACb1A expression alters P311 serine

phosphorylation status. U118–P311 glioma cells plated

Figure 6. Identification of Filamin A as a binding partner to P311 in migration-

activated cells using peptide mass fingerprinting and MALDI-TOF MS

analysis. (A) U118 cells stably expressing P311–FLAG were seeded on

tissue culture plastic (P) or glioma-derived ECM (E). Cells were incubated

with the proteosome inhibitors lactacystin and o-phenanthroline prior to total

cellular lysate collection. P311 was immunoprecipitated using anti –FLAG M2

antibody, separated on 10% SDS-PAGE gel, and silver-stained. A 230-kDa

band (*), present only in actively migrating cells, was isolated and identi-

fied by MALDI-TOF MS as Filamin A. (B) U118 cells were cultured on tissue

culture plastic or glioma-derived ECM, and infected with P311wt adeno-

viruses. Cells were preincubated with the proteosome inhibitors, and Filamin

A was immunoprecipitated using anti –Filamin A antibody and immunoblotted

for P311 with anti –FLAG M2 antibody. (C) Coimmunolocalization of P311

(fluorescein isothiocyanate–stained) and Filamin A (Cy3-stained) in control

mock-transfected U118 cells (panels a, b, and c) and U118–P311–FLAG–

tagged cells (panels d, e, and f). Arrowheads represent positive Filamin A

staining. Arrows represent P311 positive staining. Asterisks represent colo-

calization of P311 and Filamin A (panel f). Bar = 20 �m.

Figure 7. Inhibition of �1 integrin function with TAC�1A suppresses P311-

induced cell migration and prevents the reduction of P311 serine phosphory-

lation. (A) U118 cells were infected with adenoviruses expressing control

LacZ, P311wt, or TAC�1A. Cell migration was assessed on glioma-derived

ECM over 48 hours. (B) U118–P311–FLAG– transfected cells were infected

with adenoviruses expressing TAC�1A or control LacZ, and cultured for

24 hours. Cells were then cultured on tissue culture plastic or glioma-derived

ECM, and phosphoserine levels of P311 were evaluated as described above.
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sparsely or densely on glioma-derived ECM were infected

with adenoviruses expressing dominant-negative TACb1A

integrin or control TACa5 integrin. Cells infected with control

LacZ showed a decrease in P311 serine phosphorylation

levels in migration-stimulated cells compared to migration-

restricted cells (Figure 7B). However, disruption of b1 integ-

rin function by TACb1A not only inhibited the loss of P311

serine phosphorylation in migration-activated glioma cells,

but appeared to lead to hyperphosphorylation of P311

(Figure 7B). These data support the notion that P311-

induced migration is dependent on b1 integrin function.

P311-Induced Glioma Migration Is Dependent on

Rac1 Activation

The small GTPase, Rac1, is important for the migration

and invasion of tumor cells [30,31]. Because P311 is local-

ized at the cell periphery, we sought to determine whether

P311-induced glioma migration is dependent on Rac1 acti-

vation. We examined the effect of P311wt and mutant

proteins on Rac1 activation. For these experiments, we

utilized the Rac1-binding domain of Pak1 fused to GST to

affinity-precipitate active Rac1 [32,33]. Cells infected with

either P311wt or P311 S59A showed high Rac1 activation

compared to uninfected cells or control cells (LacZ infection)

(Figure 8A). No Rac1 activation was detected in cells

infected with P311 S59D and P311 S59E. Immunoprecipita-

tion results indicated that Rac1 does not directly associate

with P311 (data not shown), arguing for other intermediate

regulatory proteins serving as activating links between P311

and Rac1. In addition, overexpression of P311wt or P311

S59A had no effect on Cdc42 activation (data not shown).

Specific siRNA oligonucleotides knocked down endogenous

Rac1 protein by f90% (Figure 8B) and suppressed glioma

migration (Figure 8C, lane c). Interestingly, Rac1 depletion

abrogated P311wt- and P311 S59A–induced cell motility (cf.

lanes g versus i and j versus l ); luciferase control siRNA had

no effect on P311-induced cell migration (lanes h and k).

These results suggest that P311-induced cell migration is

dependent on Rac1.

Discussion

To date, the function of P311 in glioma biology is unknown.

P311 has been previously characterized by the presence of a

conserved PEST domain that is targeted by the ubiquitin/

proteosome system, resulting in a protein half-life of about

5 minutes [7]. In this study, we demonstrated the importance

of the phosphorylation on S59 in the regulation and stability

of P311 in glioma cells. The phosphorylation status of S59 is

largely dependent on upstream PKC activity and active cell

motility. Mutational analysis of S59 indicates that this serine

residue is the solitary active phosphoserine within P311.

Consequently, mutation of P311 S59A resulted in loss of

P311 serine phosphorylation, heightened stability of the

P311 protein, and induction of glioma cell migration.

Regulation of cell migration is a dynamic process involv-

ing, among other reactions, modulation of focal adhesion

dynamics and actomyosin polymerization and contraction

[34,35]. Currently, it is not known how P311 participates in

the regulation of cell migration. Comparative analysis of

P311 serine phosphorylation status indicated that glioma

cells actively migrating on glioma-derived ECM displayed a

reduction in P311 serine phosphorylation. This decreased

level of serine phosphorylation appears to be independent of

the glioma-derived ECM because migration-restricted con-

fluent glioma cells on glioma-derived ECM also demon-

strated a decreased level in P311 serine phosphorylation

(data not shown). Accordingly, mutation of P311 S59A re-

sults in the loss of serine phosphorylation and an enhanced

cellular migration similar to overexpression of the P311wt

protein. In contrast, both S59E and S59D mutations did not

change cell motility. The difference between alanine substi-

tution and aspartate and glutamate substitution is that both

aspartate and glutamate substitutions were designed to

mimic a constitutive phosphorylated serine by weight and

charge, suggesting that the phosphorylated serine residue

regulates P311-induced cell migration. The findings in this

Figure 8. P311 overexpression induces Rac1 activation, and depletion of

Rac1 inhibits P311-induced cell migration (A). U118 cells were infected with

P311wt or P311 mutant adenoviruses (NI, no infection). Cells extracts were

assayed for Rac1 activation using the PBD assay, as described in Materials

and Methods. (B) Western blot analysis determining the protein expression of

Rac1 after siRNA transfection, as described in Materials and Methods. NT,

no transfection. (C) U118 cells were transfected with siRNA directed against

control luciferase (trl siRNA) or Rac1. Cells were then infected with adeno-

viruses expressing control LacZ, P311wt, or P311 S59A. Cell migration was

assessed on glioma-derived ECM over 48 hours.
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report support this interpretation. In addition, maintenance of

P311 in its dephosphorylated form is dependent on b1

integrin signaling, as indicated by maintenance of a constant

(elevated) level of serine phosphorylation when TACb1A is

expressed, which inhibits b1 integrin function. Inhibition of

b1 integrin signaling also abrogated P311-induced cell mi-

gration, suggesting that P311 acts in concert with signaling

that is downstream of b1 integrin.

Site-directed mutagenesis of S59A prevents the P311

protein from being degraded by ubiquitin-mediated proteol-

ysis. Interestingly, although the P311 S59E mutant did not

enhance glioma motility, protein stability was similar to the

P311 S59A mutant, whereas P311 S59D resulted in rapid

ubiquitin-mediated proteolysis. It is likely that tertiary protein

conformations from the site-directed mutants may explain

the differential binding of ubiquitin proteins to the PEST

sequence. Interestingly, pharmacologic inhibitor data sug-

gest that a novel class of PKC isoforms, particularly y, q, and

~, regulates P311 serine phosphorylation status. In the

present study, BIM-1 reduced P311 serine phosphorylation,

whereas Go6976 and Ro-32-0432 had no effect. BIM-1

inhibits the y, q, and ~ isoforms of PKC, distinct from the

other inhibitors [18]. PKC activity has been correlated with

growth rates [36,37] and migration behavior [38–40] in

gliomas in vitro. Specifically, PKCq has been shown to

positively regulate b1 integrin-dependent adhesion, spread-

ing, and motility of human glioma cells [40]. In fact, the

current findings support the notion that both PKCq and PKC~
are upstream mediators of P311 serine phosphorylation.

Depletion of either PKCq or PKC~ expression resulted in the

loss of P311 serine phosphorylation in migration-restricted

glioma cells. However, P311 serine phosphorylation is not

completely abrogated by BIM-1 treatment or siRNA depletion

of PKCq or PKC~ , suggesting that other signaling pathways

besides PKC are involved in P311 serine phosphorylation.

Immunoprecipitation of P311, coupled with MALI-TOF

MS analysis, revealed that Filamin A is directly or indirectly

a binding partner of P311. Filamin A is a large actin-binding

protein that stabilizes three-dimensional actin webs. Filamin

A links the actin cytoskeleton to cellular membranes, thereby

regulating cellular, architectural, and signaling functions

essential for cell motility [41]. Filamin A binds to at least 20

other marcromolecules, including b1 integrin [42], which has

been shown to play a crucial role in glioma cell migration and

invasion [25,27,28] and has multiple functions, including its

role in cortical stability necessary for lamellipodial extension

and cell crawling [43]. We demonstrated that P311 and

Filamin A colocalize at the leading edge of migrating glioma

cells and that both P311 and Filamin A are localized at

lamellipodial structures, suggesting a possible influence on

the activity of the small GTPase, Rac1. We report that

overexpression of P311 in glioma cells induces Rac1 acti-

vation. Notably, activation of Rac1 occurs through the ex-

change of bound GDP for GTP, catalyzed by one of multiple

Rac guanine exchange factors (GEFs) [44]. Likewise, inhi-

bition of Rac1 expression by siRNA oligonucleotides sup-

presses P311-induced migration. It is possible that P311

may modulate cytoskeleton dynamics by influencing one of

the Rac GEF proteins involved in Rac1 activation and

subsequently regulating cell migration. In fact, Rac1 has

been shown to play an important role in various malignant

carcinoma cells and in gliomas [22,30,45]. Interestingly,

immunoprecipitation studies showed no evidence of a direct

physical interaction between P311 and Rac1, further sup-

porting the notion that P311 activation of Rac1 is mediated

by intermediate soluble protein(s). In summary, these find-

ings highlight the importance of P311 in the regulation of

glioma cell migration. Importantly, we believe that the non-

phosphorylated form of P311 on S59 results in increased

protein stability, which subsequently promotes cytoskeleton

dynamics essential for migration. We further speculate that

P311 turnover in cells may impact the regulated action of

actin-binding proteins interacting with signaling molecules

such as Rac1. Thus, understanding the biologic role of P311

and its potential effectors is likely to open new possibilities for

therapeutic interventions aimed at invading glioma cells.
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