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Abstract

Tumor vasculature is an attractive therapeutic target

as it differs structurally from normal vasculature, and

the destruction of a single vessel can lead to the death

of many tumor cells. The effects of antivascular drugs

are frequently short term, with regrowth beginning

less than 24 hours posttreatment. This study inves-

tigated the duration of the response to the vascular

targeting agent, ZD6126, of the GH3 prolactinoma, in

which efficacy and dose–response have previously

been demonstrated. GH3 prolactinomas were grown in

the flanks of eight Wistar Furth rats. All animals were

treated with 50 mg/kg ZD6126. The tumors were

examined with dynamic contrast–enhanced magnetic

resonance imaging (DCE-MRI) 24 hours pretreatment

and posttreatment, and at a single time between 48 and

96 hours posttreatment. No evidence of recovery of

perfusion was observed even at the longest (96-hour)

time point. Involvement of a statistician at the project

planning stage and the use of DCE-MRI, which permits

noninvasive quantitation of parameters related to

blood flow in intact animals, allowed this highly

significant result to be obtained using only eight rats.
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Introduction

In order to survive and grow, solid tumors need to maintain

a functional vascular network. However, tumor blood ves-

sels differ significantly from vessels in normal tissues,

making tumor vasculature an important target for therapeu-

tic intervention in cancer [1]. Vascular targeting aims to

exploit these differences to selectively destroy tumor vas-

culature, irreversibly arresting blood flow to tumors. This

induces tumor ischemia, leading to a rapid cell death by

necrosis throughout central areas of the tumor normally

considered resistant to conventional therapies. Character-

istically, in experimental tumor models, a thin viable rim of

tumor cells is seen to survive following treatment with

vascular targeting agents. To explain this, it has been hypoth-

esized that nontumor blood vessels in the surrounding tissues

provide essential nutrients and oxygen, allowing tumor cells at

the rim to survive the destruction of blood vessels throughout

the tumor. Because the surviving rim of tumor is likely to be well

perfused by surrounding vessels in normal tissues, the addition

of other therapeutic modalities, such as chemotherapy and

radiotherapy, may be particularly effective when combined with

vascular targeting agents.

One vascular targeting approach has been to disrupt the

proliferating, immature endothelial cells found selectively in

tumor microvasculature compared with normal tissue micro-

vasculature. Proliferating endothelial cells appear to rely on a

microtubular cytoskeleton to maintain cell shape and, there-

fore, vessel function, and microtubule-destabilizing agents

such as colchicines and the Vinca alkaloids have demonstrated

vascular targeting activity against tumor blood vessels. How-

ever, these effects were only seen close to the maximum

tolerated dose, and direct tumor cell killing through G2/mitotic

arrest is likely to be the dominant mode of the antitumor action

of these tubulin-binding agents.

Disruption of tumor blood vessel function by vascular targeting

agents is a rapid event occurring within hours of drug treatment.

Therefore, it has been proposed that the most effective vascular

targeting agents will have rapidly reversible tubulin-binding kinet-

ics, and a relatively rapid clearance in vivo, potentially mini-

mizing direct cytotoxicity to tumor cells and normal tissues.

N-acetylcolchinol-O-phosphate (ZD6126) is a novel vascu-

lar targeting agent that in mouse allograft and xenograft models

demonstrated rapid clearance in vivo (1–2 hours), with signif-

icant inhibition of both tumor blood flow and induction of

massive central tumor necrosis (at ZD6126 doses of one
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thirtieth and one eighth of the maximum tolerated dose,

respectively) [2,3]. It has also been shown to have significant

antitumor activity in a mouse lung cancer metastasis model

[4]. In addition, ZD6126 was also shown to induce rapid and

reversible microtubule destabilization and cell shape change

in endothelial cells in vitro. These studies have shown that

the activity profile of ZD6126 is consistent with a vascular

targeting, rather than a cytotoxic, mechanism.

A single dose of ZD6126 consistently induced mas-

sive central necrosis in a range of histologically diverse

xenograft/allograft tumor models, although this did not

always translate to tumor shrinkage, presumably due to

regrowth from the remaining rim of viable tumor cells.

Measuring necrosis histologically is a useful objective

measure of drug response in preclinical models, but it

has two significant drawbacks. As a preclinical tool, it is

inefficient as the animal in which the tumor is grown must

be sacrificed to perform the measurement, requiring many

more animals than techniques where serial studies on a

single animal are possible. Moreover, measuring necrosis

is unlikely to provide a useful clinical measure of tumor

response due to the heterogeneity of tumors and the

sampling errors inherent in biopsy assessment. A nonin-

vasive functional imaging technique that provides a quan-

titative endpoint is clinically translatable and permits serial

studies, allowing reduction of animal usage. Magnetic

resonance imaging (MRI) has been used to investigate

the effects of ZD6126, both in animal models and in Phase I

clinical trials. The majority of these studies have used

dynamic contrast–enhanced magnetic resonance imaging

(DCE-MRI). This can be analyzed with one of a number of

compartmental models, giving a value for the transfer

constant of a contrast agent from blood plasma to the

extravascular extracellular space, or more simply by mea-

suring the integrated area under the [gadolinium]– time

curve (IAUGC). A high value of IAUGC may reflect high

blood flow, high vascular volume, high interstitial fraction,

and/or high endothelial permeability. The dramatic reductions

in tumor perfusion that are observed after treatment with

antivascular agents are therefore reflected in substantial

reductions in the DCE-MRI parameters. Robinson et al. [5]

performed a dose–response study using DCE-MRI in GH3

prolactinomas in rats, and showed highly significant changes

in the fraction of the tumor that enhanced strongly 24 hours

posttreatment with 25 or 50 mg/kg ZD6126, but no significant

response at 12.5 mg/kg ZD6126; this study also demonstrated

significant changes in the relaxation time T2* measured by

multigradient echo MRI in GH3 prolactinomas and dose-

dependent increases in the necrotic fraction measured by

histology. Evelhoch et al. [6] used DCE-MRI to evaluate the

effects of ZD6126 in C38 colon adenocarcinomas in mice

and, subsequently, in metastatic liver disease in patients

receiving ZD6126 as part of a Phase I clinical trial [7]. In the

human studies, IAUGC was reduced in five of six patients at

6 hours after treatment and in two of six patients at 18 to

21 days posttreatment. The murine studies revealed highly

significant changes in IAUGC at doses of 100 or 200 mg/kg

ZD6126, but no significant change at 50 mg/kg. Goertz et al.

[8] used high-frequency (25–38 MHz) Doppler ultrasound to

examine changes in blood flow in MeWo melanomas grown

subcutaneously in nude mice pretreatment and posttreat-

ment with 20 mg/kg ZD6126. Substantial drops in perfusion

were observed at 4 hours posttreatment, with recovery by

24 hours. Histological perfused vessel counts based on

Hoechst 33342 were consistent with the ultrasound data.

These previous functional imaging studies have assessed

the dose response of experimental tumors 24 hours post-

treatment as observed by DCE-MRI, and demonstrated a

significant correlation between tumor necrosis and DCE-

MRI. Similar correlations between histologically measured

necrosis and DCE-MRI parameters have also been demon-

strated in human pediatric osteosarcoma after treatment with

ifosfamide and carboplatin [9], and Ewing and osteogenic

sarcomas after treatment with cyclophosphamide, doxorubi-

cin, and vincristine, and methotrexate, cisplatin, and doxo-

rubicin, respectively [10].

Regrowth of viable tumor after ZD6126 treatment has, to

date, been assessed only by histological studies of treated

tumors, which have shown that regrowth can occur within a

few days of treatment [2,3]. The objective of the present

study, therefore, was to explore the time course of recovery

of perfusion, as evidenced by IAUGC analysis, following the

expected [5] acute drop in perfusion at 24 hours posttreat-

ment. The experimental design was selected in order to

explore the broadest recovery time window (48–96 hours

postdose) with the minimum number of animals. Each animal

was used as its own control and imaged at baseline

(24 hours before dosing), 24 hours after dosing, and n hours

postdosing (where n = 48, 60, 72, or 96). It was considered

undesirable to expose any animal to more than three bouts of

anesthesia during the study. The design included two ani-

mals in each of four time points in order to provide more

informative data rather than using a single n time point and

allowing the half-time of a linear recovery in highly enhancing

fraction (HEF) to be estimated.

Methods

All experiments were performed in accordance with the UK

Home Office Animals Scientific Procedures Act 1986. GH3

prolactinomas were grown subcutaneously in the flanks of

eight Wistar Furth rats [11]. Tumor volume was measured

using calipers, assuming an ellipsoidal shape. The mean

tumor volume at the first MRI scan was 1.71 ± 0.2 cm3

(mean ± standard error of the mean, range 0.95–2.47 cm3).

Anesthesia was induced with 4 ml/kg fentanyl citrate

(0.315 mg/ml) plus fluanisone (10 mg/ml) (Hypnorm;

Janssen Pharmaceutica NV, Beerse, Belgium), midazolam

(5 mg/ml) (Hypnovel; Roche, Basil, Switzerland), and water

(1:1:2) injected intraperitoneally. This anesthetic mixture has

been shown to have a minimal effect on tumor blood flow

[12]. The imaging study lasted 90 minutes from administra-

tion of anesthetic.

Formulation, Administration, and Dosing of ZD6126

ZD6126 was formulated in 20% of 5% sodium carbon-

ate and 80% phosphate-buffered saline, yielding a clear
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solution at fpH 7, and was administered intravenously as

a bolus injection through a tail vein. All animals were

treated with 50 mg/kg ZD6126. This dose has previously

been demonstrated to be well tolerated and to have a large

statistically significant effect on tumor necrosis and DCE-

MRI HEF in this host and tumor model [5].

DCE-MRI

Dynamic contrast–enhanced MRI (DCE-MRI) was per-

formed three times on each rat: 24 hours pre– and post–

ZD6126 treatment in each animal, and at one additional time

point of 48, 60, 72, or 96 hours posttreatment (n = 2 per time

point). MRI data were acquired on a Varian Unity Inova 4.7T

horizontal bore system with 14 G/cm gradients of rise time of

250 microseconds and inner diameter of 154 mm. The

radiofrequency coil used was a quadrature birdcage coil,

which enclosed the rats from the neck to the base of the tail.

For all images, the field of view was 60 mm, slice thickness

was 2 mm, and resolution was 128 � 128 points, giving an

in-plane resolution of 0.47 mm. One signal average was

acquired per phase-encoding step for all images except for

the T2-weighted images, for which two signal averages were

acquired to enhance the signal-to-noise ratio. Prior to con-

trast agent administration, T1-weighted spin-echo images

were obtained with echo time TE = 10 milliseconds and

repetition times TR of 0.12, 0.5, 2, and 10 seconds to enable

accurate calculation of the native tissue T1 value. Four

contiguous sagittal slices covering the full volume of the

tumor were selected together with one transverse slice

through the abdomen to provide a normal tissue reference

from paraspinal muscle. T2-weighted spin-echo images

(TE = 120 milliseconds, TR = 3000 milliseconds) were also

obtained from the same slices to facilitate definition of the

tumor boundaries. The slice positions for the posttreatment

scans were registered as closely as possible with the pre-

treatment scans for optimum comparison of the pretreatment

and posttreatment DCE-MRI values. Multislice DCE-MRI

data were then acquired using a spin-echo sequence

(TR = 120 milliseconds, TE = 10 milliseconds, resulting in

a time resolution of 15.4 seconds). Five image sets were

acquired prior to injection of 0.1 mmol/kg gadodiamide

(Omniscan; Nycomed Amersham Imaging) and 40 image

sets postinjection, giving a total imaging time postinjection of

10 minutes and 15 seconds. The five preinjection image sets

were averaged prior to DCE-MRI data processing to en-

hance the baseline signal-to-noise ratio and hence the

precision of the tissue [gadodiamide] calculation, which

depends on the change in signal from the baseline level.

After the third MRI examination, each rat was euthanized

by cervical dislocation while still anesthetized. The tumors

were immediately excised, fixed in formal saline, sliced

parallel to the MRI plane, and stained with hematoxylin and

eosin (H&E). Tissue sections were assessed for necrosis,

using a scale from grade 1 (0–10% necrosis) to grade

10 (> 90–100% necrosis) [2]. The necrosis scores represent

the median value of between three and five sections for

each tumor.

Tumor Growth Delay Studies

Sacrificing the group of rats undergoing MRI immediately

after the last imaging session in order to confirm necrosis

histologically prevented growth delay assessment. There-

fore, growth delay studies were performed in a second cohort

of animals in which all animals were studied for 96 hours

posttreatment. Tumor volume was measured as before.

Measurement was performed at 24-hour intervals from 0 to

168 hours postadministration of 50 mg/kg ZD6126 (n = 3) or

saline vehicle for control (n = 3).

DCE-MRI data were analyzed using an IAUGC method

[13,14], implemented in IDL 5.3/5.4 (Research Systems,

Boulder, CO). Tumor data were calculated from all four

slices, except where the tumor was too small to occupy all

slices. Regions of interest (ROIs) were drawn around tumor

and a reference tissue in the paraspinal muscle by a single

blinded observer using manual segmentation. In order to

investigate whether there was a difference in tumor response

between the center and the periphery of the tumor [15,16],

ROIs were automatically generated from the manually drawn

tumor ROIs to segment the tumor into a core region and a rim

of thickness 3 mm (Figure 1). Absolute values of IAUGC of

reference tissues pretreatment and posttreatment were test-

ed for systematic changes in response to treatment using

paired two-sample t-test, and no significant effect was found

(P = .66 for pretreatment versus the 24-hour time point and

P = .41 for pretreatment versus the final time point in each

animal). The concentration of gadodiamide was calculated in

each voxel within the ROI from the change in the T1 relax-

ation time using a value of 3.8 mM�1 sec�1 for the relaxivity

of gadodiamide. The IAUGC was calculated from the integral

of the first 10 images, representing 153 seconds postcon-

trast administration. The IAUGC was normalized by division

by the median value of the normal tissue in order to com-

pensate for variations in the contrast agent arterial input

function between animals. Voxels were defined to be highly

enhancing where the normalized value was greater than 1.

This choice of limit was made to define regions of tumor that

did not enhance substantially, rather than to distinguish

tumor from normal tissues. The choice was supported by

cumulative histogram analysis of the data. The HEF is a

Figure 1. Examples of the ROIs selected for a single slice through the tumor

grown in rat B 72 hours posttreatment with ZD6126. The images are of

IAUGC. (A) Whole-slice ROI. Pixels outside the manually drawn ROIs have

been set to black. IAUGC images of (B) an automatically generated rim ROI

of thickness 3 mm and (C) the core ROI consisting of voxels at least 3 mm

from the tumor surface. In (B) and (C), the core and rim ROIs, respectively,

have been cross-hatched to help distinguish the limits of the ROI images.

Note that posttreatment, IAUGC is very low in the bulk of the core.
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proxy for the vascularized tumor volume [5]. The Wilcoxon

signed rank statistic was used to analyze the changes in HEF

at different time points.

Results

IAUGC Analysis

The HEF was high (between 0.73 and 0.96, mean ±

standard deviation 0.85 ± 0.1) for all animals at baseline.

All tumors showed a significant reduction overall in HEF

24 hours posttreatment (mean 46%, Wilcoxon signed rank

statistic S = 18, P = .008, two-sided), but there was

considerable interanimal variability in the response (range

23–96% reduction in HEF, mean ± standard deviation

0.45 ± 0.2). Previous studies [5] show that vehicle-treated

GH3 tumors do not show a significant reduction in HEF

due to spontaneous necrosis at this time point, even at a

larger volume than those studied in this work. As shown in

Figure 2A, there was no evidence of any trend to recovery

in perfusion even at the latest time point of 96 hours

(median difference 0.004, Wilcoxon signed rank statistic,

S = 5, P = ns). No half-time for recovery of perfusion can

be estimated from these data, as it would far exceed the

time window of the experiment. The whole-tumor results

are summarized in Table 1. Generally similar results are

observed when the tumor data are segmented into rim

(Figure 2B) and core (Figure 2C) regions, with all tumor

cores and rims showing significant reduction in HEF.

However, the reduction is smaller for the rims than for

the cores (mean reduction 60% for cores and 35% for rims,

Wilcoxon signed rank statistic S, = 18, P = .008 for both).

There is no overall trend of recovery in perfusion at the

final time point in either rims or cores (Wilcoxon signed

rank statistic S = 5 (rims), S = 0 (cores), P = ns in each

case). However, the rim values plotted in Figure 2B are

consistent with a trend to earlier recovery associated with

higher values of HEF at 24 hours posttreatment.

Example data are presented as IAUGC images (Figure 3,

A–C) and histograms (Figure 3, D–F ) for rat B, which was

monitored until 72 hours posttreatment. The histograms are

generated from all four tumor image slices. The HEF is

equivalent to the proportion of the histogram above the point

where the normalized IAUGC = 1. Image voxels outside the

ROI drawn around the tumor are set to black. The pretreat-

ment image is somewhat heterogeneous, the dark regions

corresponding presumably to hypoperfused or necrotic

areas where there is poor blood flow. At 24 hours posttreat-

ment, a heterogeneous response is observed. The IAUGC is

reduced close to zero over a large proportion of the tumor.

Some regions are spared, with contrast enhancement of

similar magnitude to that pretreatment being limited to the

rim and a fraction of the core. At 72 hours, there is no sign

of recovery, and the enhancing rim appears smaller. This

is reflected in the IAUGC histogram distributions; overall

(Figure 3D), the distribution changes dramatically with treat-

ment. No substantial change is observed between 24 and 72

hours posttreatment, either overall or within the rim or core

alone. The rim (Figure 3E ) shows relatively little change on

treatment; the shape of the histogram alters, with more

voxels at very low IAUGC. However, the distribution is not

greatly altered at normalized IAUGC values above 2. The

distribution change on treatment is most dramatic in the core

(Figure 3F ), with the majority of the voxels being found in the

spike at low IAUGC.

Histology

The mean tumor necrosis score on excision was 8.3 ± 0.6

(mean ± SEM). The necrosis score was not correlated with

time from treatment (Kendall tau b = �0.23, P = .44), which

is consistent with the absence of recovery observed by

DCE-MRI. The tumor necrosis score after ZD6126 treat-

ment, at all time points from 48 to 96 hours posttreatment, is

Figure 2. (A) HEF of tumor voxels pretreatment and at two time points

posttreatment with 50 mg/kg ZD6126. The HEF for each tumor is calculated

from all four image slices. (B) HEF of voxels within the tumor rim (thickness

3 mm). (C) HEF of voxels within the tumor core, defined as regions at least

3 mm from the surface of the tumor.
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significantly correlated with the HEF (Kendall Tau b =�0.714,

P = .0133) measured in each tumor immediately prior to

excision and histology. Necrosis score is plotted against HEF

in Figure 4. No data were acquired from animals treated with

vehicle alone in this study. Generally, the central portions of

the tumor were necrotic and viable regions were restricted to

the rim portions, reflecting the vascularized regions visible in

the IAUGC images. An example of a tumor section stained

with H&E 72 hours posttreatment is presented in Figure 5.

Tumor Growth Delay

Tumor volumes for treated and control groups are pre-

sented in Figure 6. The doubling time for the control group

was 3.75 ± 0.24 days. There was no change in the volume

of the treated tumors between days 0 and 7 (paired t-test,

t = 0.5639, P = .6296), which is consistent with the MRI

findings.

Discussion and Conclusions

Previous preclinical studies have shown that a single dose of

ZD6126 causes extensive central tumor necrosis in a range

of histologically diverse experimental tumors, leaving a char-

acteristic viable rim. The acute response observed by DCE-

MRI in this study is consistent with this response to ZD6126

as measured by MRI or histology [2,3,5,6]. Despite the

induction of widespread central tumor necrosis, a single

dose of ZD6126 does not induce prolonged tumor growth

delays as regrowth from the remaining viable rim can be

rapid. Hence, single doses of tubulin-binding tumor antivas-

cular agents in isolation result in small, unsustained growth

delays in many tumor models. Davis et al. [3] show unsus-

tained growth delay in FaDu and CaNT tumors treated with a

single dose of ZD6126, and Blakey et al. [2] show unsus-

tained growth delay in Hras5, 5.7 days of growth delay in

Calu-6, and 15.2, 12.8, and 9.4 days of growth delay in three

independent experiments on LoVo tumors treated with

ZD6126. Considerably greater growth delays result from

the use of multiple doses of ZD6126, or its use in combina-

tion with certain cytotoxic therapies such as cisplatin [2] or

radiotherapy [17].

At the outset of this study, our hypothesis was that

recovery of perfusion as evidenced by increases in HEF

after an initial reduction 24 hours after a single dose of

ZD6126 would be evident by 96 hours postdosing. This

hypothesis is not supported by the data, which provide no

evidence at all for any recovery of perfusion. Moreover, there

was good agreement between MRI-derived assessments of

HEF and histological assessment of necrosis, indicating that

our MRI measurements detect physiologically relevant per-

fusion. The 50-mg/kg necrosis scores are consistent with

those in a previous study in the GH3 prolactinoma [5], where

the necrosis scores were 4.3 ± 0.6 for the vehicle-treated

group and 8.8 ± 1.0 for the 50 mg/kg ZD6126–treated group.

Notably, the posttreatment scores are similar even though

the tumors were excised for histology 24 hours posttreat-

ment in the previous study and 48 to 96 hours posttreatment

in the present regrowth study. We have not precisely quan-

tified the growth delay in this study. However, the absence of

any change in volume in the growth delay study treated

group up to 7 days, combined with the histology and MRI

data, suggests that the effect of ZD6126 is remarkably

prolonged in this tumor model compared to other literature

values. It is not yet known what determines the tumor

regrowth rate posttreatment, although the doubling time of

the untreated tumor is likely to be a contributing factor. It is

particularly remarkable that none of the treated tumors

shows regrowth, despite the wide range of response mea-

sured by changes in HEF. The acute response does resem-

ble that of other models, with massive central necrosis but

a residual viable rim after ZD6126 treatment.

The strong inverse correlation between the HEF mea-

sured by DCE-MRI and necrosis score previously demon-

strated in the dose–response study [5] is again evident in

this study (Figure 4). However, in one case, the necrosis

score is much larger than the region of reduced flow. This

is reasonable, as cutting off blood flow must cause necro-

sis due to the removal of oxygen and nutrient supplies, but

necrosis need not result only from the loss of blood supply.

It is also possible that this necrosis results from regions

where the blood supply was transiently interrupted by the

action of ZD6126, but was restored less than 24 hours

posttreatment. Prise et al. [18] investigated the effects of a

Table 1. HEF from IAUGC analysis, change in HEF 24 hours posttreatment, and necrosis score for tumors in individual rats (A) – (H).

Rat Baseline HEF HEF 24 Hours

Posttreatment

Change in HEF

with Treatment

(Baseline –24 Hours

Posttreatment)

Time of Final HEF/Hours

Posttreatment

Final HEF Tumor Necrosis Score

A 0.959 0.035 0.924 48 0.000 10

B 0.872 0.484 0.388 72 0.497 6.5

C 0.957 0.668 0.289 60 0.677 7

D 0.766 0.590 0.176 72 0.685 6

E 0.941 0.720 0.221 96 0.750 9

F 0.772 0.424 0.348 60 0.323 9.5

G 0.774 0.263 0.511 96 0.145 9.5

H 0.732 0.451 0.281 48 0.434 9

Tumors were excised and fixed for histology immediately after the final MRI scan. Necrosis was assessed on a scale from 1 to 10, where grade 1 represents 0% to

10% necrosis, and 10 represents 90% to 100% necrosis. Necrosis scores are the median values for three to five sections for each tumor.
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single dose of combretastatin A-4 phosphate (another

class of vascular targeting agent that destabilizes micro-

tubules) on necrosis and blood flow measured by autora-

diography in the rat P22 carcinosarcoma up to 96 hours

posttreatment. They observed greater reductions in perfu-

sion in the center of the tumor compared to the periphery.

Substantial recovery occurs by 24 hours posttreatment and

the reductions are not statistically significant after this time

point. They also observe that at 96 hours posttreatment,

the region of reduced flow extends beyond the region of

necrosis, which is not the case at 24 hours. Galbraith et al.

[16] observed significantly greater reductions in DCE-MRI

in the core than in the rim of P22 carcinosarcomas 1 to 6

hours after treatment with 30 mg/kg combretastatin A-4

phosphate. They detected significant reductions in tumor

Ktrans in patients receiving combretastatin A-4 phosphate

doses of 52 mg/m2 or above as part of a Phase I clinical

trial. In 6 of 14 patients showing reduction in tumor Ktrans,

the reduction was observed to be greater in the core of the

tumor than at its periphery. These results are broadly

consistent with those obtained in the GH3 prolactinoma

with DCE-MRI post–ZD6126 treatment.

In this study, the mean HEF 24 hours posttreatment

was 0.45 ± 0.2 (mean ± SD), whereas a previous dose–

response study in the GH3 prolactinoma [5] found a value of

0.23 ± 0.2 at the same dose of 50 mg/kg ZD6126. It is

interesting to note that the volumes of the tumors in this

study (range 0.95–2.47 cm3) are smaller than those in

the earlier dose–response study (range 2.54–5.38 cm3),

and that the necrosis induced by tubulin-binding tumor

Figure 3. Images of tumor IAUGC (A) pretreatment, (B) 24 hours posttreatment, and (C) 72 hours posttreatment with ZD6126. (D) Histograms of overall tumor

IAUGC. Pretreatment, the distribution is approximately normal. Posttreatment, a dramatic shift to a bimodal distribution is observed. A large, narrow spike at low

IAUGC corresponds to the proportion of tumor that does not enhance with contrast, or enhances very slowly. The residual enhancing vascularized portion forms a

broad distribution of similar width to the pretreatment fraction. There is little change between 24 and 72 hours posttreatment. (E) Histograms of tumor rim. The

change with treatment is small compared with that in the core. (F) Histograms of tumor core. Note the very high proportion of voxels in the low IAUGC spike

posttreatment.
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antivascular agents including ZD6126 [19] and combretas-

tatin [20] has been observed to increase with tumor

volume.

The response of the tumors in this study has been

evaluated using growth curves, DCE-MRI, and histological

staining for necrosis, with consistent results. For this fast-

growing preclinical model, the tumor volume clearly shows

the growth retardation resulting from drug treatment, but

gives no information on the localization of the tumor necrosis,

or on the degree of reperfusion taking place before this is

reflected in volume increases. Volume measurements may

be of limited use in a clinical setting, where the cytostatic

nature of the effects of antivascular agents may not lead to a

reduction in tumor volume. Histology allows localization of

the tumor necrosis, but requires the sacrifice of the animal.

The noninvasive MRI exam can be repeated several times in

safety, and the IAUGC method used has been recommen-

ded as a method of choice for investigation of antivascular

and antiangiogenic agents [21]. In this preclinical study,

statistical power is greatly increased by the serial nature of

the study, which permits the use of paired statistical tests.

This study therefore provides a good example of the advan-

tages of noninvasive imaging with careful experimental

design, by using each animal as its own control, for extract-

ing significant pharmacological information from small numb-

ers of animals even in the presence of substantial interanimal

variability.

In summary, we have demonstrated that a single dose of

ZD6126 reduces perfusion for more than 96 hours in the

GH3 prolactinoma grown in Wistar Furth rats, which is longer

than the duration of reduced perfusion seen in other rodent

tumor models. This result has been obtained with a method

that is serially repeatable (allowing reduction in animal use)

and translatable to the clinic.
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