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Abstract

Prostate cancer frequently metastasizes to the bone,

and the treatment outcome for metastatic prostate

cancer has been disappointing so far. Dietary genistein,

derived primarily from soy product, has been proposed

to be partly responsible for the low rate of prostate

cancer in Asians. Our previous studies have shown that

genistein elicits pleiotropic effects on prostate cancer

cells, but there are no studies documenting compre-

hensive gene expression profiles and antitumor effects

of dietary genistein on human prostate cancer grown in

human bone environment. In this study, we investigated

the effects of genistein on PC3 prostate cancer cells

and experimental PC3 bone tumors created by injecting

PC3 cells into human bone fragments previously

implanted in severe combined immunodeficient (SCID)

mice (SCID human model). We found that genistein

significantly inhibited PC3 bone tumor growth using

both prevention and intervention strategies. By using

microarray and real-time polymerase chain reaction

technology, we found that genistein regulated the

expression of multiple genes involved in the control of

cell growth, apoptosis, and metastasis both in vitro and

in vivo. For example, the expression of various metal-

loproteinases (MMPs) in PC3 bone tumors was inhibited

by genistein treatment, whereas osteoprotegerin was

upregulated. MMP immunostaining and transfection

experiments also demonstrated that MMP-9 expression

was inhibited in PC3 cells in vitro and PC3 bone tumors

in vivo after genistein treatment. These results, partic-

ularly the in vivo results, demonstrate that dietary

genistein may inhibit prostate cancer bone metastasis

by regulating metastasis-related genes. Genistein may

thus be a promising agent for the prevention and/or

treatment of prostate cancer.
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Introduction

Prostate cancer is the second leading cause of cancer-

related deaths in men in the United States with an estimated

220,900 new cases and 28,900 deaths in 2003 [1]. Up to 30%

of patients with prostate cancer undergoing radical prostatec-

tomy will relapse, often as a result of micrometastatic disease

present at the time of surgery [2,3]. Bone metastasis is com-

mon in advanced prostate cancer and causes considerable

morbidity including pain, pathologic fractures, spinal cord com-

pression, and disability. Systemic androgen deprivation is

initially effective in treating metastasis; however, the metastatic

deposits ultimately become refractory to hormonal or chemo-

therapeutic manipulations and continue to grow. Therefore,

there is a tremendous need for the development of mechanism-

based strategies for the treatment of prostate cancer. To

discover new strategies, it is important to explore the precise

mechanisms of cancer cell metastasis to the bone and the

molecular mechanism(s) by which new agents exert their

inhibitory effects on cancer metastasis.

Because of the suitable microenvironment of the bone for

colonization and growth of metastatic tumors, the bone has

long been recognized as a common target organ for prostate

cancer [4]. The preference of prostate cancer for the bone is

due to the results of cancer cell interactions with multiple other

cells and molecules in the local microenvironment. Among

these molecules, matrix metalloproteinases (MMPs), receptor

activator of NF-nB (RANK), receptor activator of NF-nB ligand

(RANKL), and osteoprotegerin (OPG) are more evidently

involved in the cancer cell bone metastases [5–9]. The matrix

MMPs are a family of proteases that play important roles in the

degradation of extracellular matrix and the release or activation

of growth factors [10,11]. MMPs are upregulated in virtually all

human and animal tumors as well as in most tumor cell lines

[11,12]. In several cases, the stage of tumor progression is
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positively correlated with the expression of MMP family

members. Changes in MMP levels can markedly affect the

invasive behavior of tumor cells and their ability to metasta-

size in experimental animal models [13]. With regard to bone

metastasis, we and others have demonstrated that inhibition

of MMP activity can disrupt the ‘‘vicious cycle’’ between bone

tumor growth and bone matrix remodeling in experimental

prostate and breast cancer bone metastasis [14,15]. Be-

cause bone matrix remodeling is important in bone metas-

tasis, much attention has been focused on the osteoclasts

[16]. Osteoclastic activity is believed to be a critical target for

therapy against bone metastasis, and RANK, RANKL, and

OPG are known to be the major molecules that modulate

osteoclast differentiation and maturation. Therefore, these

molecules have received much attention in the area of bone

metastasis research [5].

In contrast to the population in western countries, Asian

men who consume a traditional diet high in soy products

have a relatively low incidence and mortality of prostate

cancer, suggesting that a high intake of soy products may

protect men against prostate cancer [17]. Genistein is a

prominent isoflavonoid found in soy products, and has been

proposed to be partly responsible for the low rate of prostate

cancer in Asian men [17,18]. Genistein has been identified

as an inhibitor of protein tyrosine kinases, which play key

roles in cell growth and apoptosis. Studies from our labora-

tory and others have found that genistein can inhibit cancer

cell growth, induce apoptosis, modulate the expression of

genes related to the apoptotic pathway, and inhibit NF-nB

and Akt activation in cancer cells [18–21]. In the TRAMP

model, dietary genistein supplementation, yielding serum

levels of genistein comparable with those found in Asian

men on a regular soy diet, reduced the incidence of poorly

differentiated prostate carcinoma [22]. Similarly, dietary soy

significantly reduced tumor cell proliferation, increased apo-

ptosis, and reduced microvessel density in PC3 xenograft

tumors in severe combined immunodeficient (SCID) mice

[23]. Genistein also can inhibit the in vitro invasive potential

of human prostate cancer cell lines, suggesting that genis-

tein could inhibit the metastatic growth of prostate cancer

[24]. Moreover, our studies using microarray have shown

that genistein can inhibit prostate cancer cells in vitro by

regulating the expression of genes, which are critically

involved in cell growth, cell cycle, cell signal transduction,

angiogenesis, tumor cell invasion, and metastasis [25,26].

However, the role of genistein in the inhibition of invasion and

metastasis and the comprehensive gene expression profiles

of human prostate cancer grown in the human bone envi-

ronment in vivo have not been documented. In this study, we

have utilized the SCID human (SCID-hu) model of prostate

cancer bone metastasis [27] to determine the effect of

genistein in vivo and investigated the gene expression

profiles of SCID-hu prostate cancer bone tumors altered by

dietary genistein using microarray, real-time polymerase

chain reaction (PCR), and other techniques. The purpose

of our current investigation: was 1) to determine the effects of

genistein on prostate cancer cells in vitro; 2) to determine the

effects of genistein on prostate cancer bone tumor growth

in vivo; 3) to determine the alterations in gene expression

profiles by genistein treatment in both in vitro and in vivo

studies; and 4) to compare the gene expression profiles of

PC3 bone tumors and PC3 subcutaneous tumors in SCID

mice so as to better understand the molecular mechanism(s)

by which genistein exerts its antimetastatic effect on prostate

cancer cells.

Materials and Methods

Cell Culture and Cell Growth Inhibition

PC3 human prostate cancer cells (ATCC, Manassas, VA)

were cultured in RPMI 1640 media (Invitrogen, Carlsbad,

CA) supplemented with 10% fetal bovine serum and 1%

penicillin and streptomycin in a 5% CO2 atmosphere at

37jC. Genistein (Toronto Research Chemicals, North York,

Ontario, Canada) was dissolved in 0.1 M Na2CO3 to make a

10-mM stock solution and was added directly to the culture

media at different concentrations. The PC3 cells were seed-

ed at a density of 1 � 103/well in 96-well culture dishes. After

24 hours, the cells were treated with 5, 15, 30, and 50 mM

genistein or 0.5 mM Na2CO3 (vehicle control). Cells treated

with genistein or Na2CO3 for 1 to 3 days were incubated with

MTT (0.5 mg/ml; Sigma, St. Louis, MO) at 37jC for 4 hours

and then with DMSO at room temperature for 1 hour. The

spectrophotometric absorbance of the samples was deter-

mined by using ULTRA Multifunctional Microplate Reader

(TECAN, Durham, NC) at 495 nm.

Animal Care and Human Bone Implantation

Male homozygous CB-17 scid/scid mice, aged 4 weeks,

were purchased from Taconic Farms (Germantown, NY).

The mice were maintained according to the National Insti-

tutes of Health standards established in the ‘‘Guidelines for

the Care and Use of Experimental Animals,’’ and all exper-

imental protocols were approved by the Animal Investigation

Committee of Wayne State University (Detroit, MI). Human

male fetal bone tissue was obtained by a third-party,

nonprofit organization (Advanced Bioscience Resources,

Alameda, CA) and written informed consent was obtained

from the donor, consistent with regulations issued by each

state involved and the federal government. Isoflurane anes-

thesia was used during all surgical procedures. After 1 week

of acclimatization, the mice were implanted with a single

human fetal bone fragment as described previously [27].

Production of Prostate Cancer Bone Tumors and Genistein

Treatment

Suspensions of PC3 cells (1 � 105 cells in a volume of

20 ml of RPMI 1640 medium) were injected intraosseously by

insertion of a 27-gauge needle through the mouse skin

directly into the marrow surface of the previously implanted

bone. The mice were divided into three groups: prevention

(n = 7), intervention (n = 7), and control (n = 6) groups. In the

prevention group, the mice were fed a genistein-containing

diet (1 g/kg diet) beginning on the day of intraosseous tu-

mor cell injection. The mice in the intervention group were
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given the genistein-containing diet as soon as the majority of

the bone implants began to enlarge (now called a ‘‘bone

tumor’’) as determined by caliper measurements (23rd day

after cancer cell injection). The control mice received the

exact same diet (AIN76A; Purina Test Mills, Richmond, IN)

but without genistein. The volume of the bone tumor in each

group was determined by twice-weekly caliper measure-

ments according to the formula ab2 / 2, where a = length

and b = cross-sectional diameter. For statistical analysis, log

transformation and linear mixed effect regression model

were used to evaluate the significance of difference in tumor

volume and rate of tumor volume growth between groups.

The procedure of Holm [28] was used to adjust for multiple

comparisons.

The mice were sacrificed on the 59th day after cancer cell

injection. Blood samples collected at sacrifice were sub-

jected to quantification of plasma genistein. Bone tumors

were removed and subjected to ex vivo imaging on a Lo-Rad

M-IV mammography unit (Lorad, Danbury, CT) using a mag-

nified specimen technique. Images were developed using a

Kodak 2000 screen and radiography film (Kodak, Rochester,

NY). Two bone tumors from each group were subjected to

microarray analysis and immunostaining. As a microenviron-

ment control, PC3 subcutaneous tumors were created in

SCID mice by injecting 5 � 106 cells. The PC3 subcutane-

ous tumors were harvested after 30 days.

Quantification of Plasma Genistein Using LC/ES-MS

Genistein in the plasma from mice was quantified using

the method published previously [29]. Solid-phase extraction

of total plasma isoflavones was performed following enzy-

matic deconjugation. Genistein in the samples was mea-

sured using isotope dilution LC-ES/MS with d4-genistein

internal standards. The method detection limit was approx-

imately 0.02 mM and the interassay and intra-assay precision

and accuracy was ±5% to ±10%. Quality control procedures

included concurrent analysis of isoflavone-fortified human

plasma and blank plasma.

Microarray Analysis for Gene Expression Profiles

PC3 cells treated with 50 mM genistein or 0.5 mM

Na2CO3 for 6, 36, and 72 hours; PC3 bone tumors from

each group; and PC3 subcutaneous tumors were subjected

to microarray analysis. Total RNA from each sample was

isolated by Trizol (Invitrogen) and purified by RNeasy Mini

Kit and RNase-free DNase Set (QIAGEN, Valencia, CA)

according to the manufacturer’s protocol. cDNA for each

sample was synthesized by using Superscript cDNA Syn-

thesis Kit (Invitrogen) with T7-(dT)24 primer in place of the

oligo(dT) provided in the kit. Then, the biotin-labeled cRNA

was transcripted in vitro (IVT) from cDNA by using BioArray

HighYield RNA Transcript Labeling Kit (ENZO Biochem,

New York, NY), and purified by RNeasy Mini Kit (QIAGEN,

Valencia, CA). The purified cRNA was fragmented and

applied to Human Genome U95 or U133A Array (Affymetrix,

Santa Clara, CA). After hybridization, washing, and staining,

the arrays were scanned. The gene expression levels of

samples were normalized and analyzed by using Microarray

Suite, MicroDB, and Data Mining Tool software (Affymetrix).

Clustering and annotation of the gene expression were

analyzed by using Cluster, TreeView [30], Onto-Express

[31], and GenMAPP (www.genmapp.org).

Reverse Transcription – Polymerase Chain Reaction

(RT–PCR) Analysis for Gene Expression

The total RNA prepared for microarray was also sub-

jected to real-time PCR using the method published previ-

ously [26]. Briefly, 2 mg of total RNA from each sample was

subjected to reverse transcription using Superscript first-

strand cDNA synthesis kit (Invitrogen). Real-time PCR reac-

tions were then carried out in a total of 25 ml of reaction

mixture (2 ml of cDNA, 12.5 ml of 2� SYBR Green PCR Mas-

ter Mix, 1.5 ml of 5 mM of each specific gene primer, and 7.5 ml

of H2O) in an ABI Prism 7700 Sequence Detection System

(Applied Biosystems, Foster City, CA). The sequences of

primers used in RT–PCR reaction have been described

previously [25]. The PCR program was initiated by 10 min-

utes at 95jC before 40 thermal cycles, each of 15 seconds at

95jC and 1 minute at 60jC. Data were analyzed according

to the comparative Ct method and were normalized by

GAPDH expression in each sample. Melting curves for each

PCR reaction were generated to ensure the purity of the

amplification product.

Reporter Gene Constructs and Transfection

Matrix metalloproteinase-9-chloramphenicol acetyltrans-

ferase (MMP-9–CAT) containing a nuclear factor-kappa B

(NF-nB) binding site in the sequence of MMP-9 promoter

was generously provided by Dr. Douglas Boyd (MD Ander-

son Cancer Center, Houston, TX). The MMP-9–CAT or

empty vector was transiently cotransfected with CMV-b-

galactosidase into PC3 cells using the LipofectAMINE

method (Invitrogen). After incubation for 5 hours, the trans-

fected cells were washed and incubated overnight with RPMI

1640 media (Invitrogen) supplemented with 10% fetal bovine

serum followed by treatment with genistein for 36 hours.

Subsequently, the CAT activities in the samples were mea-

sured by using CAT ELISA system (Roche, Palo Alto, CA)

and b-Galactosidase Enzyme Assay System (Promega,

Madison, WI) in an ULTRA Multifunctional Microplate

Reader (TECAN).

Immunohistochemical Staining for MMP-9

Freshly harvested tumors grown in the implanted bones

were fixed in 10% buffered formalin, decalcified, embedded,

and sectioned. The paraffin sections of tumor were depar-

affinized, then rehydrated through a graded alcohol series.

Slides were placed in 10 mM citrate buffer (pH 6.0) and

boiled by microwave heating for 3 minutes. Nonspecific

sites were blocked by incubation with Superbloc (ScyTek,

Logan, UT). Sections were incubated with anti–MMP-9

(5 mg/ml in a mixture of PBS and 2% bovine serum albumin;

Calbiochem, La Jolla, CA) monoclonal antibodies for 45

minutes at room temperature. Control slides received no

primary antibody. Sections were then incubated with rabbit

anti–mouse immunoglobulin G (1:40 dilution), followed by
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alkaline phosphatase/anti–alkaline phosphatase monoclo-

nal antibody (APAAP) (1:40 dilution). Positive immunoreac-

tive sites were visualized with the Sigma Fast Red (Sigma)

substrate. Sections were briefly counterstained with hema-

toxylin and mounted in aqueous medium.

Results

Cell Growth Inhibition by Genistein
PC3 prostate cancer cells were treated with 0 to 50 mM

genistein over 3 days. The effect of genistein on the prolif-

eration of PC3 cells is depicted in Figure 1. Treatment of

PC3 cells with genistein resulted in a dose- and time-depen-

dent inhibition of cell proliferation as previously observed

[26], demonstrating an inhibitory effect of genistein on

PC3 prostate cancer cell growth in vitro. We further investi-

gated whether or nor genistein could inhibit PC3 cell growth

in vivo in the SCID-hu model of human prostate cancer bone

metastasis.

Inhibition of Bone Tumor Growth and Osteolysis by

Genistein

The PC3 cells were injected into a human bone fragment

previously implanted in SCID mice, and expansion of the

bone implant into a bone tumor was followed by serial caliper

measurements. The concentration of plasma genistein in the

mice from both the prevention and intervention groups was

significantly higher compared to control (Table 1), suggest-

ing the bioavailability of genistein from the diet in these

mice. It is important to note that the mean concentration of

plasma genistein in the mice fed genistein diet is in the range

(1.4 ± 0.7 to 4.09 ± 0.94 mM) of plasma genistein found in

populations consuming foods rich in isoflavones [32,33]. We

found that dietary genistein significantly inhibited prostate

cancer bone tumor growth and osteolysis in SCID-hu mice

(Figure 2), demonstrating an inhibitory effect of genistein in

an in vivo model of bone metastasis. The statistical analysis

indicated that compared to the control group, bone tumor

growth rate was significantly lower in both the prevention

(P V .0001) and intervention (P = .0003) groups, and the rate

in the prevention group was lower than in the intervention

group. Log tumor volume growth rate in the prevention group

was 34% of the growth rate in the control group, whereas the

rate in the intervention group was 70% of that in the controls.

To examine the alteration of gene expression induced by

dietary genistein, we determined the gene expression pro-

files of PC3 bone tumors and PC3 subcutaneous tumors in

the dietary genistein and control groups.

Regulation of mRNA Expression by Genistein Treatment

In PC3 cells grown in culture, genistein regulated the

expression of genes that are critically involved in the control

of cell growth, cell cycle, apoptosis, cell signaling transduc-

tion, angiogenesis, tumor cell invasion, and metastasis [26].

In this in vivo study, microarray analysis also showed that

the gene expression in PC3 bone tumors was dramatically

altered by genistein treatment (Table 2A). It appears that

genistein altered gene expression profiles more significantly

in the prevention group than in the intervention group,

corresponding with more inhibition of tumor growth in the

prevention group. The genes with altered expression in PC3

bone tumors were subjected to cluster analysis according to

their biologic function using Onto-Express and GenMAPP

computerized annotation. It is important to note that the data

analysis software does not allow finding out how many genes

there are in each categorized cluster in a whole gene chip.

We found that genistein in vivo–regulated some genes that

are involved in the regulation of cell cycle, apoptosis, signal

transduction, oncogenesis, chemotaxis, transcription, and

protein biosynthesis (Tables 2B and 3, Figure 3). This is

the first report regarding gene expression profiles altered

by genistein in vivo. Interestingly, we also found that genis-

tein regulated the expression of bone metastasis–related

genes with downregulation of MMPs and upregulation of

OPG (Tables 3 and 4, Figure 3). However, the significance

of many of these genes in the cause-and-effect relation-

ships between deregulated genes and genistein-induced

biologic effects in prostate cancer needs further in-depth

investigation.

Inhibition of MMP Expression by Genistein Treatment

Microarray analysis showed that genistein inhibited the

expression of MMP-9 in PC3 cells in culture [25] and the

expression of various MMPs in PC3 bone tumors (Figure 4,

Table 4). Real-time RT–PCR was conducted to confirm

the alteration in the expression of MMP-9. The results of

RT–PCR analysis for MMP-9 mRNA expression were in

agreement with the microarray data in general (Figure 5),

although the fold changes in expression level were not

exactly equal. Our gene transfection experiments showed

Figure 1. Inhibitory effects of genistein on the growth of PC3 cells in culture.

PC3 cells were treated with 5, 15, 30, and 50 �M genistein for 24, 48, and 72

hours. (*P < .05, n = 3, cell proliferation index: the percentage of sample

absorbance versus control absorbance).

Table 1. The Concentration of Plasma Genistein in the SCID-hu Mice.

Group Concentration of Genistein (mM) n P

Control 0.0065 ± 0.0159 6

Prevention 0.8261 ± 0.3684 7 <.01

Intervention 1.6976 ± 1.2469 7 <.01
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that CAT activity of the MMP-9 promoter decreased after

genistein treatment (Figure 6). Together, these results sug-

gest that genistein treatment downregulates the transcription

of several MMPs, particularly MMP-9. In order to verify

whether the alteration of MMP-9 at the level of transcription

ultimately resulted in alterations in protein levels or nor, we

conducted immunohistochemical analysis for MMP-9 pro-

tein. The MMP-9 immunostaining showed that MMP-9 pro-

tein was decreased in PC3 bone tumors in SCID-hu mice

receiving the genistein-containing diet (Figure 7). Zymo-

graphic analysis also showed a significant decrease in pro–

MMP-9 in the conditioned medium from genistein-treated

PC3 cells compared to control [25]. These results clearly

suggest that genistein inhibited mRNA transcription and

protein levels of MMPs, especially MMP-9, in vitro and in vivo.

Discussion

Genistein has been shown to inhibit cell growth in a wide

variety of cancer cells through regulation of several cell

signal transduction pathways [18–21,25]. Here, we demon-

strated that genistein significantly inhibits the growth of PC3

prostate cancer cells in culture, and also the growth of PC3

bone tumors in the SCID-hu model of prostate cancer bone

metastasis. These preclinical data suggest that genistein

Figure 2. (A) Inhibitory effects of genistein on the growth of bone tumors formed by PC3 cells in SCID-hu mice (Control, n = 6; Prevention, n = 7; Intervention, n = 7).

(B and C) Ex vivo bone tumor X-ray showing more osteolysis and tumor growth in the control group (B) than in the prevention group (C).

Table 2A. Numbers of Genes Showing z2-Fold Changes in PC3 Bone

Tumors After Genistein Treatment.

Prevention Intervention

P1 P2 I1 I2

Up 582 327 242 211

Down 66 49 46 31

Total 648 376 288 242

P1, P2: PC3 bone tumors in mice in the prevention group; I1, I2: PC3 bone

tumors in mice in the intervention group.

Table 2B. Numbers of Altered Genes in Different Categories in PC3 Bone

Tumors After Genistein Treatment.

Up Down

Apoptosis 12 1

Cell cycle arrest,

negative regulation of

cell proliferation, and transcription

13 0

Signal transduction, chemotaxis 10 7

Regulation of transcription and

protein biosynthesis

11 10

Oncogenesis 8 4
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may have beneficial effects in patients with prostate cancer

bone metastasis.

We have found that the inhibitory effects of genistein

in vitro were mediated by a large number of genes that are

related to the control of carcinogenesis, cell survival, and

physiological behaviors; these results have been published

previously [26]. However, little is known regarding the gene

expression profiles of prostate cancer cells after in vivo

genistein treatment. In order to investigate the molecular

effects of genistein on human prostate cancer bone metas-

tasis, in this study, we utilized the high-throughput gene chip

to determine gene expression profiles in experimental pros-

tate cancer bone tumors created by injecting PC3 cells, and

to analyze the alteration of these profiles after exposing

tumor-bearing animals to dietary genistein.

From microarray analysis with pathway-related annota-

tion (Figure 3, Tables 2B and 3), we found that the mole-

cular response to genistein in PC3 bone tumors involved

inhibition of expression of some genes that are related to

signal transduction, chemotaxis, transcription, protein bio-

synthesis, oncogenesis, and metastasis. However, genistein

upregulated some genes critical to the induction of apopto-

sis, cell cycle arrest, and negative regulation of cell prolifer-

ation and transcription. For example, DNA fragment factor

is a caspase-activated DNase and has been found to cleave

DNA in the apoptotic processes [34]. Granzyme A, pro-

grammed cell death 4 (PDCD4), and apoptosis-related pro-

tein (APG) also play important roles in the induction of

apoptosis [35– 37]. Secreted frizzled-related protein 4

(SFRP4) has been found to be involved in oncogenesis by

regulating Wnt signaling pathway [38]. In vivo, genistein up-

regulated the expression of DNA fragment factor, Granzyme

A, PDCD4, and APG, and downregulated SFRP4, suggest-

ing the effect of genistein on the induction of apoptotic

Table 3. Fold Changes of Specific Genes in PC3 Bone Tumors in SCID-hu Mice Treated with Genistein.

Gene Prevention Intervention

Increase

Apoptosis

NM 004849.1 Homo sapiens APG5 (autophagy 5, Staphylococcus cerevisiae) – like (APG5L) 2.6 NC

NM 014456.1 H. sapiens programmed cell death 4 (PDCD4) 2.3 NC

BF433902 tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin) 2.1 NC

NM 002546.1 tumor necrosis factor receptor superfamily, osteoprotegerin 2.0 NC

NM 006144.2 H. sapiens granzyme A 2.6 NC

NM 004402.1 H. sapiens DNA fragmentation factor (caspase-activated DNase) 2.5 2.5

AF001294.1 H. sapiens IPL (IPL) mRNA 2.1 NC

AF293841.1 H. sapiens apoptosis-related protein (APG5L) 2.8 NC

NM 022037.1 H. sapiens TIA1 cytotoxic granule-associated RNA-binding protein 2.1 NC

AF091627.1 H. sapiens CUSP mRNA 2.1 NC

AB037736.1 H. sapiens mRNA for KIAA1315 protein 2.1 1.7

NM 013229.1 H. sapiens apoptotic protease-activating factor (APAF1) NC 2.6

Cell cycle arrest, negative regulation of cell proliferation, and transcription

N23018 C-terminal binding protein 2 2.5 2.3

NM 003591.1 H. sapiens cullin 2 2.0 NC

NM 004585.2 H. sapiens retinoic acid receptor responder 3 2.5 NC

NM 020310.1 H. sapiens MAX-binding protein (MNT) 2.3 NC

BF673013 spectrin SH3 domain-binding protein 1 2.1 NC

NM 015895.1 H. sapiens geminin (LOC51053) 2.0 1.7

NM 003451.1 H. sapiens zinc finger protein 177 (ZNF177) 2.1 NC

BE046521 cut (Drosophila) – like 1 (CCAAT displacement protein) 2.0 NC

NM 004992.2 H. sapiens methyl CpG-binding protein 2 (MECP2) NC 3.7

Decrease

Signal transduction, chemotaxis

AW089415 SFRP4 �2.1 �1.1

NM 003014.2 H. sapiens SFRP4 �2.8 �1.6

BF304996 regulator of G-protein signalling 16 �2.5 NC

NM 004887.1 H. sapiens small inducible cytokine subfamily B, member 14 �1.4 �2.3

NM 002984.1 H. sapiens small inducible cytokine A4 �2.0 �1.4

L35594.1 human autotaxin mRNA �2.1 �1.1

Regulation of transcription and protein biosynthesis

NM 014660.1 H. sapiens KIAA0783 gene product (KIAA0783) �2.5 �3.7

AF022654.1 H. sapiens homeodomain protein (OG12) mRNA �2.0 �2.0

NM 012082.2 H. sapiens friend of GATA2 (FOG2) �8.0 NC

AK026674.1 H. sapiens cDNA: FLJ23021 fis, similar to HUMSEF21B �2.0 �1.4

BC000023.1 H. sapiens, ribosomal protein S19 �2.3 �2.1

BF680255 ribosomal protein S11 �2.3 �4.0

AW302047 ribosomal protein S10 �2.1 �2.6

Oncogenesis

BC000023.1 H. sapiens, ribosomal protein S19 �2.3 �2.1

AW089415 SFRP4 �2.1 �1.1

NM 003014.2 H. sapiens �2.8 �1.6

BF673699 v-Ki-ras2 Kirsten rat sarcoma 2 viral oncogene �1.3 �2.0
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processes in vivo. Our results demonstrated that the

inhibition of tumor growth in vivo by genistein was associ-

ated with alterations in expression of a large number of

genes critically involved in the control of carcinogenesis,

cell survival, and physiological behaviors. However, genis-

tein also upregulated several genes related to signal

transduction, transcription, protein biosynthesis, and onco-

genesis, some of which may promote cell survival. More

studies are needed and are ongoing in our laboratory to

address this variation in vivo.

More importantly, we found that dietary genistein also

downregulated the expression of multiple metastasis-related

Figure 4. Cluster map of MMP gene expression analyzed by cDNA microarray. (A) Different levels of MMP mRNA expression in PC3 cells grown in culture, PC3

bone tumors, and PC3 subcutaneous tumors. (B and C) The expression of MMP mRNA was inhibited by genistein treatment both in vivo (B) and in vitro (C) (P1,

P2: PC3 bone tumors grown in mice in the prevention group; I1, I2: PC3 bone tumors grown in mice in the intervention group; 6 h, 36 h, 72 h: PC3 cells treated with

50 �M genistein for 6, 36, and 72 hours).

Figure 3. Effects of genistein on pathway-related gene expression analyzed and visualized by GenMAPP software integrated with cDNA microarray data (positive

value: increase in fold change; negative value: decrease in fold change).
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genes, including many MMPs. In particular, we found that

dietary genistein inhibited the expression of MMP-2, MMP-9,

MMP-11, MMP-13, MMP-14, and MT-MMP. These preclin-

ical data corroborate our findings in vitro as reported previ-

ously [25,26]. MMPs have been shown by numerous

investigators to play a prominent role in metastasis [11,12].

Classically, MMP-2 and MMP-9, otherwise known as the

gelatinases, have been implicated in metastasis because of

their role in degrading basement membrane collagen. In-

creased expression of other MMPs, such as MMP-13 and

MMP-14, has been demonstrated in many different human

cancers [11,12]. For example, MMP-14, a membrane-type

MMP also known as MT1-MMP, has been shown to mediate

cell invasion in vitro and in vivo [39].

We and others have shown that MMP activity plays

an important role in metastasis specifically to the bone

[11,14,15]. MMP activity is known to play a role in both

normal and cancer-induced bone remodeling. Bone remod-

eling results in the release of various bioactive factors

embedded in the bone extracellular matrix; these factors

stimulate the local proliferation of tumor cells. Thus, en-

hanced MMP activity in bone tissues associated with the

presence of tumor cells may be one of the factors involved in

the so-called ‘‘vicious cycle’’ hypothesis [5] in which bone

matrix turnover and metastatic tumor growth are linked in a

positive feedback loop. The enhanced MMP activity in bone

metastasis may emanate from many cell types such as

tumor cells, stromal cells, osteoclasts, and osteoblasts.

Supporting this hypothesis, we previously found that small

molecule pharmaceutical inhibitors of MMP activity reduced

osteoclast recruitment, prevented bone matrix degradation,

and reduced prostate cancer cell proliferation in the human

bone implanted in SCID mice [14]. These data have been

replicated in other models of bone metastasis [15].

The effects of dietary genistein on bone tumor growth and

associated osteolysis in the current study are strikingly

similar to our findings with the MMP inhibitor [14]. Our data

Table 4. Fold Changes of MMP gene Expression in PC3 Bone Tumors in

Mice Fed Genistein Diet Compared to Mice Fed Control Diet.

Genes P1/C P2/C I1/C I2/C

Z48481 mRNA for membrane-type

matrix MMP-1

�1.2 �1.2 �1.1 0

NM 004530.1 H. sapiens

matrix MMP-2

�1.1 �1.1 �1.1 0

NM 004995.2 H. sapiens

matrix MMP-14

�1.5 �1.2 �1.1 0

NM 005940.2 H. sapiens

matrix MMP-11

�1.5 �1.3 0 �1.1

NM 004994.1 H. sapiens

matrix MMP-9

�2.5 �1.7 �1.2 �1.1

NM 002421.2 H. sapiens

matrix MMP-1

0 0 0 0

NM 002426.1 H. sapiens

matrix MMP-12

0 0 0 0

NM 002427.2 H. sapiens

matrix MMP-13

�1.3 �2.5 �1.5 �2.6

NM 004142.1 H. sapiens

matrix MMP-like 1

0 0 0 0

P1, P2: bone tumors in the prevention group; I1, I2: bone tumors in the

intervention group; C: bone tumor in the control group.

Figure 5. Real-time RT-PCR analysis of MMP-9 genes. Comparative analysis shows the downregulation of MMP-9 mRNA expression in PC3 cells grown in culture

(n = 3, P = .0199) (A) and in PC3 bone tumor in SCID-hu mice (n = 3, P < .01) (B) after genistein treatment compared to control. Real-time RT-PCR melting curve

shows that the PCR products of MMP-9 (C) and GAPDH (D) are pure (only one peak).

Figure 6. MMP-9 promoter transfection and CAT assay show that the activity

of MMP-9 promoter was inhibited by genistein treatment (n = 2, P = .0035).
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suggest that dietary genistein leads to diminished MMP

activity by limiting increases in MMP gene expression asso-

ciated with the presence of cancer cells in the bone. De-

crease in overall MMP gene expression (in multiple cell

types) ultimately limits tumor-induced bone matrix degrada-

tion. Controlling the rate of bone matrix turnover diminishes

the expansion of tumor within bone. This mechanism seems

more likely than a direct effect of genistein on the prolifera-

tion of tumor cells because the serum concentration of

genistein achieved in the mice by dietary manipulations

appears to be below the levels required for a direct effect

on tumor cells. One possible mechanism underlying the

modulation of MMP gene expression involves the NF-nB

transcription factor. Previously, we showed that genistein

inhibited NF-nB DNA-binding activity [21]. Because there is a

NF-nB–binding site in the promoter of MMP-9 (Figure 3), the

inhibition of NF-nB DNA-binding activity by genistein could

be one of the molecular mechanisms by which genistein

inhibits MMP-9 gene expression in various types of cells.

Genistein may regulate cancer-induced bone matrix turn-

over by additional mechanisms. We found that dietary gen-

istein upregulated the expression of OPG in PC3 bone

tumors, suggesting an inhibitory effect of genistein on oste-

oclast formation. Metastatic cancer cells are known to re-

lease RANKL and OPG into the bone microenvironment,

which act on osteoblastic stromal cells to regulate the

production of functioning osteoclasts [5,16]. RANKL stimu-

lates the formation and differentiation of osteoclasts by

binding to its receptor, RANK, expressed in osteoblastic

stromal cells [5,16]. OPG is a decoy receptor that prevents

binding of RANKL to RANK by competitive binding to

RANKL, leading ultimately to the inhibition of osteoclast

formation, survival, and activity [16,40] in the presence of

cancer cells. Supporting the ‘‘vicious cycle’’ hypothesis, OPG

shows activity for inhibition of bone tumor growth [41,42].

Zhang et al. [9] reported that OPG inhibited prostate cancer–

induced osteoclastogenesis and prevented prostate tumor

growth in the bone. A recent study also showed that OPG

decreased human prostate cancer burden in human adult

bone implanted into SCID mice [8]. Thus, upregulation of

OPG may be another mechanism by which genistein limits

bone metastasis.

Apart from MMPs, urokinase plasminogen activator

(uPA), its receptor (urokinase plasminogen activator recep-

tor, uPAR), proteinase M, and protease-activated receptor-2

(PAR-2) are important genes in the processes of tumor cell

invasion and metastasis [43–45]. The results from our in vitro

study also showed that genistein downregulated the expres-

sion of uPA, uPAR, protease M, and PAR-2, and upregulated

the expression of connective tissue growth factor and con-

nective tissue activation peptide [25,26], suggesting that

genistein may inhibit invasion and metastasis of PC3 pros-

tate cancer cells by multiple mechanisms. The lower con-

centration of genistein achieved in vivo and complex tumor

tissues with multiple cell types might be the reasons why we

did not observe significant effects of genistein on the expres-

sion of uPA, uPAR, protease M, and PAR-2 in vivo.

In conclusion, dietary genistein regulated the expression

of metastasis-related genes and significantly inhibited the

growth of PC3 bone tumors in an animal model of human

prostate cancer bone metastasis. These results suggest that

genistein could be a promising agent for the prevention and/

or treatment of prostate cancer and its metastasis. This

information could also be exploited for devising chemopre-

ventive and/or therapeutic strategies against prostate can-

cer, particularly for metastatic prostate cancer for which

there is currently no curative therapy. However, the signifi-

cance of genistein-induced alterations of many of genes in

SCID-hu in vivo model requires further in-depth studies in

order to determine their causative role in antitumor and

antimetastasis effects of genistein on prostate cancer.
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