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Abstract

Male germ cell tumors (GCTs) are extremely sensitive

to platinum-containing chemotherapy, with only 10%

of patients showing therapy resistance. However, the

biological basis of the high curability of disseminated

GCTs by chemotherapy is still unknown. Recently, we

demonstrated that the mammalian serine/arginine–

rich protein-specific kinase 1 (SRPK1) is a cisplatin-

sensitive gene, inactivation of which leads to cisplatin

resistance. Because, in mammalians, the expression

of SRPK1 is preferentially high in testicular tissues,

cisplatin responsiveness of male GCTs might be

associated with SRPK1 levels. In the present study,

we monitored SRPK1 protein expression in a unique

series of nonseminomatous GCTs by immunohisto-

chemistry. Randomly selected GCTs (n = 70) and

tumors from patients responding to standard chemo-

therapy (n = 20) generally showed strong SRPK1

staining. In contrast, expression in refractory GCTs

(n = 20) as well as in GCTs from poor-prognosis

patients responding to high-dose chemotherapy only

(n = 11) was significantly lower (two-sided Wilcoxon

rank sum test: P < .001). In conclusion, our data

suggest that SRPK1 expression might be an important

prognostic indicator for the chemoresponsiveness of

nonseminomatous GCTs.
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Introduction

Cisplatin is one of the most active and widely appreciated

anticancer drugs with clinical use in the treatment of a

variety of solid tumors, including tumors of the head and

neck, and testicular and ovarian cancers. Except in the

case of germ cell tumors (GCTs), cellular resistance, either

intrinsic or acquired, is frequently encountered and severe-

ly limits the therapeutic potential of the drug [1]. In vitro

studies have revealed numerous resistance mechanisms,

including reduced intracellular accumulation, increased detox-

ification and DNA repair, increased tolerance to DNA damage,

and aberrations in pathways modulating programmed cell

death [2,3]. However, in the clinical setting, the reason why a

particular tumor does indeed react to cisplatin-containing che-

motherapy, whereas other tumors fail to respond, is still com-

pletely unknown. In previous studies, we have used yeast as a

model system to elucidate cellular mechanisms underlying

cisplatin sensitivity and resistance [4–7], and identified Sac-

charomyces cerevisiae SKY1 (serine/arginine–rich protein-

specific kinase from budding yeast) as a novel drug-sensitive

gene, whose disruption conferred resistance to cisplatin, car-

boplatin, and anthracycline [6]. Heterologous expression of

the human homologue SRPK1 (serine/arginine–rich protein-

specific kinase 1) in sky1D disruption mutant yeast cells

restored cisplatin sensitivity [5]. Analogous to the original

finding in yeast, downregulation of the SRPK1 protein in a

human ovarian carcinoma cell line also conferred resistance to

cisplatin [5]. Overexpression of Sky1p in yeast and SRPK1

in mammalian cells induced hypersensitivity to cisplatin

[6] (unpublished results). These data indicate that SRPK1 is

a cisplatin-sensitive gene, which might potentially play a role in

clinical drug response.

GCTs are extremely sensitive to platinum-based chemo-

therapy, with cure rates of about 90%, even in the presence of

metastatic disease [8]. However, the biological basis of the high

curability of disseminated nonseminomas (NS) by chemother-

apy is still obscure [9,10]. Because it has been documented

that mammalian testicular parenchyma has high SRPK1 ex-

pression [11], we explored a possible role of SRPK1 in the

sensitivity and resistance of nonseminomatous GCTs toward

platinum-containing chemotherapy. Using a unique collection
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of chemorefractory NS, we were able to compare SRPK1

expression in chemosensitive and chemorefractory GCTs.

Materials and Methods

Patients

SRPK1 expression was analyzed in a total of 121 different

GCT samples. Four groups of GCTs were studied (see also

Table 1).

1. Randomly selected NS (n = 70; 27 pure subtypes and

43 tumors consisting of a mixture of embryonal carci-

noma, yolk sac tumor, teratoma, and/or choriocarcino-

ma subtypes). No data on the clinical course were

available for these patients.

2. NS (n = 20; 11 pure subtypes and 9 mixtures; follow-up

> 5 years) obtained from patients who were cured

by standard first-line platinum-based chemotherapy

(cisplatin/etoposide/bleomycin/vinblastine/ifosfamide).

3. NS (n = 11; five pure subtypes and six mixtures;

median follow-up, 129 weeks; range, 26–287) from

poor-prognosis patients (according to the Internation-

al Germ Cell Cancer Cooperative Group classifica-

tion) who managed long-term survival after initial

high-dose chemotherapy (cisplatin/etoposide/ifosfa-

mide, including bone marrow support) as first-line

treatment [12].

4. Chemorefractory NS (n = 20; 11 pure subtypes and

9 mixtures) of which the patients died despite first-line

and salvage chemotherapy including high-dose plati-

num-containing therapy (all death of disease [DOD];

median time to progression, 29 weeks; range, 0–174).

First-line treatment consisted of combinations of cis-

platin with etoposide, ifosfamide, vinblastine, and/or

bleomycin (n = 18), or of first-line high-dose cisplatin

combined with vinblastine and ifosfamide (n = 2) as

described previously [12]. Salvage high-dose chemo-

therapy was given to 15 patients and, finally, all

patients received further palliative treatment for refrac-

tory disease, containing etoposide, oxaliplatin, bend-

amustine, or gemcitabine [13].

Formalin-fixed paraffin-embedded tissue blocks from the

randomly selected NS and the NS obtained from patients

cured by standard chemotherapy were collected between

1991 and 2001 in the southwestern part of The Netherlands.

The tissue samples from these patients were derived from

orchiectomy. The group of standard chemosensitive patients

was treated at the University Hospital Rotterdam between

1991 and 1994. After initial therapy, all 20 patients had

complete remission of the tumor and are still disease-free.

The 20 chemotherapy-refractory patients and the poor-prog-

nosis patients responding to high-dose chemotherapy were

diagnosed between 1991 and 1998, and treated within

various clinical trials led by Tuebingen University (Tuebin-

gen, Germany) [12,13]. Patients were considered refractory

when progression or relapse occurred despite adequate and

salvage treatment, including high-dose chemotherapy with

autologous stem cell transplantation. The specimens of 12

patients were obtained at initial diagnosis; in eight cases, the

specimens were sampled after exposure to chemotherapy.

Table 1 summarizes the relevant patient and tumor charac-

teristics of the responding and refractory patients. All cases

were diagnosed according to the World Heath Organization

classification.

Immunohistochemical Detection of SRPK1

SRPK1 expression was estimated by immunohistochem-

istry (IHC) on paraffin-embedded tissue sections according

to standard procedures. Paraffin sections (3 mm) were

mounted on 3-aminopropyl-triethoxysilane–coated slides,

deparaffinized in xylene, and rehydrated. Pressure cooking

(1.2 bar) in citrate buffer (0.01 mol/L, pH 6.0) was used for

antigen retrieval. The slides were immunostained using the

horseradish-labeled streptavidin–biotin complex (DAKO

A/S, Glostrup, Denmark). After blocking endogenous perox-

idase, the sections were incubated overnight (4jC, 16 hours)

with a SRPK1-specific monoclonal antibody (dilution 1/400 in

1% bovine serum albumin) (BD Transduction Laboratories,

Lexington, KY). Peroxidase was visualized with 3,3-diami-

nobenzidine tetrahydrochloride. Sections were counter-

stained with Mayer’s hematoxylin. The IHC staining was

assessed and blinded for clinical outcome independently

by three observers (L.H.J.L., K.N., and P.W.S.), and, in case

of discordance, slides were reevaluated and discussed to

obtain consensus. The IHC staining of the tumor cells was

scored as ‘‘negative’’ (�), ‘‘weak’’ (�/+), ‘‘positive’’ (+),

‘‘strong’’ (++), or ‘‘very strong’’ (+++).

Table 1. Patient and Tumor Characteristics by Patient Group.

Unselected

(n = 70)

Standard Chemoresponsive

(n = 20)

High-Dose Chemoresponsive

(n = 11)

Chemorefractory

(n = 20)

Median age in years (range) 33 (15 –63) 32 (17 –49) 27 (21– 47) 28 (16 –56)

Histology

Mixed NS 43 9 6 9

Embryonal carcinoma 20 3 1 3

Yolk sac tumor 1 3 2 7

Mature teratoma 6 5 1 0

Choriocarcinoma 0 0 1 1

Treatment Not applicable Standard first line High-dose chemotherapy Standard first line,

high-dose chemotherapy,

salvage chemotherapy

Median progression-free survival Not applicable > 5 years 129 weeks 29 weeks, all DOD
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Results

SRPK1 expression was estimated by IHC on paraffin-

embedded tissue sections using a SRPK1-specific monoclo-

nal antibody. In normal testicular parenchyma, we observed

high SRPK1 expression (Figure 1A) as anticipated [11].

Positive nuclear and cytoplasmic staining of SRPK1 was

found in spermatogonia, spermatocytes, and spermatids

(Figure 1A), whereas no staining was observed in mature

spermatozoa, Sertoli cells, or blood vasculature. In carcino-

ma in situ (the precursor of testicular GCTs), we also found

SRPK1 (Figure 1A). Strong SRPK1 staining was found in the

majority of randomly selected and standard chemotherapy–

sensitive NS (Figure 1B). In contrast, in most tumors from

patients with treatment-refractory disease and patients with

advanced disease responding to high-dose chemotherapy

only, SRPK1 expression was considerably lower or even

absent. A large number of the treatment-refractory DOD

cases were negative or stained only weakly for SRPK1

(Figure 1, C and D). We did not see obvious differences in

staining between embryonal carcinoma, yolk sac tumor,

teratoma, and choriocarcinoma components.

Regardless of their histological subclassification, for sev-

eral samples examined, a more or less heterogeneous

SRPK1 staining was noticed among the tumor cells. There-

fore, a total of five randomly chosen microscopic tumor fields

per IHC slide was scored in order to get a representative

estimate of SRPK1 expression. The semiquantitative score

of (�) to (+++) was assigned the value 1, 2, 3, 4, or 5,

respectively, and the cumulative scores of five different

tumor fields were calculated. Although most randomly se-

lected and standard chemotherapy–sensitive GCTs showed

overall scores > 15 corresponding to strong or very strong

SRPK1 staining, the majority of treatment-refractory and

high-dose–responsive GCTs displayed scores V 15 for

negative, weak, or intermediate staining (Figure 2A). The

median cumulative IHC scores for the randomly selected,

standard chemotherapy–responsive, refractory, and high-

dose–responsive NS were 20.5 (range 10–25), 19 (11–25),

7.5 (5–20), and 15 (5–18), respectively (Figure 2B). SRPK1

expression in the randomly selected versus refractory and

high-dose–responsive groups was significantly different at

P < .0001 and P < .0001 (two-sided Wilcoxon rank sum

test), respectively. The relative expression in the standard

chemotherapy–responsive versus the refractory and high-

dose – responsive group was significantly different at

P < .0001 and P < .001 (two-sided Wilcoxon rank sum test),

respectively. We conclude that high SRPK1 expression

might be an important prognostic indicator for the respon-

siveness of nonseminomatous GCTs toward platinum-

containing chemotherapy, whereas its absence or low

expression might predict resistance.

Discussion

A better understanding of the cellular mechanisms of cis-

platin sensitivity and resistance could lead to effective,

specific biological and pharmacological intervention, and

thus to better treatment results with regard to long-term

Figure 1. Representative examples of immunohistochemical staining for SRPK1. (A) Normal spermatogenesis (left) and carcinoma in situ (right). (a)

Spermatogonium; (b) spermatocyte; (c) spermatid; (d) Sertoli cell; and (e) carcinoma in situ cell. (B) Chemotherapy-sensitive yolk sac tumor showing ‘‘very strong’’

SRPK1 staining. (C and D) Chemotherapy-resistant germ cell tumors (C, yolk sac tumor; D, choriocarcinoma) scored as ‘‘negative’’ to ‘‘weak’’ (heterogeneous),

and ‘‘negative’’ (homogeneous), respectively. Original magnification, � 200.
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survival. In the present study, we determined SRPK1 ex-

pression in a unique series of human drug-sensitive and

drug-resistant male nonseminomatous GCTs and found a

clear statistically significant correlation between chemosen-

sitivity and elevated SRPK1 expression. We concluded that

high SRPK1 expression might be of importance for the

cisplatin sensitivity of NS, whereas the absence or low

expression of SRPK1 might determine unresponsiveness.

Interestingly, it was recently shown by another group that

expression of a dominant-negative inhibitor of SRPK1 also

renders mammalian cell lines resistant to bleomycin [14],

which is part of standard chemotherapy for GCTs. Down-

regulation of SRPK1 might thus not only affect the clinical

effectiveness of platinum-based drugs, but also that of

bleomycin.

SR protein–specific kinases, like Sky1p and SRPK1, and

their substrates (the SR proteins) are thought to be key

regulators of RNA maturation by regulating splicing or mRNA

transport from the nucleus to the cytoplasm [15]. In that way,

these constitutively active kinases probably have a broad

regulatory role in cellular physiology. For the SRPKs (Sky1p

and SRPK1), specific substrates and involvement in cellular

functions have been identified. SRPK1 is predominantly

found in the testis, where it phosphorylates protamine 1 as

well as a cytoplasmic pool of other SR proteins [11]. Prot-

amines are small highly basic proteins that replace histones

during spermatogenesis, resulting in extreme chromatin

condensation [16]. It was recently shown that Sky1p is a

key regulator of inward transport of polyamines such as

putrescine, spermine, and spermidine [17]. Along that line,

SRPK1 might have a role in spermatogenesis by direct or

indirect regulation of intracellular concentrations of poly-

amines. Although the precise molecular mechanisms, by

which the SRPKs promote cellular responsiveness to cyto-

toxic stress, have not been established yet [5–7], the avail-

able data suggest that hyperphosphorylation of the normal

cellular substrates might be part of a cellular stress response

[18]. Deletion of SKY1/SRPK1 would then mean that cisplat-

in treatment can no longer efficiently trigger a stress re-

sponse involved in cell death, resulting in drug resistance.

Recently, Mayer et al. [19] found a positive correlation

between microsatellite instability and treatment resistance

in GCTs. Here, we show that refractory GCTs also have

the protein kinase SRPK1 downregulated. Interestingly, our

yeast sky1D knockout strains display a so-called mutator

phenotype with an increased incidence of mutations that is

generally associated with microsatellite instability [20]. It is,

therefore, tempting to speculate that both observations

(downregulation of SRPK1 and MSI in chemotherapy-resis-

tant GCTs) have a common molecular basis.
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