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Abstract

Here we investigate the mechanism(s) involved in the

c-Myc–dependent drug response of melanoma cells.

By using three M14-derived c-Myc low-expressing

clones, we demonstrate that alkylating agents, cispla-

tin and melphalan, trigger apoptosis in the c-Myc

antisense transfectants, but not in the parental line. On

the contrary, topoisomerase inhibitors, adriamycin and

camptothecin, induce apoptosis to the same extent

regardless of c-Myc expression. Because we previ-

ously demonstrated that c-Myc downregulation de-

creases glutathione (GSH) content, we evaluated the

role of GSH in the apoptosis induced by the different

drugs. In control cells treated with one of the alkylat-

ing agents or the others, GSH depletion achieved by

L-buthionine-sulfoximine preincubation opens the

apoptotic pathway. The apoptosis proceeded through

early Bax relocalization, cytochrome c release, and

concomitant caspase-9 activation, whereas reactive

oxygen species production and alteration of mitochon-

dria membrane potential were late events. That GSH

was determining in the c-Myc –dependent drug-

induced apoptosis was demonstrated by altering the

intracellular GSH content of the c-Myc low-expressing

cells up to the level of controls. Indeed, GSH ethyl

ester–mediated increase of GSH abrogated apopto-

sis induced by cisplatin and melphalan by inhibition

of Bax/cytochrome c redistribution. The relationship

among c-Myc, GSH content, and the response to al-

kylating agent has been also evaluated in the M14 Myc

overexpressing clones as well as in the melanoma JR8

c-Myc antisense transfectants. All together, these

results demonstrate that GSH plays a key role in

governing c-Myc–dependent drug-induced apoptosis.
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Introduction

Several papers report that susceptibility to apoptosis can

contribute to the response of tumor cells to most cytotoxic

agents currently used. Thus, alterations that impair suscep-

tibility to apoptosis should produce drug resistance. Muta-

tions affecting the c-myc proto-oncogene are among the most

common genetic lesions found in a variety of human cancers

[1,2]. The role of c-myc oncogene on apoptosis has been

extensively documented. Under appropriate circumstances,

both repression and overexpression of c-Myc can lead to

apoptosis. For example, c-myc antisense or dominant-defec-

tive causes apoptosis in a variety of transformed cell types [3],

whereas c-Myc expression can sensitize cells to a wide range

of different stimuli such as low serum conditions [4], hypoxia

[5], and deprivation of specific growth factors [6,7]. Many

studies have been dedicated to c-Myc–mediated apoptotic

pathways initiated by DNA-damaging agents due to the poten-

tial relevance to cancer chemotherapy. Nevertheless, the role

of c-Myc in susceptibility to drug-induced cell death is still

obscure with results being contradictory up to now.

Deregulated c-Myc expression has been reported not only

to enhance tumor cell sensitivity but also to induce resistance

to antineoplastic agents. In particular, overexpression of c-Myc

has been reported to increase cellular susceptibility to chemo-

therapy-induced apoptosis [8–10]. Conversely, in other exper-

imental models, c-Myc overexpression increases the

resistance to alkylating agents, as well as to adriamycin

(ADR) and etoposide, whereas it does not influence the

response to ionizing radiation [11,12]. Then again, inducible

antisense c-myc gene transfer confers sensitivity to cisplatin

(CDDP) in a drug-resistant human small cell lung carcinoma

line [13]. In this context, we previously demonstrated that

treatment with c-myc antisense oligodeoxynucleotides in-

duces apoptosis and enhances CDDP antitumoral efficacy in

several human melanoma cell lines [14–16]. The role of c-Myc

on the apoptosis and drug sensitivity of melanoma cells has

been evaluated by our group by using stable c-Myc low-

expressing transfectants. We have demonstrated that although

c-Myc downregulation induces apoptosis and sensitizes M14
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melanoma cells to the alkylating agent CDDP, it has no

such effect with DNA topoisomerase inhibitors ADR and

camptothecin (CPT) [17]. Recently, by using inducible

c-Myc antisense transfectants, we also found that down-

regulation of c-Myc triggers apoptosis through glutathione

(GSH) depletion [18]. GSH is an endogenous cysteine-con-

taining tripeptide, playing a key role in drug detoxification

through a number of mechanisms, including antioxidant

activity [19], DNA repair [20,21], conjugation of cellular toxins

[22], and pumping of toxic chemotherapeutics out of cells

through the multidrug resistance–associated proteins [23].

Elevated intracellular GSH can augment cell resistance to

irradiation and chemotherapy, especially to alkylating

agents, whereas diminution of intracellular GSH content

can increase cell response to radiotherapy and chemo-

therapy [19,24]. Drug resistance has been correlated

to increased levels of both messenger RNA and activity of

g-glutamylcysteine synthetase [25,26]—the rate-limiting en-

zyme for GSH biosynthesis. In addition, transfection of

the cDNA encoding for this enzyme into tumor cells leads

to increased activity and drug resistance, along with GSH

levels [27].

Hence, the main objective of this paper was to investigate

the role of GSH on the c-Myc–dependent chemosensitivity

of melanoma cells.

Materials and Methods

Cell Culture

Three stable c-Myc antisense transfectants (MAS51,

MAS53, and MAS69) and a control clone (MN2) were

previously obtained by transfecting the M14 human mela-

noma parental line with an expression vector carrying the

antisense c-myc cDNA and/or the neomycin selection

marker gene [17]. M14 cells were also transfected with

the pCDNAI–c-myc cDNA expression vector and two

c-Myc overexpressing clones (MS41 and MS58) were

selected and employed in the study. Moreover, three stable

c-Myc antisense transfectants (JAS26, JAS28, and JAS43)

and the JN3 control clone were obtained by transfecting the

JR8 melanoma cell line with the pCDNA3–c-myc antisense

expression vector and the empty vector, respectively. All

transfectants were grown at 37jC in completed neomycin-

containing (0.8 mg/ml; Invitrogen, Carlsbad, CA) RPMI

1640 medium (Invitrogen).

Treatments

Clinical-grade CDDP (Pronto Platamine) and ADR (Adri-

blastina) were obtained from Pharmacia (Milan, Italy). CPT

and melphalan (L-PAM; Alkeran) were purchased from Sig-

ma (Milan, Italy) and Glaxo Wellcome (Verona, Italy), re-

spectively. Drug dilutions were freshly prepared before each

experiment.

In particular, cells were seeded in 60-mm Petri (Nunc,

Mascia Brunelli, Milan, Italy) dishes at a density of 2�105

cells/dish. After 24 hours, cells were exposed to increasing

doses of drugs (for clonogenic experiments) or to the IC50

dose of each antineoplastic agent (for all the other assays).

The IC50 doses employed were 6.7 mM CDDP for 2 hours,

15 mM L-PAM for 2 hours, 0.37 mM ADR for 1 hour, and 2 mM

CPT for 2 hours.

To evaluate cell colony-forming ability, aliquots of cell

suspension from each sample were seeded into 60-mm

Petri dishes with complete medium and incubated for 10 to

12 days. Colonies were stained with 2% methylene blue in

95% ethanol and counted (one colony z 50 cells). Surviv-

ing fractions were calculated as the ratio of absolute

survival of the treated sample/absolute survival of the

control sample.

In the experiments with GSH ethyl ester (Sigma) or

L-buthionine-sulfoximine (BSO; Sigma), cells were preincu-

bated with 5 mM GSH ethyl ester for 24 hours or with 10 mM

BSO for 6 hours (doses with no toxic effect on cell survival).

Then cells were washed three-fold and treated with the

different antineoplastic agents.

Evaluation of Apoptosis

Apoptosis was detected by flow cytometric (annexin V),

biochemical (caspase-3 activity), and morphological

(Hoechst staining) assays. Annexin V-FITC versus propi-

dium iodide (PI) assay (Vibrant apoptosis assay, V-13242;

Molecular Probes, Eugene, OR) was performed as previ-

ously described [18]. Briefly, adherent cells were harvested,

suspended in the annexin-binding buffer (1�106 cells/ml),

and incubated with annexin V-FITC and PI for 15 minutes, at

room temperature in the dark, then immediately analyzed by

flow cytometry. The data are presented as biparametric dot

plots showing the annexin V-FITC green fluorescence

versus the PI red fluorescence. Analysis of cell death was

performed from 0 to 96 hours after the end of each drug

treatment.

Caspase-3 activity was measured by a colorimetric assay

(K2027; Clontech, Basingstoke, UK) according to the man-

ufacturer’s instruction.

Cytocentrifuge preparations were stained with Hoechst

33258 dye (Sigma) and cover-slipped. Cell morphology was

evaluated by fluorescence microscopy.

GSH Determination

Intracellular GSH content was measured by a colorimetric

assay (Bioxytech GSH-400; Oxis International, Inc., Port-

land, OR) according to the manufacturer’s instruction.

Determination of Cytosolic Proteins

The determination of cytosolic proteins was performed

as previously reported [18]. Cells were harvested and

washed with phosphate-buffered saline (PBS), then collect-

ed by centrifugation at 700�g for 7 minutes at 4jC. Cell

pellet was resuspended in extraction buffer containing 220

mM mannitol, 68 mM sucrose, 50 mM piperazine-N,N V-

bis[2-ethanesulfonic acid] (PIPES)–NaOH (pH 7.4), 50

mM EGTA, 2 mM MgCl2, 1 mM dithiothreitol, and protease

inhibitors. After 30 minutes of incubation on ice, cells were

homogenized with glass Dounce homogenizer. Cell homo-

genates were spun at 14,000�g for 15 minutes at 4jC, and
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supernatants were removed and stored at �80jC until

analysis by gel electrophoresis. Twenty micrograms of

cytosolic protein extracts was run on denaturating 12%

sodium dodecyl sulfate polyacrylamide gel electrophore-

sis. Rabbit anti–procaspase-3 (1:500; Upstate Biotech-

nology, New York, NY), mouse anti–Bcl-2 (1:200, clone

124; DAKO SA, Glostrup, Denmark), rabbit anti–Bcl-xL

(1:500, clone S-18; Santa Cruz Biotechnology, Santa

Cruz, CA), rabbit anti-Bax (1:500, clone N-20; Santa

Cruz Biotechnology), mouse anti–cytochrome c (1:500,

clone 7H8.2c12; Pharmingen, San Diego, CA), mouse

anti–caspase-9 (1:500, clone 96-2-2; Upstate Biotechnol-

ogy), and mouse anti–b-actin, (1:1,000, clone AC-40;

Sigma) antibodies were used to detect protein expression

in the extramitochondria compartment. Enhanced Chemi-

luminescence Detection System (ECL) was employed for

chemoluminescence detection.

Mitochondrial Membrane Potential (Dwm)

Dwm was assessed by using JC-1, a cationic dye that

exhibits mitochondria potential–dependent accumulation,

without being affected by plasmalemma potential. JC-1 ac-

cumulates in the cytoplasm, where it produces green

fluorescence and forms red fluorescent J-aggregates in

the mitochondria. Mitochondria depolarization is indicated

by a decrease in the red/green fluorescence intensity ratio.

Adherent cells (about 5�105) were first assayed for viabil-

ity and then loaded with 10 mM JC-1 in RPMI 1640

medium, for 30 minutes at 37jC in the dark. After incuba-

tion, cells were washed twice and resuspended in PBS,

then immediately analyzed by flow cytometry. As positive

control of the assay, M14 cells were treated with increasing

doses of either FCCP (0.1, 1, and 5 mM for 10 minutes) or

valinomycin (00.1, 0.1, and 1 mg/ml for 10 minutes). As

internal negative control, cells were exposed to nigericin

(0.1, 1, and 10 mg/ml for 10 minutes). The data are

presented as biparametric panels with the green J-mono-

mers fluorescence plotted versus the red J-aggregates

fluorescence. Analysis of Dwm was performed from 0 to

72 hours following the end of each drug administration.

Reactive Oxygen Species (ROS) Production

The evaluation of ROS was performed as previously

described [17]. Briefly, adherent cells (about 5 � 105) were

first assayed for viability and then incubated with 4 mM

dihydroethidium (DHE; Molecular Probes, Eugene, OR) for

45 minutes at 37jC in PBS. After incubation, cells were

immediately analyzed by flow cytometry. The data are pre-

sented as biparametric panels with the red DHE fluores-

cence intensity plotted versus the forward scatter. Analysis

of ROS generation was performed from 0 to 72 hours

following the end of each drug treatment.

Statistical Analysis

The results are presented as mean ± S.D. Significant

changes were assessed by using Student’s t-test for unpaired

data, and P values less than .05 were considered significant.

Results

Effects of c-Myc Downregulation on Apoptosis Vary

According to Specific Drug Action

We previously demonstrated that the downregulation of

c-Myc increases the susceptibility of M14 melanoma cell line

to the alkylating agent CDDP, but not to DNA topoisomerase

inhibitors ADR and CPT [17]. In particular, the CDDP dose

inhibiting survival by about 50% in control cells (6.7 mM) was

able to reduce the surviving fraction of c-Myc antisense

transfectants by about 90%. By contrast, at 0.37 mM ADR

and 2 mM CPT, the survival of both control and c-Myc

antisense transfectants was about 50%.

With the aim to study the mechanism(s) responsible for

the different drug responses elicited by the reduction of

c-Myc expression, three M14-derived clones, expressing

low levels of c-Myc (MAS51, MAS53, and MAS69) compared

to control cells (M14 parental line and MN2 control clone)

previously obtained and characterized [17], were used.

Figure 1A shows the cytofluorimetric analysis of the annexin

V versus PI staining performed in MN2 control clone and in

the representative MAS69 c-Myc transfectant. Cells were

treated with the IC50 dose of each antineoplastic agent.

Besides ADR (0.37 mM), CPT (2 mM), and CDDP (6.7 mM),

another alkylating agent, L-PAM (15 mM), was included in the

study, and the kinetics of cell death was followed up from 0 to

96 hours after the end of each drug administration. Following

treatments with CDDP and L-PAM, no apoptosis (annexin

V+/PI� region of the dot plot panels) was observed in the

MN2 control clone, whereas an increasing percentage of the

annexin V+/PI+ cells appeared with time after exposure to

both alkylating agents. By contrast, c-Myc low-expressing

cells were much more susceptible to CDDP- and L-PAM–

induced cell death, showing an increasing percentage of

apoptotic cells after treatment with both alkylating agents.

However, apoptosis was triggered in both MN2 control and

c-Myc antisense transfectants by exposure to ADR and also

CPT, with the percentage of the annexin V+/PI� cells in-

creasing from 0 to 96 hours following treatment. Figure 1B

shows the percentage of both annexin V+/PI� and annexin

V+/PI+ cells after each drug administration, reported for all

the controls and the three c-Myc antisense transfectants. As

evident, after CDDP and L-PAM treatments, neither control

line had more than 5% of annexin V+/PI� cells, whereas a

progressive significant increase in the annexin V+/PI+ cells

(from about 5% to 45%) was observed. On the contrary,

c-Myc antisense transfectants showed an increase of both

PI� and PI+ annexin V+ cells following alkylating agent

exposure. Then again, all cells, both control and c-Myc

low-expressing cells, died prevalently from apoptosis fol-

lowing exposure to topoisomerase inhibitors, with the per-

centage of the annexin V+/PI� cells reaching values of

about 40% 96 hours after the end of ADR and CPT

treatment.

Biochemical and morphological evaluation of cell death

was also performed at 96 hours after the end of drug

exposure. Figure 2A shows the analysis of caspase-3 activ-

ity (upper panels) and the expression of its inactive form
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(bottom panels) carried out both in control and c-Myc anti-

sense transfectants after exposure to alkylating and top-

oisomerase inhibitor agents. No involvement of caspase-3

was observed in CDDP- and L-PAM–treated control cells,

whereas activation of caspase-3 associated with a reduction

of its inactive form (procaspase) was revealed after treat-

ment with ADR and CPT. On the contrary, activation of

caspase-3 was found in the c-Myc low-expressing cells

regardless of drug employed. Hoechst staining (Figure 2B )

revealed that the morphological features characteristic of

apoptosis were observed in the c-Myc low-expressing cells

following exposure to CDDP and L-PAM, whereas no apo-

ptotic bodies were ever detected in control cells on treatment

with both alkylating agents. By contrast, apoptotic cells were

evident in all the cell lines after ADR and CPT treatment,

regardless of c-Myc expression.

Figure 1. c-Myc downregulation differently affects apoptosis according to the drug mechanism of action. (A) Cytofluorimetric dot plot analysis of the annexin

V-FITC versus PI staining assay performed on adherent cells of MN2 control clone and MAS69 c-Myc low-expressing transfectants from 0 to 96 hours following the

end of the treatments with the IC50 doses of CDDP, L-PAM, ADR, or CPT. (B) Percentage of annexin V+/PI� and annexin V+/PI+ adherent cells evaluated in the

drug-treated M14 and MN2 control cells (white bars) and in the drug-treated MAS51, MAS53, and MAS69 c-Myc transfectants (gray bars) from 0 to 96 hours after

the end of the treatments with the IC50 doses of CDDP, L-PAM, ADR, or CPT. Values of the untreated control cells and c-Myc transfectants are always below 10%;

thus, they have not been included in the histograms. Statistical analysis: P values for the PI� cells are < .05 at 0 to 24 hours, < .01 at 48 to 72 hours, and < .001 at

96 hours after exposure to CDDP and L-PAM for all the three c-Myc antisense transfectants when compared to both control cells, whereas P values are always < .05

for PI+ cells at all the reported times following treatment with both alkylating agents.
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GSH Depletion Activates Apoptosis on Treatment with

Alkylating Agents But Not with Topoisomerase Inhibitors

Because we previously demonstrated that c-Myc down-

regulation decreases the intracellular GSH content [18], we

investigated whether it was responsible for the opening of the

apoptotic pathway observed in the c-Myc low-expressing

clones when treated with the alkylating agents. To this aim,

the intracellular GSH concentration was modulated in control

cells by incubation with BSO, a specific inhibitor of GSH

synthesis. The administration of BSO, given before each

drug exposure, depleted intracellular GSH concentration in

the control cells by 50% (Figure 3A). Figure 3B (upper

panels) shows that the depletion of GSH, achieved by

preincubation with BSO, activated apoptosis in M14 and

MN2 control cells following treatment with CDDP and

L-PAM. Apoptosis was already evident as early as 24 hours

and enhanced with increasing time, reaching about 40% at

72 hours, similar to that observed in the c-Myc antisense

transfectants. By contrast, when BSO was administered

before exposure to ADR and CPT, no change in the drug-

mediated apoptosis was observed, with the percentage

of the annexin V+/PI� cells being similar between BSO-

preincubated and unincubated control cells (Figure 3B,

bottom panels).

The specific role of GSH in the c-Myc–dependent drug-

induced apoptosis was demonstrated by increasing the

intracellular GSH content in the c-Myc antisense trans-

fectants. Figure 4 shows the intracellular GSH content and

apoptosis in the three c-Myc low-expressing clones ex-

posed to GSH ethyl ester. The intracellular GSH content

was raised by about two-fold in the c-Myc low-expressing

clones on treatment with GSH ethyl ester (Figure 4A).

CDDP- and L-PAM–triggered apoptosis was completely

abrogated in the c-Myc antisense transfectants when pre-

incubated with GSH ethyl ester because no annexin V+/PI�

cells were observed in the ester-treated c-Myc low-

expressing clones within the 72 hours after treatment

(Figure 4B, upper panels). On the contrary, the increase

in GSH content following ester administration did not pro-

tect the c-Myc low-expressing clones from the ADR- and

CPT-induced apoptosis (Figure 4B, bottom panels).

To strengthen the relationship among c-Myc, GSH, and

drug sensitivity, M14 cells have been transfected with a

c-myc cDNA-containing vector and two selected c-Myc

overexpressing clones have been used. Figure 5A shows

the Western blot analysis of c-Myc protein expression and

the corresponding intracellular GSH content evaluated in

MN2 control clone, MS41, and MS58 c-Myc transfectants.

The amount of c-Myc protein in the two c-Myc overexpress-

ing clones was about two- to three-fold higher than the

MN2 control clone, and GSH content was about 50 and

65 nmol/mg protein in the control and c-Myc transfectants,

respectively. The enhancement of intracellular GSH content

induced by c-Myc overexpression led to an increase in

CDDP resistance well evident at the highest dose employed

(Figure 5B). In fact, the surviving fractions at 16 mM were

about 10% in the control clone and about 50% in the two

c-Myc transfectants. BSO-mediated GSH depletion in

MS41 and MS58 c-Myc transfectants significantly sensitized

them to CDDP treatment, with the survival of the c-Myc

overexpressing clones being about 1% in the BSO-treated

cells at 16 mM drug concentration.

Figure 2. c-Myc downregulation opens the apoptotic pathway on treatment

with alkylating agents. (A) Evaluation of caspase-3 activity (upper panels,

P values < .05 for MAS69 when compared to MN2 control clone following

treatment with alkylating agents) and procaspase-3 expression (bottom

panels) performed in the representative MN2 control clone and MAS69 c-Myc

transfectant 96 hours after the end of the treatment with the IC50 doses of

CDDP, L-PAM, ADR, or CPT. (B) Morphological analysis of cell death

performed by Hoechst staining in the representative MN2 control clone and

MAS69 c-Myc transfectant 96 hours after the end of the treatment with

the IC50 doses of CDDP, L-PAM, ADR, or CPT. White arrows indicate

apoptotic cells.
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Drug-Induced Apoptosis Modulated by GSH through Its

Action on Mitochondria Level

To identify the signaling molecules involved in GSH-

modulated apoptosis following treatments with CDDP and

L-PAM, we analyzed the activation of CD95 receptor path-

way, the status of p53, and the role of mitochondria.

GSH-dependent apoptosis did not involve either the

CD95 system or any modulation in the p53 protein expres-

sion (data not shown). In addition, although the sequencing

analysis of the most mutated hot spot regions in the p53-

encoding sequence revealed that they were all wild type, the

p53 oncoprotein was not active in the M14 melanoma cells

(data not shown).

To determine the role of the mitochondria pathway, we

checked the cytosolic Bcl-2, Bcl-xL, and Bax levels; cyto-

chrome c; and the cleavage of procaspase-9. BSO-induced

apoptosis in control cells following treatment with alkylating

agents did not involve changes in the expression of Bcl-2 and

Bcl-xL (Figure 6A). On the contrary, a reduction in the

cytosolic Bax expression and a cytochrome c redistribution

were evident 24 hours after the end of treatment with CDDP

and L-PAM in the BSO-exposed control cells. Consequently,

procaspase-9 was found to be activated by cleavage exclu-

sively in the BSO-exposed control cells after treatment with

both alkylating agents. No modulation of these molecules

was observed in the BSO-unexposed control cells when

treated with CDDP and L-PAM.

The early Bax/cytochrome c translocation observed

in BSO-exposed control cells on treatment with CDDP and

L-PAM occurred independently of the depolarization of the

mitochondria membrane potential. As shown in Figure 6B

(upper panels), a significant reduction in Dwm was observed

only 48 hours after the end of the treatments with both

alkylating agents, whereas no shift in the JC-1 double

Figure 3. GSH depletion achieved by BSO pretreatment commits control cells to alkylating agent-induced apoptosis, without affecting the response to ADR and

CPT. (A) Intracellular GSH content evaluated in the untreated M14 (.) and MN2 control (n) cells and BSO-treated M14 (o) and MN2 (5) cells before (�6 hours)

and from 0 to 72 hours following exposure to BSO (10 mM; 6 hours). Statistical analysis: P < .01 at 24 to 72 hours after drug exposure for BSO-exposed control

cells when compared to unexposed ones. (B) Cytofluorimetric evaluation of apoptotic (annexin V+/PI�) M14 and MN2 control cells preincubated (white bars) or not

(gray bars) with BSO and treated with the IC50 doses of CDDP, L-PAM, ADR, or CPT. Analysis was performed from 24 to 72 hours following the end of the

treatments. Control cells, both unexposed and exposed to BSO, did not show any apoptosis; thus, their values have not been included in the histograms. Statistical

analysis: P < .05 at 24 hours, < .01 at 48 to 72 hours after exposure to CDDP and L-PAM calculated for BSO-exposed control cells when compared to

unexposed ones.
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fluorescence was revealed in the CDDP- and L-PAM–trea-

ted MN2 control clone. Moreover, the alkylator-dependent

alteration of Dwm was concomitant to the generation of ROS.

Figure 6B (bottom panels) shows that CDDP and L-PAM

treatments led to late ROS generation exclusively in the

BSO-exposed control cells starting 48 hours after the end

of the exposure to both alkylating agents, downstream

cytochrome c release, and caspase-9 activation. The ob-

served alteration of Dwm and ROS production enhanced with

increasing time after drug treatment (data not shown).

The ability of GSH to modulate drug-induced apoptosis by

acting at the mitochondria level was also observed when

GSH content was increased in the c-Myc low-expressing

cells after exposure with GSH ethyl ester. As shown in the

Figure 7, the treatment of the c-Myc low-expressing cells

with CDDP and L-PAM activated the same mitochondrial

pathway: early Bax redistribution, release of cytochrome c,

and concomitant caspase-9 activation (Figure 7A), upstream

alteration of mitochondria membrane potential (Figure 7B,

upper panels), and ROS production (Figure 7B, bottom

panels). GSH ester preincubation inhibited the apoptotic

cascade by blocking the early apoptotic events. Indeed,

Bax and cytochrome c redistribution was completely abro-

gated in the GSH ester-exposed c-Myc low-expressing cells

following treatment with both alkylating agents (Figure 7A).

Consequently, the downstream mitochondria membrane

depolarization and ROS generation were inhibited in the

GSH ester-exposed c-Myc antisense transfectant treated

with CDDP and L-PAM (Figure 7B ).

All the same experiments were performed in the M14

parental line and MAS51 and MAS53 c-Myc low-express-

ing clones, giving similar results to those obtained with the

MN2 and MAS69 c-Myc antisense transfectants (data not

shown).

Figure 4. GSH increase following ester administration protects c-Myc transfectants from CDDP- and L-PAM – triggered apoptosis, without altering topoisomerase

inhibitor-induced cell death. (A) Intracellular GSH content evaluated in the untreated MAS51 (E), MAS53 (y), and MAS69 (– ) c-Myc transfectants and GSH ester-

treated MAS51 (D), MAS53 (w), and MAS69 (*) c-Myc transfectants before (�24 hours) and from 0 to 72 hours following exposure to GSH ethyl ester (5 mM;

24 hours). Statistical analysis: P < .01 at 24 to 72 hours after drug exposure for GSH ester-exposed c-Myc antisense transfectants when compared to unexposed

ones. (B) Cytofluorimetric evaluation of apoptotic (annexin V+/PI�) MAS51, MAS53, and MAS69 c-Myc low-expressing clones cells preincubated (white bars) or

not (gray bars) with GSH ester and treated with the IC50 doses of CDDP, L-PAM, ADR, or CPT. Analysis was performed from 24 to 72 hours following the end of the

treatments. Values for c-Myc transfectants, both unexposed and exposed to GSH ester, are always below 10%; thus, they have not been included in the

histograms. Statistical analysis: P < .05 at 24 hours, < .01 at 48 to 72 hours after exposure to CDDP and L-PAM calculated for GSH ester-exposed c-Myc antisense

transfectants when compared to unexposed ones.
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Relationship Among c-Myc, Intracellular GSH Content, and

Alkylating Agent–Induced Apoptosis in JR8 Melanoma

Cells

To extend the results obtained, an other human mela-

noma line, displaying a high level of c-Myc protein, was

transfected with an expression vector carrying c-myc cDNA

in antisense orientation. Figure 8A shows the Western blot

analysis of c-Myc protein expression in JR8 parental line,

JN3 control clone, and three c-Myc antisense transfectants

(JAS26, JAS28, and JAS43). The amount of c-Myc protein in

the three c-Myc antisense transfectants was about five times

lower than the JN3 control clone or the parental line. Be-

sides, analysis of intracellular GSH content showed that it

was reduced by about 50% in the JAS26, JAS28, and JAS43

c-Myc antisense transfectants when compared to control

cells (Figure 8B ).

To verify the relationship between the c-Myc–dependent

GSH depletion and drug response, CDDP and ADR were

chosen as representative agents for alkylating and topoiso-

merase inhibitor drugs, respectively. Figure 8C shows the

survival curves of the JR8 parental line, the JN3 control

clone, and the three c-Myc low-expressing clones exposed

to increasing doses of CDDP and ADR. c-Myc low-express-

ing clones clearly displayed a greater sensitivity to CDDP if

compared to control cells. On the contrary, no difference in

sensitivity to ADR among the parental, control, and c-Myc

low-expressing cells was observed. Analysis of apoptosis

performed by using the IC50 dose of each drug (Figure 8D)

demonstrated that CDDP triggered apoptosis in the c-Myc

antisense transfectants but not in control cells, whereas ADR

induced apoptosis in all the lines regardless of c-Myc ex-

pression. GSH ester pretreatment protected c-Myc trans-

fectants from CDDP-induced apoptosis without affecting the

ADR-induced cell death.

Discussion

In this work, we demonstrate that GSH has a crucial role in

the c-Myc–dependent drug-induced apoptosis. This paper

follows our previous results showing that the downregulation

of c-Myc sensitizes M14 melanoma cells to alkylating agent

CDDP but not to DNA topoisomerase inhibitors ADR and

CPT [17]. In an effort to elucidate the mechanism(s) account-

ing for the different drug sensitivity, we evaluated the ability

of drugs to trigger apoptosis, and included another alkylating

agent (L-PAM) in the study. Our results demonstrate that

both CDDP and L-PAM triggered apoptosis in the c-Myc low-

expressing clones but not in control lines. On the contrary,

activation of programmed cell death occurred to the same

extent in control and c-Myc antisense transfectants after

ADR and CPT administration. Thus, alkylating agents acti-

vate a c-Myc–dependent apoptosis, whereas a c-Myc–in-

dependent cell death is induced by topoisomerase inhibitors.

Because we previously demonstrated that c-Myc down-

regulation reduced the intracellular GSH content [18], we

hypothesized that GSH might influence the c-Myc–depen-

dent (rather than c-Myc–independent) drug-induced apopto-

sis. To this aim, intracellular GSH content was normalized

between control and c-Myc low-expressing cells. As a result,

modulation of GSH content did not affect the response to

ADR and CPT, whereas it significantly influenced CDDP-

and L-PAM–induced apoptosis. In particular, GSH ester

administration in the c-Myc low-expressing cells increased

the intracellular GSH up to the levels of control cells and

abrogated apoptosis induced by CDDP and L-PAM. GSH

depletion by BSO preincubation opened the apoptotic path-

way in control cells treated with one alkylating agent or the

others. The opening of the apoptotic pathway by GSH

depletion exclusively occurred following alkylating agents,

thus indicating that it was related to the specific drug action.

The relationship among c-Myc, GSH content, and the

response to alkylating agents has been also evaluated in the

M14 c-Myc overexpressing clones as well as in the mela-

noma JR8 c-Myc antisense transfectants. The results

demonstrated that GSH depletion is responsible for the

c-Myc–dependent (rather than c-Myc–independent) drug-

induced apoptosis.

Unlike many other proposed mechanisms of drug

resistance, elevated GSH content may act through

different pathways to limit the effectiveness of multiple

types of chemotherapeutic agents. GSH has been shown

to protect tumor cells by detoxifying chemotherapeutic

drugs through conjugation reactions catalyzed by GSH

S-transferase. Export of GSH conjugate out of tumor

Figure 5. c-Myc – dependent GSH increase induces resistance to CDDP

treatment. (A) Western blot of c-Myc protein expression and intracellular GSH

content performed in the MN2 control clone and in the MS41 and MS58 c-Myc

overexpressing clones (P < .05 calculated for all c-Myc transfectants when

compared to control cells). (B) Survival curves of MN2 control clone (w), MS41

(n), MS58 (E) c-Myc transfectants, BSO-exposed MS41 (5), and BSO-

exposed MS58 (D) treated with increasing doses of CDDP. Surviving fractions

were calculated as ratio of the absolute survival of the treated sample/absolute

survival of the untreated one ( P < .01 calculated for the two c-Myc trans-

fectants when compared to control clone at 16 �M CDDP, and P < .001 cal-

culated for unexposed when compared to BSO-exposed c-Myc transfectants).
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cells by the GS-X pump represents the final elimination

of the overall detoxification system [28,29]. In addition,

GSH can be transported to the mitochondria, where it

plays a protective role as ROS scavenger [30]. The role

of GSH or GSH-related mechanisms has been found to

be particularly important in the case of alkylating agents

[31–33]. In fact, although the GSH-related mechanisms

are the most important events in the modulation of

cytotoxicity to CDDP and L-PAM, the mechanism for

ADR or CPT resistance involves other molecules, such

as the P170 in the case of ADR resistance. Moreover,

although the toxicity of CDDP and L-PAM largely

depends on intracellular GSH levels, modulation of

GSH does not always influence ADR or CPT cytotoxicity,

although this does vary among cell types. Depletion of

GSH, by prolonged incubation with BSO, increases the

lethality of CPT-11 in V79 hamster lung fibroblasts [34],

of etoposide in K562 human erythroleukemia cells [35],

and of ADR in different cell types [36–38]. In U937 human

promonocytic cells, although BSO potentiated the toxicity

of CDDP and L-PAM manifested by the suppression of

apoptosis and the induction of necrosis, it did not affect the

Figure 6. BSO-mediated GSH depletion activates the mitochondrial pathway. (A) Immunoblot analysis of cytosolic Bcl-2, Bcl-xL, Bax, cytochrome c, procaspase-9,

and �-actin and (B) cytofluorimetric evaluation of Dwm, evaluated by JC-1 staining (upper panel), and ROS production, carried out by DHE probing (bottom panel),

performed in both unexposed and BSO-exposed MN2 control clone 24 and 48 hours following the end of the treatments with the IC50 doses of CDDP and L-PAM.

Each panel is representative of four separate experiments with comparable results.

c-Myc – Mediated Sensitivity Depends on GSH Biroccio et al. 203

Neoplasia . Vol. 6, No. 3, 2004



mode nor the extent of death caused by CPT and ADR.

Comprehensively, the literature shows, however, that the

key role of GSH content in the sensitivity/resistance to

alkylating agents was mainly due to its detoxification or

antioxidant properties.

In our experimental models, we can exclude the antiox-

idant mechanism of GSH as the principal determinant factor

in c-Myc–dependent drug sensitivity because we found the

ROS production to be not the primary event in the activation

of GSH-mediated programmed cell death, but it represents a

downstream effector of apoptosis. Here, we show that

GSH influenced the c-Myc–dependent alkylator-induced

apoptosis by its ability to act at the mitochondria level,

without affecting the p53 and CD95 systems. Instead,

BSO-mediated GSH depletion in control cells treated with

CDDP and L-PAM rapidly induced Bax/cytochrome c re-

distribution and caspase-9 activation as early events,

with alteration of mitochondria membrane potential and

ROS production as late events. GSH ester preincubation

inhibited the apoptotic cascade by blocking the early

and, consequently, the late mitochondria-related apoptotic

events. The effect of GSH on the activation of cytochrome

c–dependent apoptotic pathway might be due to the ability of

alkylating agents to bind to GSH [39,40]. This would imply an

Figure 7. Ester-mediated GSH increase inhibits the mitochondrial pathway. (A) Immunoblot analysis of cytosolic Bcl-2, Bcl-xL, Bax, cytochrome c, procaspase-9,

and �-actin and (B) cytofluorimetric evaluation of Dwm, evaluated by JC-1 staining (upper panel), and ROS production, carried out by DHE probing (bottom panel),

performed in both unexposed and GSH ester-exposed MAS69 c-Myc low-expressing transfectant 24 and 48 hours following the end of the treatments with the IC50

doses of CDDP and L-PAM. Each panel is representative of four separate experiments with comparable results.
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impoverishment of free GSH from the mitochondrial buffer of

cells, leading to a cytochrome c–dependent apoptosis.

Therefore, because we previously demonstrated that

c-Myc downregulation decreases GSH content by reducing

its synthesis [18], the synergistic effect between c-Myc

downregulation and alkylating agents can be attributable to

cooperation in the GSH depletion.

In summary, we demonstrate that: 1) alkylating agents

trigger a c-Myc–dependent apoptosis, whereas a c-Myc–

independent cell death is induced by topoisomerase

inhibitors; 2) c-Myc–dependent drug-induced apoptosis

is due to GSH depletion; and 3) GSH-mediated drug-

induced apoptosis occurs by cytochrome c release.

All together, these results lend support to the clinical

approach based on c-myc antisense therapy being com-

bined with some antineoplastic agents (i.e., CDDP and

L-PAM), rather than others (ADR and CPT).
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