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Abstract

The identification of genes undergoing genetic or epi-

genetic alterations and contributing to the develop-

ment of cancer is critical to our understanding of the

molecular mechanisms of carcinogenesis. A new ap-

proach in identifying alterations of genes that might

be relevant to the process of tumor development was

used in this study by examining the gene expression

profile in human lung cancer cells exposed to 5-aza-2V-

deoxycytidine (5-aza-dC). A cDNA array analysis was

carried out on 5-aza-dC–treated and untreated non

small cell lung cancer (NSCLC) cell line NCI-H522.

Sixteen and 14 genes were upregulated and down-

regulated, respectively, by 5-aza-dC treatment. Among

them, downregulation of tyrosine protein kinase ABL2

(ABL2 ) gene and upregulation of hint/protein kinase

C inhibitor 1 (Hint/PKCI-1), DVL1, TIMP-1, and TRP-1

genes were found in expanded observations in two

or three of five 5-aza-dC–treated NSCLC cell lines.

Among these genes, we found that cDNA transfer of

Hint/PKCI-1 resulted in a significant in vitro growth

inhibition in two cell lines exhibiting 5-aza-dC–induced

upregulation of Hint/PKCI-1 and significantly reduced

in vivo tumorigenicity of one NSCLC cell line. Hint/

PKCI-1, which is the only other characterized human

histidine triad (HIT) nucleotide-binding protein in addi-

tion to tumor-suppressor gene FHIT, might be involved

in lung carcinogenesis.
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Introduction

Lung cancer, the majority of which are non small cell lung

carcinoma (NSCLC), is the leading cause of cancer death in

men and women in the United States [1]. Although most

lung cancers are related to tobacco use, it is also ranked

second only to bladder cancer in the proportion cases

thought to be due to occupational exposures [2]. Increasing

evidence demonstrates that the accumulation of epigenetic

damage induced by the respiratory epithelium to cigarette

smoke and/or occupational carcinogens is one of the major

mechanisms responsible for the development of lung cancer.

Epigenetic damage, consisting mainly of promoter hyperme-

thylation, disrupts or silences the expression of tumor-suppres-

sor genes, leading to uncontrolled cell proliferation. There are

an increasing number of candidate tumor-suppressor genes

that are inactivated by promoter hypermethylation in various

types of cancer. In human cancer, promoter hypermethylation

appears to be involved at least as frequently as point mutations

in the disruption of tumor-suppressor genes [3]. Promoter

hypermethylation in tumor-suppressor genes, such as p16,

death-associated protein kinase (DAPK), FHIT, and Ras effec-

tor homologue (RASSF1A), is thought to be an early event in

cigarette smoking–related respiratory carcinogenesis [4–6].

One major challenge in lung cancer investigations is the

identification of genes that undergo genetic or epigenetic

damage during neoplastic development. The basic strategy

employed for identifying new candidate genes was the com-

parison of gene expression between cancer cells and the cor-

responding noncancerous cells, or between parental tumor

cells and anti– tumor agent–treated tumor cells. The compar-

ison of gene expression between 5-aza-2V-deoxycytidine

(5-aza-dC)–treated and parental tumor cell lines is a feasible

approach for the identification of differentially expressed

cancer-related genes [7,8].

5-Aza-dC is the most commonly used DNA demethylation

agent and can induce tumor cell differentiation, cell cycle

arrest, and apoptosis [9–13]. It is believed that the multiple

effects of 5-aza-dC on tumor cells derive from its ability to

inhibit DNA methyltransferase during DNA synthesis, lead-

ing to DNA demethylation and subsequent activation of the

expression of transcriptionally silenced genes [14–16]. The

majority of genes activated by 5-aza-dC, such as Rb, p16,

E-cadherin, APC, VHL, retinoic acid receptor b, BRCA1, and
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DLC-1, are tumor-suppressor genes in different types of

cancer cells [17–25]. It is known that tumor-suppressor

genes can negatively regulate the function of oncogenes

or genes promoting tumor cell growth through different

signal transduction pathways. Therefore, it is presumed

that 5-aza-dC exerts its antitumor function by directly upre-

gulating tumor-suppressor genes through DNA demethyla-

tion, and by indirectly downregulating oncogenes through

signal transduction pathways. Thus, changes in gene ex-

pression, especially the upregulation of tumor-suppressor

genes and the downregulation of oncogenes, would be

expected in each tumor cell line, which is responsive to

5-aza-dC in cell growth inhibition, cell cycle arrest, or

apoptosis, during the transition of DNA methylation status

rendered by 5-aza-dC treatment. It can also be understood

that the transition of DNA methylation status can provide

an opportunity to identify tumor-related genes, either

tumor-suppressor gene(s) or oncogene(s).

In this study, we employed a cDNA array to analyze the

changes in gene expression in an in vitro 5-aza-dC–treated

human lung adenocarcinoma cell line. Treatment of this cell

line with 5-aza-dC resulted in growth inhibition, cell cycle

arrest, apoptosis, and changes in mRNA expression of

several genes. Among them, the hint/protein kinase C inhib-

itor 1 (Hint/PKCI-1) gene was upregulated by 5-aza-dC and

inhibited lung tumor cells growth.

Materials and Methods

Reagents and Cell Culture

5-Aza-dC was purchased from Sigma (St. Louis, MO).

Atlas Human Cancer 1.2 Array, carrying cDNA fragments of

a total of 1176 individual genes, was purchased from Clon-

tech (Palo Alto, CA). In Situ Cell Death Detection (TDT-

mediated dUTP biotin nick end labeling [TUNEL] assay) Kit

was purchased from Roche Molecular Biochemicals (Indian-

apolis, IN). Human NSCLC cell lines A539, NCI-H23, NCI-

H358, NCI-H522, and NCI-H520 were purchased from

ATCC (Rockville, MD) and cultured in RPMI 1640 medium

(Gibco BRL, Gibco, Carlsbad, CA) containing 10% of fetal

bovine serum and 100 U of penicillin and streptomycin.

Cell Proliferation Assay, TUNEL Assay (In Vitro Cell Death

Assay), and Cell Cycle Analysis for 5-Aza-dC–Treated NCI-

H522 Cells

In cell proliferation assays, 1 � 105 cells were seeded in

each T-25 culture flask in triplicate. Cells were either treated

or untreated with 1 mM 5-aza-dC, and then trypsinized and

collected at 24, 48, 72, 96, and 120 hours of treatment.

Viable cells determined by trypan blue (Gibco, Carlsbad, CA)

exclusion were counted using a hematocytometer.

In TUNEL assays, 1 day before treatment, tumor cells

either treated or untreated with 5-aza-dC were plated in four-

well chamber slides. The cells were fixed at each time point

of 24, 72, 96, and 120 hours of treatment by 2% paraformal-

dehyde solution (in phosphate-buffered saline [PBS], pH 7.4)

for 60 minutes at room temperature, permeated in 0.1%

Triton X-100/0.1% sodium acetate for 2 minutes on ice,

and then labeled with TUNEL reaction mixture containing

calf thymus DNA terminal transferase and fluorescein-

labeled dNTP at 37jC for 1 hour. After applying antifade

and mounting medium on the slide, fluorescein-labeled cells

were detected by fluorescence microscopy and the ratio of

the number of labeled cells versus the number of total cells

was obtained by counting the cells of 10 observation fields.

In the cell cycle analysis, both 1 mM 5-aza-dC–treated

and untreated cells were collected at 24, 48, 72, 96, and 120

hours of treatment in PBS buffer containing 10 mM glucose

and then fixed in 70% ethanol at 4jC for at least 1 hours. The

cells were then stained for 30 minutes in propidium iodide
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Figure 1. Cell proliferation assay, TUNEL assay, and cell cycle analysis for

NCI-H522 cells treated with 1 �M 5-aza-dC. Cell proliferation assay (A) dem-

onstrated that cells started slower growth at the second day of 5-aza-dC

treatment. TUNEL assay (B) showed that about 13% of cells becomes

apoptotic in drug-treated cells compared with 2% of apoptotic cells in un-

treated cells. Cell cycle analysis (C) indicated that 5-aza-dC treatment can

cause a significant S-phase arrest in the cell cycle.
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solution containing 7.5 mM propidium iodide, 10 mM glu-

cose, and 100 U/ml RNase A in PBS buffer. Flow cytometric

analysis was performed using a FACS Calibur flow cytom-

eter (Becton Dickinson Immunocytometry Systems, San

Jose, CA), which was equipped with Cell Quest version

3.1f software (Becton Dickinson Biosciences, San Jose,

CA) for cell cycle data collection. Cell cycle distribution was

analyzed using ModFit LT Version 2.0 software (Verity

Software House, Inc., Topsham, ME).

cDNA Expression Array Analysis and Reverse Transcrip-

tion–Polymerase Chain Reaction (RT-PCR) Confirmation

for Gene Expression

Polyadenylated RNA from 5-aza-dC–treated NCI-H522

and untreated control cells was extracted with TriZol reagent

(Life Technologies, Inc., Grand Island, NY) and purified with

magnetic oligo(dT) beads (DYNAL, Inc., Lake Success, NY).

In each cDNA array analysis, 0.6 mg of mRNA was radio-

labeled with a mixture of gene-specific primers during the

reverse transcription procedure. The labeled probe of a total

of 7.5 � 106 cpm activity was hybridized with each array

membrane. Membrane washing was performed by following

the procedure described in the user’s manual. The hybrid-

ized membrane was exposed to a PhosphoImage plate and

processed using Software ImageQuant Version 3.3 (Molec-

ular Dynamics, Sunnyval, CA). The quantitative data anal-

ysis was performed using AtlasImage 2.0 Software (cat no.

V1212-1; Clontech). For verifying the alterations of gene

expression detected by cDNA array analysis, total full-length

cDNA of both treated and untreated cells were synthesized

by reverse transcription and amplified by the SMART PCR

cDNA Synthesis Kit in a low cycle number (BD Biosciences,

Palo Alto, CA). All cDNA samples were diluted into equal

concentration according to the PCR production of GAPDH

before use in the comparison of gene expression.

Antisense Oligo Transfection and Full-Length cDNA

Transfection

For antisense oligo transfection, a stretch of 23-bp-long

DNA sequences of tyrosine protein kinase ABL2 (ABL2 )

cDNA from Genebank (accession no. M35296) was chosen

for synthesizing both sense and antisense oligos (sense,

agagcagggatggggcagcaggt; antisense, acctgctgccccatccct-

gctct), which cover the ATG start codon of the gene. Both

oligos are incorporated with phosphorothioate to increase

their intracellular stability. In each transfection, 0.55 mM oligo

and 10 mg of lipofectamine in 1 ml of serum-free 1640

medium were applied to the growing cells in a T-25 flask

containing 0.5 � 106 to 1 � 106 cells. Triplicate flasks for

both sense and antisense oligo transfection were used.

After incubation at 37jC for 8 hours, 4 ml of complete RPMI

1640 medium was added and cells were incubated for

another 48 hours, and then trypsinized and counted. In cDNA

transfection studies, the full-length cDNA of the Hint/PKCI-1

or TRP-1 gene, amplified by RT-PCR from cell line NCI-

H522, were cloned into the XhoI recognition site of the

pLXSN vector (Clontech). Primer sequences used for clon-

ing the full-length cDNA of the Hint/PKCI-1 gene were:

upstream, acgtctcgaggcgagatggcagatgagattg; downstream,

atgtctcgagacgtgcttaaccaggaggccaatg. Primer sequences for

cloning full-length cDNA of TRP-1 gene were: upstream,

gaccctcgagcagaatgagtgctcctaaactcc; downstream, gctactc-

gagagtagggcatttgttagaccacagac. The insert and its orienta-

tion from recombinant clones were confirmed by restriction

analysis and DNA sequencing. Five micrograms of plasmid

DNA containing either forward-oriented or reverse-oriented

Figure 2. A representative cDNA array analysis of NCI-H522 cells. The

changes in gene expression, either downregulation or upregulation, after

4 days of 1 �M 5-aza-dC treatment are indicated by arrows.

Figure 3. RT-PCR confirmation of the alterations in gene expression identified by cDNA array analysis in NCI-H522 cell line. ERK6, ABL2, Myt1, RGC1, RAD21H,

KRS2, hEGR1, ITGB8, and ARAF1 genes are downregulated, whereas CKS1, CKS2, S100-A4, TXBP151, CAF1, HP1, and TIMP-1 genes are upregulated by 1 �M

5-aza-dC treatment for 4 days.
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full-length cDNA in the expression vector was used in each

lipotransfection. After 48 hours of incubation, cells were

selected by 200 mg/ml G418 for about 20 days. The mixture

of G418-resistant clones was then collected.

Nude Mice Tumorigenicity Assay

Exponentially growing cells collected from stable trans-

fection were harvested and resuspended in serum-free

medium. After washing twice with serum-free medium,

2 � 106 cells were inoculated subcutaneously at the proxi-

mal dorsal midline of 4- to 6-week–old female Balb/c athymic

nude mice (Jackson Laboratories, Inc., Bar Harbor, ME).

Tumor size was measured in two dimensions twice a week.

Tumor tissue generated at the injection site was dissected at

the end of the assay, fixed in 4% paraformaldehyde buffer

(pH 7.0), and embedded in paraffin for pathologic examina-

tion. The weight of tumor dissected was measured and a

t-test was used to compare the numbers obtained from

different injection groups. Tumor growth was typically ob-

served for 90 days. Following the institute’s guidance on

animal care, nude mice with steadily growing tumors reach-

ing a size of 10–15 � 10–15 mm2 were sacrificed before the

end of observation period. Histopathologic examination was

performed on the specimens stained with hematoxylin and

eosin.

Results

5-Aza-dC Induces Cell Apoptosis and Cell Cycle Arrest in

NCI-H522 Cells

To find an appropriate cell line whose response to 5-aza-

dC is derived mainly from drug-induced DNA demethylation,

five NSCLC cell lines were screened by 1 mM 5-aza-dC

treatment for 4 days. In all lines, 5-aza-dC caused a signif-

icant inhibition of cell growth compared to the untreated cell

lines. However, all but the NCI-H522 cell line exhibited

profound cytotoxicity as demonstrated by dramatic cell death

Table 1. Alterations in Gene Expression in NCI-H522 Cells Treated by 5-Aza-dC.

Accession Gene or Protein Name (Symbol) Primers User for RT-PCR

Genes downregulated by 5-aza-dC

L07868 ERBB4 receptor tyrosine kinase cttcaagcattggataatoccgaatatcac/agcttacaccacagtattocggtgtctgta

L24038 A-raf protooncogene homolog 1 (ARAF1) tcaaagtatacctgcocaacaagcaac/cttcaaggaoctcgacaatgagctc

AF010310 p53-induced protein gtgcgcagatcggctatgaggacc/gggtgoccttcatgaggctgctg

X79483 Extracellular signal – regulated kinase 6 (ERK6) agctgaagatcctggacttcggoc/gggaggcccttcatgtagttcttgg

M35296 Tyrosine protein kinase ABL2 (ABL2) aggtagctgaggagcttgggagag/tttgctttcgaggcagtgctgggg

AF014118 Membrane-associated kinase 1 (MYT1) gggocatggctcctacggagag/ccaggcttcacagtgttgctgcag

D87119 Cancellous bone osteoblast ccagctggtgccggacgtcaac/ccatgctacgtggtcagtcagctc

U48296 pTPCAAX1 nuclear tyrosine phosphatase cctggttgttgtattgctgttcattgc/tgaccgttggaatctttgaaacgcag

X78817 rho-GAP hematopoietic protein C 1 (RGC1) ctgcttagcctggctagtgtcaacg/gtctcaatggtctgtcggtocagg

U60207 Serine/threonine protein kinase KRS2 (KRS2) ggcttgcctcatgtttgttagccag/ctcaactaggagtctctgttcctgg

D38551 RAD21 (S. pombe) homolog (RAD21H) gtatcaatgggtgggcctgatagtc/gggctctaattgtcttgctatccaac

U43431 DNA topoisomerase III a gagaccacagtggagatcgacatcg/gcatocgtaccaatgccatgcttct

X52541 Early growth response protein 1 (hEGR1) tggcttccaggttoccatgatoccc/ggcaagcgtaagggcgttcgtggg

M73780 Integrin precursor (ITGB8) gtgcccaatgacggaaactgtcatctg/cattgctcgtcactttctgcatocttc

Genes upregulated by 5-aza-dC in NCI-H522 cells

M63618 Bullous pemphigoid antigen 1 tgttgcagggtattggctgactgctag/gagtgaacctgtggctctatcaacoct

M73980 Notch protein homolog 1 cgcaggcttcagcgggatocac/gtactgggtgtgggtctgccagc

M14505 Cyclin-dependent kinase 4 (CDK4) cttcocatcagcacagttcgtgagg/cttgactgttccaocacttgtcacc

X54941 Cyclin-dependent kinase regulatory subunit 1 (CKS1) catgtcgcacaaacaaatttactattcgg/agatgtgaggttctggttcatggatc

X54942 Cyclin-dependent kinase regulatory subunit 2 (CKS2) agtctocggcgagttgttgcctg/gactctgttggacaccaagtctcc

U51004 Hint protein; protein kinase C inhibitor 1 (Hint/PKCI-1) gaagatcatocgcaaggaaataccag/cttattcaggcccagatcagcagc

M80563 S100 calcium-binding protein A4(S100-A4) gtttgatcctgactgctgtcatgg/gcatcaagcacgtgtctgaaggagc

U46461 Dishevelled 1 (DVL1) tcaccatcgccaatgccgtcatcg/tggagccactgttgaggttcaggg

U33821 TAXI-binding protein 1 51 (TXBP151) tcctgatcctccaagtcaacatttacg/caaacacctgctggtcatagtcagg

U56390 Caspase-9 (CASP9) agctggacgccatatctagtttgccc/ggtgcaagataaggcagggtgaggg

M15796 Proliferating cyclic nuclear antigen (PCNA) gaaggtgttggaggcactcaaggac/ggtgcttcaaatactagcgccaagg

L07515 Heterochromatin protein homolog 1 (HP1) gggcagacgttagcgtgagtgatc/atattccacttgtoccttaaocacgc

X74262 Chromatin assembly factor 1 p48 subunit (CAF1) agagtgcaaoccagacttgcgtctoc/ocaggaaacatcttctactactgccg

X03124 Tissue metalloproteinase inhibitor 1 (TIMP1) tgcaattccgacctcgtcatcagggc/agaaactcctcgctgcggttgtggg

U36223 Fibroblast growth factor 8 ccaacaagcgcatcaacgccatgg/cagccctcgtacttggcattctgc

X51420 Tyrosinase-related protein 1 (TRP-1) ctgcacggatgacttgatgggatcc/cttocaagcactgagcgacatcctg

Table 2. Suppression of In Vivo Tumorigenicity by Hint/PKCI-1 in NCI-H358 Cell Line.

Cell Lines/Transfection Latency (days) Tumor Weight (g) Number of Tumors/Mice

NCI-H358/vector 18�24 0.310 ± 0.080 3/3

NCI-H358/Hint/PKCI-1 18�24 0.120 ± 0.025 (P < .01) 3/3

NCI-H358/vector* 17�22 0.350 ± 0.080 3/3

NCI-H358/Hint/PKCI-1* 19�24 0.130 ± 0.020 (P < .01) 3/3

*Numbers were obtained from the repeated experiments.
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and detachment from culturing flask after 5-aza-dC treat-

ment. 5-Aza-dC–induced cell growth inhibition in NCI-H522

cells was further characterized by cell proliferation assay,

TUNEL assay, and cell cycle analysis. The cell proliferation

assay showed that a slowdown on cell growth started at

48 hours after 1 mM 5-aza-dC treatment, followed by nearly

a complete cessation of cell proliferation (Figure 1A). The

TUNEL assay showed that apoptotic cells started to increase

on the third day after 5-aza-dC treatment and reached 13%

on the fifth day postdemethylation treatment compared with

2% in untreated cells (Figure 1B). The flow cytometry assay

indicated that the percentage of cells in S-phase was dra-

matically increased on the fifth day of 1 mM 5-aza-dC

treatment (Figure 1C). These data indicated that the 5-aza-

dC–induced cell growth inhibition was partially attributable to

cell cycle arrest and apoptosis.

Alterations of mRNA Expression Were Identified in 5-Aza-

dC–Treated NCI-H522 Cells

To avoid ambiguity caused by potential 5-aza-dC–in-

duced cytotoxicity during gene expression analysis, only

the NCI-H522 cell line was chosen for cDNA array analysis.

To identify genes undergoing changes in mRNA expression

after 5-aza-dC treatment, a membrane cDNA array analysis

covering 1176 genes was employed. The cDNA array anal-

ysis was performed by using a comparison between 4 days

of 1 mM 5-aza-dC–treated and untreated cells. Quantitative

cDNA array data were determined by the ratio of the adjusted

intensity of each gene with that of the average of all house-

keeping genes provided in the same cDNA array, including

ubiquitin and GAPDH. Under our experimental conditions,

the average intensity values of all housekeeping genes

were consistent with that of ubiquitine and GAPDH be-

tween treated and untreated cells. The genes with an abso-

lute adjusted intensity over 500 and with a ratio difference

over five-fold between treated and untreated samples were

chosen for further analysis. A representative cDNA array

analysis is shown in Figure 2. Alteration of mRNA expression

of a total of 73 genes was determined by these criteria from

Figure 5. Cell number counting after antisense oligo transfection for ABL2

gene in human NSLCLC cell lines showing downregulation of ABL2 gene

after 5-aza-dC treatment. Significant differences in cell numbers between

sense oligo – transfected (S-ABL2) and antisense oligo – transfected (AS-

ABL2) cells were observed in NCI-H522, NCI-H358, and NCI-H23 cells.
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Figure 4. RT-PCR to detect the expression of candidate genes in five human NSCLC cells lines treated by 1 �M 5-aza-dC. Downregulation of the ABL2 and

upregulation of the CAF1, DVL1, Hint/PKCI-1, TIMP-1, and TRP-1 genes were found in three, three, three, two, two, and three of five cell lines, respectively. The

expression of GAPDH was used as quantitative standard.
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repeated experiments. After further confirmation by RT-

PCR, 30 genes, either downregulated or upregulated in

5-aza-dC– treated cells, were considered as candidate

genes for further characterization (Table 1). Examples such

as downregulation of ABL2, membrane-associated protein

(Myt-1), Rho-Gap hematopoietic protein C1 (RGC1), and

early growth response protein 1 (hEGR1) genes; and upre-

gulation of Hint/PKCI-1, dishevelled 1 (DVL1), chromatin

assembly factor 1 (CAF1), tissue metalloproteinase inhibitor

1 (TIMP-1), and tyrosinase-related protein 1 (TRP-1) genes

are shown in Figure 3.

Genes Showing Alteration in mRNA Expression in Multiple

5-Aza-dC–Treated NSCLC Cell Lines

To determine which genes showed recurrent changes in

gene expression in multiple cell lines, the detection of mRNA

expression of all 30 candidate genes was expanded to NCI-

H23, NCI-H358, HCI-H520, and A549 cell lines treated

similarly with 5-aza-dC. All RNA samples used in these

detections were equally quantified relative to the expression

of the GAPDH gene. The downregulation of ABL2 gene and

the upregulation of Hint/PKCI-1, CAF1, DVL1, TIMP-1, and

TRP-1 genes were observed in three, two, three, three, two,

and three of five cell lines treated with 5-aza-dC, respec-

tively (Figure 4).

Upregulation of Hint/PKCI-1 Gene Was Directly Associated

with Demethylation-Induced Cell Growth Inhibition

To determine the association of the alterations in gene

expression of the candidate genes with DNA demethylation–

induced cell growth inhibition, ABL2, Hint/PKCI-1, and TRP-

1 were selected for functional analysis. The antisense oligo

transfection for the ABL2 gene and full-length cDNA trans-

fection for the Hint/PKCI-1 and TRP-1 genes were performed

in cell lines that showed alterations in mRNA expression of

these genes after DNA demethylation treatment. A signifi-

cant cell growth inhibition was observed in ABL2 antisense

oligo-transfected NCI-H522, NCI-H23, and NCI-H358 cell

lines compared with each sense oligo-transfected cell line

(Figure 5). No difference in ABL2 mRNA expression was

observed between antisense oligo and sense oligo-trans-

fected cells (data not shown). The attempt to detect the

change in protein level after antisense oligo transfection

failed due to the lack of antibody against ABL2 protein. In

Hint/PKCI-1 full-length cDNA transfection study, a marked

cell growth inhibition in cell proliferation assays using 2%

serum was observed in both NCI-H522 and NCI-H358 cells

lines (Figure 6). However, no obvious cell growth inhibition

was observed in TRP-1 cDNA-transfected A549, NCI-H23,

and NCI-H522 cell lines. The expression of the transfected

gene was detected by RT-PCR only in cells transfected with

forward-oriented cDNA in expression vector (data not

shown).

Hint/PKCI-1 Gene Reduced In Vivo Tumorigenicity of NCI-

H358 Cells

To assess the suppressive effect of the Hint/PKCI-1 gene

on tumorigenic potential of both NCI-H522 and NCI-H358

cells, we tested the tumorigenicity of two stably transfected

cell lines in nude mice. Animals that received NCI-H358

cells transfected with either pLXSN-Hint/PKCI-1(+) or

pLXSN alone developed tumors during the first 4 weeks of

the experiment. However, tumors from pLXSN alone contin-

ued to grow progressively during the observation period,

whereas tumors from Hint/PKCI-1(+) transfection exhibited a

significantly slower growth over the entire period of the

examination. The difference in tumor size between two

injection groups was very significant (P < .01). Histopatho-

logic analysis of the tumors was consistent with lung adeno-

carcinoma. The NCI-H522 cell line, although derived from

lung adenocarcinoma, did not produce tumors in nude mice.

The nude mice in vivo tumorigenicity assays were re-

peated twice and the results are summarized in Table 2.

Discussion

Our experiments show that 5-aza-dC can significantly induce

the inhibition of in vitro growth of human NSCLC cell lines

through DNA demethylation– induced changes in gene ex-

pression. The observations of cell apoptosis and cell cycle

arrest in S-phase in 5-aza-dC–treated NCI-H522 cells, two

contributing factors to drug-induced cell growth inhibition,

are consistent with the general understanding of the

Figure 6. Cell proliferation assays for NCI-H522 and NCI-H358 cell lines transfected with Hint/PKCI-1 cDNA. Slower growth was observed in both cell lines

transfected with forward-oriented cDNA, indicated as Hint/PKCI-1(+), in pLXSN expression vector as compared with that transfected with reverse-oriented cDNA,

labeled as Hint/PKCI-1(�).
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consequence of 5-aza-dC– induced DNA demethylation.

These changes in tumor cell phenotypes are believed to be

based on the induction of alterations in gene expression.

During the course of growth inhibition of NCI-H522 cells, the

mRNA expression of 16 genes was upregulated, whereas

that of 14 genes was downregulated in over 1000 genes

tested in cDNA array analysis. These genes belong to

different categories in terms of regulation of cell functions.

The CKS1 gene, for example, is involved in the regulation of

cell cycle [26]; the CASP9 gene is implicated in the regulation

of cell apoptosis [27]; and the ERK6 gene may contribute to

cell transformation [28]. However, the genes with recurrent

alteration in other 5-aza-dC–treated cell lines are also more

likely involved in the regulation of cell growth. The expression

of the ABL2, Hint/PKCI-1, DVL1, CAF1, TIMP-1, and TRP-1

genes was found to be altered in more than two NSCLC cell

lines used in this study, implying a contribution of these

genes to cell growth inhibition in multiple NSCLCs.

Our data strongly suggest that the Hint/PKCI-1 gene

functions as a negative regulator of tumor cell growth be-

cause 5-aza-dC–induced upregulation of the Hint/PKCI-1

was found in two of five NSCLC cell lines. Overexpression of

the Hint/PKCI-1 by cDNA transfection resulted in in vitro cell

growth inhibition of these two NSCLC cell lines. In addition,

stable transfection of Hint/PKCI-1 cDNA significantly re-

duced in vivo tumorigenicity of NCI-H358 cells. Hint/PKCI-1

is the only other characterized human histidine triad (HIT)

nucleotide-binding protein in addition to tumor-suppressor

gene FHIT [29], which is a frequent target of genomic

deletion and aberrant DNA methylation in human lung cancer

as well as other kinds of cancer [30–32]. Like FHIT, the Hint/

PKCI-1 gene is also involved in nucleotide metabolism by

binding nucleotide molecules and hydrolyzing ADP in vitro

[33]. However, the involvement of the Hint/PKCI-1 gene in

carcinogenesis has not been investigated. The Hint/PKCI-1

gene is localized at chromosome 7q21–22, a region of

genomic deletion reported in radon-induced rat lung cancer

[34] and in more invasive human NSCLCs [35]. In addition,

microcell transfer studies suggested the existence of a

metastasis-suppressor gene in this region [36]. Thus, Hint/

PKCI-1 might represent a negative regulator of tumor cell

properties in this region. The examination of Hint/PKCI-1

expression in primary tumors would provide more convincing

evidence on the role of this gene in NSCLCs. In addition, it

would be interesting to see whether gene expression of both

Hint/PKCI-1 and FHIT is altered in NSCLCs.

Downregulation of ABL2 was detected in three of five

NSCLC cell lines treated with 5-aza-dC. In addition, anti-

sense oligo transfection against ABL2 caused a significant

in vitro cell growth inhibition in these three cell lines. How-

ever, in the absence of evidence showing that antisense

strategy resulted in the decrease of protein expression of

ABL2, one cannot speculate that this protooncogene is

involved in the pathogenesis of NSCLC.

Functional exploration of the ABL2, Hint/PKCI-1, and

TRP-1 genes in this study is part of identifying genes in

DNA demethylation–treated NSCLC cells that may be rele-

vant in the pathogenesis of lung cancer. The other candidate

gene selected for future functional characterizations is

CAF1, which was first found to be a retinoblastoma protein

(Rb)–binding protein and a negative regulator of Ras in

yeast [37]. It was later found to be a component of the

histone deacetylase complex recruited by Rb and to mediate

transcriptional repression of E2F1 [38].

In summary, our observations demonstrate that 5-aza-dC

can significantly induce the growth inhibition of human lung

cancer cells by DNA demethylation and the consequent

changes in mRNA expression of multiple genes. Also, our

approach of characterizing the variation of gene expression

during the transition of DNA methylation thus is apparently

efficient in identifying new cancer-related genes. Promoter

methylation status will be characterized to determine wheth-

er the changes in gene expression of these genes are

caused by their own aberrant promoter methylation, or are

derived from the regulation of other genes, which are pri-

marily regulated by DNA demethylation. These studies

should shed more insight into the functional understanding

of the candidate genes identified in this study.
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