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Abstract

Real-time in vivo imaging of molecular targets at

(sub)cellular resolution is essential in better under-

standing complex biology. Confocal microscopy and

multiphoton microscopy have been used in the past to

achieve this goal, but their true capabilities have often

been limited by bulky optics and difficult experimen-

tal set-ups requiring exteriorized organs. We describe

here the development and validation of a unique near-

infrared laser scanning microscope system that uses

novel optics with a millimeter footprint. Optimized for

use in the far red and near-infrared ranges, the system

allows an imaging depth that extends up to 500 Mm

from a 1.3-mm-diameter stick objective, which is up to

2 cm in length. We show exceptionally high spatial, tem-

poral, and multiwavelength resolutions of the system

and show that it can be applied to virtually any internal

organ through a keyhole surgical access. We demon-

strate that, when combined with novel far red imag-

ing probes, it is possible to image the cellular details

of many organs and disease processes. The new optics,

coupled with the use of near-infrared probes, should

prove immensely valuable for in vivo cancer imaging.
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Introduction

There has been a growing interest in adapting microscopic

imaging approaches to study different disease processes

and complex biology in vivo. One reason for this has been

the growing realization that in vivo data can result in ob-

servations that are fundamentally different from those of

in vitro experiments. A number of microscopic resolution

imaging techniques have been developed to gain stun-

ning insights into tumor pathophysiology [1–3] and the cel-

lular tracking of immune cells [4,5] and stem cells [6]. Most

tumor studies to date have relied on glass window prepara-

tions [1–3] or highly invasive procedures involving the exte-

riorization or complete exposure of entire organs [7–9].

Given the invasiveness of these procedures, a complete

organ coverage and an improved depth penetration have

been challenging. One approach to minimally invasive

microscopy has been the introduction of miniaturized con-

focal microscopy systems. Several experimental devices based

on fiber-optic approaches have been described [10–15], and

some of them have been tested clinically [16]. Despite these

advances, the fiber-optic approach places limitations on pho-

ton flux, thus limiting true video rate and multiwavelength imag-

ing capabilities. This becomes even more accentuated with

far red and near-infrared photons. This range travels through

tissues most efficiently and is thus often used for whole

animal imaging [17].

Given the above limitations, we set out to design a miniatur-

ized laser scanning microscope for in vivo use. The system

operates in the visible and near-infrared ranges at up to four

wavelengths (three of which can be acquired simultaneously

at any time). The optics of the system relies on 16-G-diameter

(1.3-mm-diameter) ‘‘stick optics’’ that can be inserted into a

subject through a tiny keyhole incision. Furthermore, the biopsy

needle–sized objectives have a distal flush mechanism that

allows their insertion deep (1–2 cm) into tumors or organs.

We show that this approach allows for real-time imaging of

most internal organs, including the colon, pancreas, bladder,

liver, and brain. This system should be useful to simultaneously

image different fluorescent proteins [18], transgenic reporter

animals [19], and near-infrared reporter probes [17].

Materials and Methods

Miniaturized Laser Scanning Microscope

The microscope prototype and a schematic of the system

design are shown in Figures 1 and 2. In the current setting, four

lasers were used for excitation: 1) a 488-nm air-cooled argon

laser, with 40 mW of power output (Model IMA101040ALS;

Melles Griot, Carlsbad, CA); 2) a 561-nm solid-state yellow

laser, with 1 mW of power output (Model 85YCA010; Melles

Griot); 3) a 633-nm HeNe–R laser, with 10 mW of power output

(Model 05LHP925; Melles Griot); and 4) a 748-nm infrared

diode laser, with 30 mW of power output (Model FV10-LD748;
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Olympus Corporation, Tokyo, Japan). The conventional plan

apochromat and plan semiapochromat objectives were

designed for optimal performance with fluorescent microscopy

(Table 1). The novel stick objectives (the smallest objectives

developed to date for laser scanning microscopy) were de-

signed specifically for this laser scanning microscope. They

deliver high-resolution images in the visible light and near-

infrared spectrum and can be used to image virtually any

internal organ through small incisions due to their reduced

footprint size (1.3 mm in external diameter).

Wide spectral response photomultiplier tubes (model

R928P; Hamamatsu Photonics, Hamamatsu City, Japan) were

used as detectors to provide a high quantum efficiency and

amplification for both visible light and near-infrared signals.

Figure 1. Prototype of the laser scanner developed. (A) The system has an integrated gas vaporizer (arrow) and ventilator (arrow head), allowing for surgical

procedures to be performed on the imaging stage. (B) The microscope head containing the acquisition chamber can be tilted from -10j to 70j to either side,

minimizing animal repositioning and facilitating the imaging of uneven or curved organ surfaces. (C and D) New stick objectives allow a minimally invasive

microscopy of internal organs through keyhole incisions.

Figure 2. A schematic showing the system design (please see the text for details). BA, band-pass filter; PMT, photomultiplier tube; DM, dichroic mirror; CL,

collector lens; PL, pupil lens; TL, tube lens.
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Olympus Corporation custom-built dichroic mirrors (SDM-570,

SDM-630, SDM-633, and SDM-750), long-pass filter (BA

770 nm IF) and band-pass filters (BA 505–525 nm, BA 585–

615 nm, and BA 660–730 nm) were applied in an appropriate

sequence to detect up to three wavelengths simultaneously.

To further expand the ability of the microscope to image

living mice and to allow for surgical procedures to be per-

formed on the microscope stage, an isoflurane vaporizer

(Braintree Scientific, Braintree, MA) and a small animal

volume-controlled ventilator (Inspira ASV; Harvard Appara-

tus, Holliston, MA) were built into the system. A PC computer

running FluoView software (Olympus Corporation) was used

to control the microscope, and all images were recorded

and stored as proprietary multilayer 16-bit Tagged Image

File Format files.

Probes

A near-infrared imaging probe was used to image the

microvasculature of different organs and diseases processes

(Angiosense-750; Visen Medical, Woburn, MA). This probe

circulated inside normal blood vessels for up to 2 hours.

Excitation was provided by the 748-nm infrared laser, and

emission was capture in the AF750 channel (770 nm long-

pass filter).

A protease-activatable imaging probe was used to reveal

cathepsin B activity in intestinal adenomas (Prosense-680;

Visen Medical). Excitation was provided by the HeNe–R

laser (633 nm) and emission capture in the Cy5.5 channel

(660–730 nm band-pass filter). SYTOX green (Molecular

Probes, Eugene, OR), a nucleic acid staining agent, was used

to visualize the normal intestinal mucosa. This small mole-

cule quickly extravasates from intestinal microvessels after

intravenous injection and provides an anatomic background

image that helps in the identification of adenomas. Excitation

for SYTOX green was provided by the argon laser (488 nm),

and the emission was captured in the green fluorescent pro-

tein (GFP) channel (505–525 nm band-pass filter).

For cell tracking experiments, animals were injected intra-

venously with rhodamine 6G (Molecular Probes). This probe

specifically stains mitochondria of white blood cells, providing

a strong fluorescent signal that allows the imaging of individ-

ual cells in the bloodstream. Excitation was provided by the

561-nm solid-state yellow laser, and emission was captured

in the rhodamine channel (585–615 nm band-pass filter).

Animal Models

All animal studies were approved by the Institutional

Animal Care Committee. For microvasculature imaging ex-

periments, two transgenic mouse models are used. The GFP

mouse [FVB.Cg–Tg(GFPU)5Nagy/J; Jackson Laboratory,

Bar Harbor, ME] expresses GFP ubiquitously, and all organs

and tissues are brightly fluorescent on 488-nm laser exci-

tation. The Tie2 mouse [STOCK Tg(TIE2GFP)287Sato/J;

Jackson Laboratory] expresses GFP under the control of

the endothelial-specific receptor tyrosine kinase (Tek; former-

ly Tie2) promoter. In this case, only endothelial cells are green

fluorescent. Mice were anesthetized (2% isoflurane in 2 l/min

O2), intubated, and connected to the small animal volume-

controlled ventilator. Pancuronium (0.4 mg/kg) was adminis-

tered intravenously to paralyze all skeletal muscles to reduce

motion artifacts. Following animal anesthesia and position-

ing, Angiosense-750 (10 nmol/mouse) was injected intrave-

nously prior to imaging, and small abdominal incisions were

performed to expose the organ of interest. To image the bone

marrow, mice were positioned in a stereotactic head frame, a

small longitudinal skin incision was performed to exposed the

skull, and images were acquire through intact bone.

The APCMin+/� mouse was used as a model for in-

testinal adenomatosis and protease overexpression, This

well-established model mimics the rapid development of

adenomatous polyps in humans with familial adenomatous

polyposis. APCMin+/� mice develop spontaneous adeno-

mas throughout the intestinal tract with aging. Animals were

anesthetized, intubated, and paralyzed as described above.

Prosense-680 (2 nmol/mouse) was injected 24 hours prior

to imaging. SYTOX green and Angiosense-750 (10 nmol/

mouse) were injected 30 minutes before imaging. Animals

were positioned under the microscope, a small abdominal

incision was made, and a loop of jejunum was identified for

imaging. Microscopy was carried out using a simultaneous

triple excitation (488, 633, and 748 nm), and image series

was recorded in a similar fashion.

For cell tracking experiments, the ear of a nude mouse

(nu/nu; Charles River Laboratories, Wilmington, MA) was

injected subcutaneously with 5 ng/50 ml of recombinant

mouse TNF-alfa (R&D Systems, Minneapolis, MN). Twenty-

four hours later, rhodamine 6G (0.3 mg/kg) and Angiosense-

750 were injected intravenously. The animal was then

anesthetized (2% isoflurane in 2 l/min O2), and images were

acquired using double excitation (561 and 743 nm).

In the solid tumor imaging experiment, a colon cancer cell

line transfected to stably express the fluorescent protein

DsRed was used. Cells (1 � 106) were orthotopically

implanted in the colon of a nude mouse and allowed to grow

for 14 days. Immediately before imaging, Angiosense-750

was injected intravenously. The animal was anesthetized

(2% isoflurane in 2 l/min O2), and a small abdominal incision

was performed to expose the colonic tumor. Images were

acquired using double excitation (561 and 743 nm).

Table 1. Objectives.

Magnification Field of

View

Working

Distance

Immersion Description

�4 3.25 mm 13 mm No UPLFL
�10 1.3 mm 10 mm No UPLFL
�10 1.3 mm 3.1 mm No UPLAPO
�20 0.65 mm 1.6 mm No UPLFL
�40 0.325 mm 0.51 mm Water UPLFL
�20 SS 200 mm 100 mm Water MLS-D1W100W
�30 SS A 260 mm 50 mm Water MLS-D3W050W
�30 SS B 260 mm 200 mm Water MLS-D3W200W
�6 LS 670 mm 200 mm No IV-OB13F67W20
�20 LS 200 mm 200 mm Water IV-OB13F20W20
�27.3 LS 220 mm 200 mm Water IV-OB35F22W20

All stick objectives were custom-developed for the current study. SS, short

stick objective; LS, long stick objective.
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Results

System Performance

The near-infrared laser scanning imaging system design

described here was optimized for small animal imaging using

a multiwavelength approach with both visible light and near-

infrared optical probes. The tiltable microscope head can be

adjusted for the imaging of uneven and rounded surface

organs with optimal excitation and minimal animal reposition-

ing. The use of the newly designed stick objectives with

millimeter footprint allowed the microscopic visualization

of internal organs in a mouse through keyhole incisions.

The combination of high-magnification stick objectives, min-

imal organ exposure, and the anesthesia and mechanical

ventilation capabilities built into the system permits a serial

imaging of virtually any deep abdominal organ. The small

incisions needed to expose and image an anatomic region

also reduce manipulation artifacts, especially trauma to

the microvasculature.

The developed stick lenses have a resolution comparable

to regular objectives and can resolve single cells and sub-

cellular details, even when used in a multiwavelength ap-

proach. Importantly, photon flux measured at the tip of the

stick objectives was sufficient to provide an appropriate

excitation for all channels under normal imaging conditions

(Figure 3). The system was capable of exciting up to four

different fluorochromes at the same time and of acquiring

up to three fluorescent channels simultaneously in real time.

At the maximum scanning speed and using a matrix size of

256 � 256 pixels, the microscope generates video images

at a rate of 2.2 frames/sec. The fluorochrome detection

limit for all channels is in the femtomole range. The focal

depth of the system is f500 mm, comparable to current

multiphoton systems.

Imaging Microvascularity of Internal Organs

The combination of GFP-expressing transgenic mice,

multiwavelength imaging, and intravascular near-infrared

probes allowed the imaging of microvessels in normal inter-

nal organs as well as in more superficial vessels. Figure 4A

shows a characteristic tortuous blood vessel in a GFP

mouse bladder. The green background reveals the typical

random distribution of detrusor muscle fibers. Figure 4B

shows a straight blood vessel and its branches in a GFP

mouse thigh. In the background, the parallel distribution

typical of skeletal muscle fibers can be appreciated. In both

cases, blood flowing through small capillaries embedded in

the muscle fibers can be seem during real-time image ac-

quisition, with individual blood cells seen as dark foci within

the microvasculature.

When we used Tie2 mice, the green endothelial cells

provided information about blood vessel location and distri-

bution in the organs of interest. Figure 4C shows larger blood

vessels and various smaller branches in the intact jejunal

wall of a Tie2 mouse. When the intravascular probe is

injected, the blood flow pattern and timing can be deter-

mined. Figure 4D shows the kidney of a Tie2 mouse imaged

using a �20 stick objective and a small flank incision. The

nuclei of individual cells in kidney glomeruli are easily iden-

tified. The intravascular probe delineates blood vessel lumen

and reports on blood flow pattern and distribution. Using the

same objective and a small abdominal incision, we imaged

the liver (Figure 4E ) of a Tie2 mouse. Although bile auto-

fluorescence signal generates noise in the GFP channel,

green endothelial cells can be identified and the intravascular

probe can be detected inside the blood vessels.

To test the system’s ability to image blood flow in the bone

marrow through intact bones, a small skin incision was made

and the skull of a C57BL6/J mouse was exposed. Images

Figure 3. A graph showing photon flux through the different objectives. The y-axis shows the photon flux measured at the tip of each objective. Despite their

reduced footprint, stick objectives deliver adequate excitation light to the samples and provide high-resolution images from visible light to the near-infrared region.
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acquired after an Angiosense-750 injection showed the

marrow trabecular structure in sharp detail (Figure 4F ). We

acquired thin-slice Z-stack images up to a maximum pene-

tration of 500 mm. When time series were recorded, the

negative contrast formed by individual blood cells flowing

through bone marrow channels demonstrated flow.

We next used an ear inflammation model (Figure 5A– I ) to

track cellular homing to microvessels. Simultaneous images in

the rhodamine channel clearly resolved individual white blood

cells labeled with rhodamine 6G and their interactions with the

endothelial surface of those microvessels. Time series images

showed different rolling velocities of these white blood cells.

Figure 4. Imaging of different organs in mouse models. (A) GFP mouse bladder wall imaged using a �10 regular objective. A typical curled blood vessel (red)

embedded into the detrusor muscle fibers (green). (B) A GFP mouse thigh imaged using a �20 regular objective. Submillimeter vessels (red) are easily identified

among skeletal muscle fibers. (C) A Tie2 mouse intact jejunal wall imaged using a �20 regular objective. Endothelial cells (green) show microcirculation architecture,

whereas the intravascular probe (red) reports on blood flow distribution. (D) A Tie2 mouse kidney imaged using a �20 stick objective through a small flank incision.

Individual endothelial cells (green) form the typical glomerular structure of the organ. The intravascular probe (red) is used to show blood flowing through the kidney. (E)

A Tie2 mouse liver imaged using a �20 stick objective. The image is acquired through a small abdominal incision, avoiding manipulation artifacts. (F) A C57BL6/J

mouse skull bone marrow imaged using a �10 regular objective. The intravascular probe (red) can be imaged through intact bones in this region.

Figure 5. Cell tracking in a mouse ear inflammation model. (A– I) Still frames from a 60-second movie showing single cells labeled with rhodamine 6G rolling

(yellow) in the endothelial surface of a microvessel after intravascular probe (red) injection.
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Imaging Host Interaction in Oncogenesis

Intestinal adenomas in aged APCMin+/� mice were

imaged using three different probes and a simultaneous

triple excitation. Figure 6A (GFP channel) shows the intes-

tinal mucosa after a SYTOX green intravenous injection.

This anatomic background helps in the differentiation be-

tween the normal mucosa and the epithelium overlying the

adenomatous lesion. Figure 6B (Cy5.5 channel) shows the

signal generated by an activation of the protease probe.

Protease overexpression in intestinal adenomas is respon-

sible for the stronger signal over the lesion. Figure 6C

(AF750 channel) shows irregular, leakier blood vessels

supplying the adenoma after an Angiosense-750 intra-

venous injection. The blood vessel density in the adenoma

is clearly higher than in the normal adjacent mucosa. The

merged image (Figure 6D) highlights the ability of this system

to dissect a microscopic structure in a living animal using

novel optical probes and a multiwavelength approach.

When a nude mouse bearing DsRed-positive orthotopic

colon cancer was imaged, the blood supply to the tumor was

clearly highlighted due to the intravascular probe injected prior

to imaging (Figure 7A). Expression of the fluorescent protein

DsRed by tumor cells was also identified in this multichannel

setting (Figure 7B), demonstrating the ability of the system to

characterize vascular supply to the tumor in its orthotopic

colon bed.

Discussion

We set out to design a new laser scanning microscopy imag-

ing system, which is specifically optimized for in vivo imag-

ing of mouse models. A number of design criteria were first

established. The system had to: 1) have the capability to re-

solve far red and near-infrared fluorescence because light

penetrates most efficiently at these wavelengths and be-

cause there is low autofluorescence; 2) provide at least three

to four channel multiwavelength capabilities without spectral

overlap; 3) obviate the need for bulky optics with short work-

ing distances; 4) be compatible with anesthesia and ventila-

tion support; 5) be able to achieve at least a 400-mm depth

penetration from the tip of the lens; and 6) result in image

qualities similar to those accustomed with commercial con-

focal and multiphoton systems.

We decided to completely incorporate digital image

acquisition, relying on a novel design for a tiltable scan

head (–10j to 70j) controllable electronically, similarly as

in automated surgery. The newly designed stick objectives

with millimeter footprint allowed the positioning of the lens

through small incisions and the image acquisition of virtually

any internal organ. The stick lenses had a resolution com-

parable to regular objectives and were able to resolve single

cells and subcellular details, even when used in a multi-

wavelength approach.

We applied the system to imaging a number of different

organs, physiological processes, and disease states to dem-

onstrate its in vivo utility. As is evident from the images

obtained (Figures 4–7), image quality was superb. Internal

Figure 6. Multichannel images of an intestinal adenoma in a APCMin+/�
mouse. (A) The GFP channel shows a SYTOX green unspecific staining

of the intestinal mucosa. (B) The Cy5.5 channel detecting protease over-

expression in the adenoma when compared to the normal mucosa. (C) The

AF750 channel showing abnormal blood vessels supplying the adenoma.

(D) A merged image highlights the microscope’s ability to combine structural

and functional information to ‘‘dissect’’ submillimeter-sized structures.

Figure 7. Orthotopically implanted DsRed-positive colon tumor in a nude mouse imaged using double excitation. (A) The rhodamine channel showing the DsRed-

expressing colon cancer cells 14 days after implantation. (B) The AF750 channel showing microvessels supplying the tumor. (C) Merged image.
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GFP and DsRed production in tumors, in microvessels, and

during viral transfer could be readily detected. Using near-

infrared markers of microvascular integrity and/or pro-

teolysis, we were also able to characterize different disease

processes such as tumoral angiogenesis, invasion, micro-

vascular leak during rheumatoid arthritis formation, and re-

perfusion injury in intestinal ischemia, among others. The

newly developed system should be widely useful to expand

the capabilities of current microscopic imaging systems to

in vivo imaging in experimental mouse models.
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