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It is well known that three-dimensional Euclidean space cannot be
tiled by regular tetrahedra. But how well can we do? In this work,
we give several constructions that may answer the various senses
of this question. In so doing, we provide some solutions to packing,
tiling, and covering problems of tetrahedra. Our results suggest
that the regular tetrahedron may not be able to pack as densely as
the sphere, which would contradict a conjecture of Ulam. The
regular tetrahedron might even be the convex body having the
smallest possible packing density.

tessellations | polyhedra

he problem of how densely given solid objects can pack in space

has been a source of fascination since the dawn of civilization.
Dense packing of convex objects is intimately related to the
arrangement of molecules in condensed states of matter (1) and to
the best way to transmit encoded messages over a noisy channel (2).
Three-dimensional Euclidean space 0 (3-space) already provides
many challenging open problems. It was only recently that Kepler’s
conjecture, which postulated that the densest packings of congruent
spheres in 3-space have packing density (fraction of space covered
by the spheres) A = 7/\/18 = 74.048 . . . %, realized by variants of
the face-centered cubic (FCC) lattice packing, was proved (3).
Much less is known about the packing characteristics of other
congruent convex objects that do not tile 3-space. For example, an
ellipsoid is simply obtained by an affine (linear) transformation of
a sphere, and yet the densest packing of ellipsoids is an open
problem. The rotational degrees of freedom of an ellipsoid (absent
in a sphere) enables such packings to achieve densities greater than
a/ \/%8, the densest sphere packing density (4—6). There is a family
of periodic arrangements of nearly spherically shaped ellipsoids that
surpass the density of the optimal sphere packing and that has a
maximal density of A = 0.7707 . . . % (6), which is the highest known
density for any ellipsoid packing.

The evidence below suggests that the regular tetrahedron is a
counterexample to Ulam’s conjecture (Martin Gardner, private
communication; see also ref. 7), which states that the optimal
density for packing congruent spheres is smaller than that for any
other convex body. Indeed, it suggests that perhaps the regular
tetrahedron achieves this minimum. However, our interest in
tetrahedra in this work goes beyond their packing characteristics.
Tetrahedra have interesting connections to sphere packings, certain
tilings of space (including foams), liquids, and glasses, and complex
alloy structures. It is well known that the maximum number of
spheres in 3-space that can be locally packed such that each sphere
contacts the others is four. The polyhedron that results by taking the
sphere centers as vertices is the regular tetrahedron, but such a
tetrahedron cannot tile space because its dihedral angle [cos™!(1/3)
~ 70.53°] is not a submultiple of 360°. Interestingly, the ratio of the
volume of the portion of this tetrahedron covered by the spheres to
the volume of the tetrahedron leads to the Rogers upper bound of
77.96 . .. % on the sphere packing density (8).

It was Frank and Kasper (9, 10) who proposed that the underlying
“polytetrahedral” network of sphere packings can serve to explain
the crystalline structure of complex alloys, particularly those of
transition metals. These arrangements are now known as “Frank—
Kasper” phases. If 5 regular tetrahedra are packed around a
common edge, there remains a small gap of 7.36°, and if 20 regular
tetrahedra are packed around a common vertex, the gaps amount
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to a solid angle of 1.54 steradians (see Fig. 1). By closing these gaps
by a slight deformation, we get a regular icosahedron, which
corresponds to a 12-coordinated sphere whose vertices correspond
to the vertices of the icosahedron. A 12-fold coordination is an
important case of the Frank—Kasper phases; others include 14-, 15-,
and 16-fold coordinations (13 is not possible), corresponding to
triangular-faced tetrahedra constructed from tetrahedra sharing a
single vertex. The Frank-Kasper phases thus consist of various
tilings of space by “almost-regular” tetrahedra with atoms at their
vertices. It also has been shown that the structure of atomic liquids
and glasses has significant polytetrahedral character (11). The dual
Voronoi regions of the vertices of the Frank—Kasper structures
(obtained by joining the centers of every pair of tetrahedra in face
contact) together fill space and consist of polyhedra with 12, 14, 15,
and 16 faces. It is well known that periodic structures with atoms at
the vertices of these dual tilings occur in clathrate hydrates (12).
This type of polyhedral tiling inspired Weaire and Phelan (13) in
their discovery of a minimal area foam with a smaller average
surface area per cell (“bubble”) than Kelvin’s best solution (14).

The fact that congruent regular tetrahedra cannot be used to
tile 3-space gives rise to several mathematical questions.

(i) What are the “closest-to-regular” tetrahedra that will tile
3-space?
(i) What is the least covering density for congruent regular
tetrahedra in 3-space?
(iii) What is the greatest packing density for such tetrahedra?

Of course question (i), which we discuss first, is itself several
different problems, according to how we interpret closest-to-
regular. We will show that our answers to these questions will
introduce us to many of the polyhedral tilings of space discussed
immediately above. The best solution we offer for question (i)
leads to the possibility that the regular tetrahedron contradicts
Ulam’s conjecture and might itself have the least packing density of
any convex body.

Scottish, Irish, and Welsh Configurations

In 1887, Lord Kelvin conjectured that a certain system of equal-
volume bubbles, which we shall call the “Scottish bubbles,” was
optimal in the sense that it minimized the mean surface per bubble
(14). This conjecture was disproved by the “Irish bubbles” found by
Weaire and Phelan in 1994 (13). We define both systems in this
work, along with a third system, the “Welsh bubbles.” Many of the
other configurations we need are related to these three bubble-
systems and so are also appropriately described as Scottish, Irish,
and Welsh.

For example, the Scottish, Irish, and Welsh

e “Nuclei” are the centers of the bubbles;
* “Vocells” are the cells of the Voronoi tessellation that they
determine;
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Fig. 1. Certain arrangements of tetrahedra. (a) Five regular tetrahedra
about a shared edge. The angle of the gap is 7.36°. (b) Twenty regular
tetrahedra about a shared vertex. The gaps amount to 1.54 steradians.

e “Irregulars” are the dual (Delaunay) tessellations by irregular
tetrahedra;

* “Nodes” are the vertices of the Vocells, which are equally the
circumcenters of these tetrahedra.

Some terms used here will be defined below.

Definitions: Marked Points

We now introduce some notation and distinguish certain points as
“marked.” Some of these are the points of the body-centered cubic
(BCCQ) lattice, namely those points (x, y, z) for whichx, y, z are either
all integers or all halves of odd integers. We mark these nodes with
the numbers 0, 1, 2, and 3 (modulo 4), by the rule

(x,y,z) has color n justif x +y + z = n/2 (modulo 2).

Geometrically, the points of one of the two cubic sublattices are
marked alternately 0 and 2; those of the other are alternately 1 and
3. Fig. 2a shows these marks for two adjacent cells. The Voronoi
cells of this lattice are truncated octahedra, whose vertices are the
points (x, y, z) for which one of the coordinates (n) is an integer, one
(h) an integer +1/2, and one (g) an integer *=1/4. We mark these
alternately + and —, by the rule that the combinations

(n,q,h), (q,h,n), (h,n,q) are marked +,
whereas
(l’l, h, CI); (h’ n, CI)’ (q’ h, n) are marked —.

Fig. 2b depicts the Voronoi cell inside one of the cubes with these
marks.

There are good reasons why this marking notation provides
extremely succinct descriptions of our packings, tilings, and cover-
ings by tetrahedra, as well as many other interesting configurations.
It is taken from ref. 15, where it is shown that it can describe any
object that has at least the order 3 symmetries of the cubic lattice.

A “tiling” or “tessellation” is a partition of Euclidean space ¢
into closed regions whose interiors are disjoint regions. Consider
any discrete set of points (our nuclei) (position vectors) X = {ry,
2, ...} in N9 Associated with each point r; € X is its “Voronoi
cell,” Vor(r;), which is defined to be the region of space nearer
to the point at r; than to any other point r; in the set, i.e.

Vor(r;) ={r: [r— | = |[r — | forallr; € X}. [1]

The Voronoi cells are convex polyhedra whose interiors are
disjoint but share common faces, and therefore the union of all
of the polyhedra is the whole of M. This subdivision of space is
the Voronoi tessellation.

Its vertices (our nodes) are the points whose distance from the
nuclei is a local maximum. Attached to each such node is a
“Delaunay cell,” which can be defined as the convex hull of the
nuclei nearest to it, and these Delaunay cells also tile space.
Geometrically, the Voronoi and Delaunay tessellations are dual to
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Fig. 2. Description of our notation. (a) Two adjacent cells of a cubic lattice
and colorings of the two cubic sublattices of the BCC lattice as described in the
text. (b) The Voronoi cell of aBCClattice and the notation described in the text.
The center of the cube is the origin of the coordinate system.

each other. In our three cases, the Delaunay cells are tetrahedra:
our Scottish, Irish, and Welsh irregulars.

Scottish Bubbles and Irregulars. In 1887, Lord Kelvin asked which
tiling of 3-space by unit-volume bubbles minimized the average
surface area per bubble and proposed that the answer was the
“Scottish bubbles,” which are obtained by relaxing our “Scottish
Vocells,” the Voronoi cells whose nuclei are our points marked 0,
1, 2, 3. The “Scottish nodes” are therefore the remaining marked
points + or —.

The “Scottish irregulars” are the dual tiling of tetrahedra (cen-
tered at + or —), whose vertices are 0, 1, 2, 3, with edges joining each
to its 14 closest neighbors. These tetrahedra are a putative solution
to our question (7) if we take closest-to-regular to mean “with the
ratio (longest edge)/(shortest edge) as near to 1 as possible.” For
the Scottish irregulars, this ratio is 2/V3 = 1.15. ... Each tetra-
hedron is fixed by eight symmetries of the tessellation.

The relation to Kelvin’s problem explains our use of “Scot-
tish” for these objects.

Irish Bubbles and Irregulars. To everybody‘s surprise, Weaire and
Phelan (13) found in 1994 that Kelvin’s Scottish bubbles were not
in fact the optimal answer to his problem. We start by defining the
Irish nuclei to be the points marked 0, 1, 2, 3, + that determine the
Irish Vocells, which are then relaxed subject to the requirement that
their volumes become equal. The surface area per bubble is 99.7%
of the Scottish ones.

The Vocells or bubbles are of two shapes: dodecahedra that are
topologically regular but not metrically so and “dodecadihedra,”

SLord Kelvin was in fact born in Belfast, but spent most of his working life in Scotland, and
in 1866 was created Baron Kelvin of Largs (a town near Glasgow).
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which have 12 (“dodeca”) pentagonal faces and two (“di”) hexag-
onal ones. The Irish irregulars are the dual (Delaunay) tessellation
of the tetrahedra with vertices at 0, 1, 2, 3, +. The most symmetric
(“high”) tetrahedra are fixed by eight symmetries of this tessella-
tion; the least symmetric (“low”) only by two, and the remaining
(“medial”) ones by three (although abstractly these tetrahedra have
six symmetries).

It is known that no more than four bubbles of an arbitrary system
can meet at a point and that when four bubbles do meet, the local
configuration is dual to a regular tetrahedron. This fact makes it
natural to give close-to-regular a second meaning, namely “being
dual to a good system of bubbles.” If in particular, we interpret
closest-to-regular to mean “dual to the bubble-tiling with minimal
surface-area per bubble,” then the Irish bubbles are likely to be the
best answer.

Welsh Configurations. A third interpretation of closest-to-regular
has been proposed by Joseph Gerver (private communication), who
asked the following question: What is the shortest possible interval
that contains all of the dihedral angles of a system of tetrahedra that
tile space? He observed that because presumably some edges must
be surrounded by at most five tetrahedra and others by at least six,
this interval must contain [60°, 72°]. The interval [60°, 74.2°] for the
Welsh irregulars we are about to define is so close to this lower
bound that they are virtually certain to be the answer. We use this
name despite the fact that every 17th Welsh irregular is actually a
regular tetrahedron.

They are related to what we call the “primitive Welsh” tessella-
tion of space into truncated tetrahedra (centered at nodes 0 and 1)
and ordinary tetrahedra (centered at 2 and 3). The vertices of that
tessellation are the midpoints 23 of the shortest line-segments
joining nodes of types 2 and 3. Their geometry is related to that of
a diamond crystal, whose carbon atoms are situated at the nodes 2
and 3, so that 23 are the midpoints of the valence bonds.

The Welsh nuclei are these points 23 together with the nodes 0,
1 that are the centers of the truncated tetrahedra. The resulting
Welsh Vocells are again of two shapes; three of four of them are
topological dodecahedra, whereas the remaining one is a dodeca-
tetrahedron with 12 pentagonal faces and 4 hexagonal ones. Re-
laxing them, we find the Welsh bubbles, which have greater
surface-area per bubble than either the Scottish or Irish ones.

The Welsh irregulars that form the dual tessellation are of three
types: the high ones that are actually the regular tetrahedra of the
primitive Welsh tessellation and whose four vertices have type 23;
together with the medial ones (fixed by six symmetries) that abut
them, which have one vertex of type 0 or 1 and three of type 23; and
finally the low ones (fixed by only two symmetries), whose four
vertices have types 0, 1, 23, 23.

Summary. The three bubble systems are obtained by relaxing the
cells of the three Voronoi tessellations, which are the Scottish
(truncated octahedra), Irish (nonregular dodecahedra and dodec-

Table 2. Typical Welsh tetrahedra

Welsh high:
24 symmetries

Welsh medial: 6 symmetries

Table 1. A typical Scottish tetrahedron

Scottish: 8 symmetries

Points Coordinates Type
Vertices (0, 0,0) 0
(=1/2,1/2,1/2) 1
(0,0, 1) 2
(1/2,1/2,1/2) 3
Node (0, 1/4,1/2) +

Vocells have for nuclei all points marked 0, 1, 2, or 3 and are truncated
octahedra. Their vertices (the nodes) are all points marked + or —.

adihedra) and Welsh (nonregular dodecahedra and dodecatetra-
hedra) systems. The centers of these bubbles are the vertices of the
corresponding irregulars.

In Tables 1-3, we give, for sample tetrahedra from each of the
three tessellations, the coordinates of each vertex and the node that
is its circumcenter. Recall that the vertices are the nuclei of the
Vocells, and the nodes are their vertices.

Covering Problem

We now consider the determination of the optimal coverings by
equal regular tetrahedra. A “covering” is an arrangement of
overlapping sets that covers the entire space. The truncated
tetrahedra of the primitive Welsh tessellation are obtained by
removing small tetrahedra (say, of edge-length ¢) from larger
tetrahedra of edge-length 3e. These larger, or “pretruncated
Welsh,” tetrahedra, cover 3-space and have 27 times the volume
(say, v) of the smaller ones, so that the volume of the truncated
tetrahedra is 23v. The density of this “Welsh covering” is
therefore 27/24 = 9/8 = 1.1111..., because the object of
volume 24v obtained by replacing just one of them exactly tiles
space. This density is so close to 1 that the Welsh covering is very
probably optimal.

We remark that the similarly defined “detruncated Scottish”
octahedra almost certainly form the optimal covering of space by
equal regular octahedra.

Packing Problem

We shall now pass to the problem of determining the optimal
packings by equal regular tetrahedra.

Definitions. A collection of convex bodies in d-dimensional Euclid-
ean space N is called a “packing” P if no two of the bodies have
an interior point in common. The density A of a packing is the
fraction of space N covered by the bodies. In the mathematical
literature, a “lattice packing” Py of a convex body C is a packing in
which the centers ry, 1o, . .. of the convex bodies, each oriented in
the same direction, are integer linear combinations of basis vectors.
In the physical sciences, this arrangement is referred to as a “Bravais
lattice.” In a lattice packing, the space N can be geometrically

Welsh low: 4 symmetries

Points Coordinates Type Coordinates Type Coordinates Type

Vertices (3/4,3/4,3/4) 23 (0, 0, 0) 0 (0, 0, 0) 0
(3/4,1/4,1/4) 23 (3/4,1/4,1/4) 23 (=1/2,1/2,1/2) 1
(1/4,3/4,1/8) 23 (1/4,3/4,1/4) 23 (1/4,3/4,1/4) 23
(1/4,1/4,3/4) 23 (1/4,1/4,3/4) 23 (1/4,1/4,3/4) 23

Node (1/2,1/2,1/2) 3 (11/40, 11/40, 11/40) 03 (—2/48,17/48, 17/48) 130

Dodecahedral vocells have nuclei 23 and volume 14267/46080. Dodecatetrahedral ones have nuclei 0 or 1 and volume 8773/23040. Here
03 = (11/20)-0 + (9/20)-3 and 130 = (19/48)-1 + (15/48)-3 + (14/48)-0. Nodes are all points 2, 3, 05, 03, 12, 13, 024, 031, 120, Or 139 with the above

proportions.
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Table 3. Typical Irish tetrahedra
Irish high: 8 symmetries

Irish medial: 3 symmetries

Irish low: 2 symmetries

Points Coordinates Type Coordinates Type Coordinates Type

Vertices (=1/4,1/2,0) + (0,0, 0) 0 (0,0,0) +
(1/4,1/2,0) + (0, 1/4,1/2) + (=1/4,1/2,0) +
(0, 1/4,1/2) + (1/2,0,1/4) + (1/4,1/2, 0) +
0,3/4,1/2) + (1/4,1/2, 0) + (0, 1/4,1/2) +

Node 0,1/2,1/4) - (5/24, 5/24, 5/24) 03 (=5/32,0,10/32) -0

Dodecahedral cells have nuclei 0, 1, 2, or 3 and volume 125/1024. Dodecadihedral ones have nuclei + and volume 129/1024. Here 03 =
(7/12)0 + (5/12)-3 and —¢ = (5/8)-— + (3/8)-0. Nodes are all points —, 04, 12, 23, 3¢, 03, 10, 21, 32, —0, —1, —2, Or —3 with above proportions.

divided into identical regions F called “fundamental cells,” each of
which contains the center of just one body. We denote by Vol(C)
and Vol(F) the volumes of the convex body and fundamental cell,
respectively. The packing density of a lattice packing Py is therefore
given by

B Vol(C)
~ Vol(F)"

[2]

A “periodic packing” Pp of congruent copies of a convex particle
C is obtained by placing a fixed nonoverlapping configuration of n
particles (where n = 1) in each fundamental cell of a lattice. Thus,
the packing is still periodic under translations by a lattice vector, but
the n particles can be positioned anywhere in the fundamental cell
with arbitrary orientation subject to the nonoverlap condition. The
density of such a periodic packing is given by

B nVol(C)

" Vol(F) * 31

There are more general types of packings, but in this work we will
restrict ourselves to periodic packings.

We now turn to the packing of congruent regular tetrahedra. Our
first remark is that the method of (Bravais) lattice packing, which
produces good packings for many other solids (including an optimal
sphere packing; see ref. 2), is of no use here. The optimal lattice
packing for any tetrahedron, found by Hoylman (16), has density
A =18/49 = 36.73 ... %, and each tetrahedron meets others at 14
points (see Fig. 3). [It is noteworthy that there is a lattice packing
of tetrahedra with much smaller density (A = 1/3) but in which each
tetrahedron is in contact with 18 others (17), a rather counterin-
tuitive result.] Clearly, denser packings can be achieved by orienting
the tetrahedra in different directions. Fig. 4 shows a simple packing

Fig.3. A portion of the densest (Bravais) lattice packing of regular tetrahe-
dra (16). It has density A = 18/49 = 36.73 ... %, and each tetrahedron is in
contact with 14 others.

Conway and Torquato

that achieves density A = 2/3 = 66.666 ... %. This is the best
density we have been able to achieve with a “uniform packing,” i.e.,
one in which the tetrahedra are embedded in the same way,
meaning that there is a symmetry of the packing that takes any one
tetrahedron to any other.

Scottish and Welsh Regulars. Another idea is to insert regular
tetrahedra into one of our three systems of irregulars. From Irish
irregulars, this idea produces a very low density, and from Scottish
ones, a density A of 1/2 = 50% is produced (the regular tetrahedra
in that case being obtained by shrinking the long edges of the
Scottish irregulars by a factor of V'1/2). However, a more inter-
esting packing can be obtained from the Scottish Vocells as follows.
There is a well known way [see, e.g., Coxeter (18)] to inscribe an
icosahedron in an octahedron. In fact, the icosahedron fits entirely
inside the corresponding truncated octahedron (see Fig. 5) and
occupies 8/9 the volume of the truncated octahedron. We obtain
“Scottish icosahedra” by inscribing icosahedra in this way in all of
the Scottish truncated octahedra. Each icosahedron touches eight
others as in Fig. 6, the contact spots of that figure (which form the
vertices of a cube) being at the centers of eight faces.

The tetrahedra of the Scottish regular packing (or just the
“Scottish regulars”) are obtained by packing 20 tetrahedra in each
icosahedron (see Appendix). This tetrahedron packing has density
A =45/64 = 70.3125%. We shall see later that the Scottish regulars
can be displaced slightly to increase their density to >71.655%.

Another good packing is obtained from the Welsh irregulars. We
retain the high ones that are already regular and put regular
tetrahedra of the same size as these into each of the medial and low
ones. The density of the resulting Welsh regulars is A = 17/24 =
70.8333 ... %. Once again, there exist displacements that increase
the density.

Displaced and Reformed Regulars. We have remarked that the
density of both Scottish and Welsh regulars can be improved by
suitably repositioning them. The tetrahedra fall into clumps, and we

Fig.4. A portion of the densest uniform packing of regular tetrahedra that
we have been able to find. It has density A = 2/3 = 66.666 . . . %.
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Fig. 5. A regular icosahedron inscribed in a truncated octahedron.

can distinguish between “displacements,” which treat the clumps
bodily, and “reformations,” which then move individual tetrahedra.

The Scottish regulars do not form an optimal packing because
the icosahedra are related by the translations of the BCC lattice,
and this lattice can be slightly deformed in a way that increases the
density without causing the icosahedra to overlap. The reason, in
brief, is that any icosahedron I (centered at zero) touches only eight
others, namely, I+ vy, ..., I * vy, Wwhere vy, ..., v4 are generators
of the BCC lattice that satisfy v; + . ..v4 = 0. They can be replaced
by four nearby vectors wy, . . ., wa, provided that wy/2, ..., w4/2 lie
in the same faces of the icosahedron and add to zero. Since this
requirement imposes only four conditions on the lattice, whereas six
parameters are needed to specify the shape of a lattice, it can be
varied with two degrees of freedom, and it turns out that some
values increase the density. The optimal (Bravais) lattice packing of
icosahedra (the “displaced Scottish icosahedra”) was found by
Betke and Henk (19); it has the density A = 83.63574 ... % and
yields the displaced Scottish packing of regular tetrahedra that has
density A = 71.65598 ... % (see Fig. 7).

However, this density is still not optimal, because the clumps may
be reformed by adjusting the individual tetrahedra so as to increase
the density still further. To see this, observe that none of the
“contact spots” S of Fig. 7 lies at the center C of its face.

Now consider two tetrahedra from clumps centered at P and P,
whose contact spots S and S’ presently coincide with each other, but
not with the centers C and C’ of their corresponding faces. Then
they can be rotated about axes through P and P’ perpendicular to
the line CC’ so as to take S and S’ further away from the initial
positions of C and C’.

Do likewise for all tetrahedra of every clump. After this rotation,
if it is through a sufficiently small angle, the tetrahedra still do not
overlap and now touch only at the centers of their clumps (see Fig.

Fig. 6. Each Scottish icosahedron is placed so that its eight contact spots
coincide with those of its neighbors. It has density A = 82.13 ... %.

10616 | www.pnas.org/cgi/doi/10.1073/pnas.0601389103

Fig. 7.
number of contact spots increases to 12. It has density A = 83.63574 . . . % and
leads to the displaced Scottish regulars that have density A = 71.65598 . . . %.

For Betke and Henk’s displaced Scottish packing of icosahedra, the

8). The density therefore can be increased by bringing the clumps
closer together.

It is very difficult to say exactly how dense such “reformed
Scottish” packings can be (especially because they will involve slight
changes to the lattice), but we suspect it will be ~72%.

Welsh regulars also fail to be optimal, because these tetrahedra
fall into “clumps” of 17, and each clump touches others only at four
points. If we replace these points by universal joints, the resulting
structure is not rigid, and suitable displacements increase density.
One such displaced Welsh packing has density A = 71.7455%, the
highest we have yet explicitly achieved. It is obtained by rotating the
clumps alternately through +0.1131 radians about their vertical
(dyad) axes. Before this rotation, each low tetrahedron is hinged as
far as possible about the edge it shares with a high one, either
“centrifugally” outwards if that edge is horizontal and otherwise in
the “lagging” direction (thus, each low tetrahedron goes to the place
it would if the displacement of the other tetrahedra were impulsive).
Again, still denser reformed Welsh packings might be obtainable by
allowing individual tetrahedra to move more freely.

There are various systems of Irish regulars, obtained by reposi-
tioning (some of) the Irish irregulars. So far, we have not found any
that are as dense as our Scottish or Welsh ones, but we cannot rule
out this possibility. We therefore suspect that the optimal packing
of regular tetrahedra will be some displacement of either the
Scottish or Welsh regulars, but we do not know which! However, it
appears unlikely that the density of the optimal packing of regular
tetrahedra will exceed the optimal density of 74.048... % for
congruent spheres.

P|

Fig. 8. Adjusting the Scottish regulars (a two-dimensional schematic).
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This raises the possibility that for packings of equal convex
solids, the shape that gives the least density might be the regular
tetrahedron rather than the sphere, in contradiction to Ulam’s
conjecture (7).

Appendix
Here we describe elementary calculations concerning one of our
ideas that leads to dense packings of congruent regular tetrahedra.
As noted in the introduction, 20 regular tetrahedra cannot fit into
a regular icosahedron that has the same side length as one of the
tetrahedra. Thus, it is desired to shrink the sizes of the regular
tetrahedra relative to an icosahedron such that the space packed by
the 20 tetrahedra is maximized. Once this optimal shrinking is
determined, the goal is then to find the densest packing of the filled
icosahedra.

The volume of a regular tetrahedron Vr of side length st is
given by

V—s’3r 4
N [4]

The helght (distance from a vertex to the midpoint of the opposite

face) is given by 4 = V2 /3st. The volume of a regular icosahedron
V1 of side length s; is given by
572 5
VI = ? S1, [5]

where 7 = (1 + V/5)/2 is the golden ratio. The “apothem” a
(distance from the centroid of the icosahedron to the midpoint of
one of its faces) is given by @ = 7/(2V/3)s1. To determine the
largest regular tetrahedron that can be placed in a regular icosa-
hedron such that one vertex of the tetrahedron is placed at the
centroid of the icosahedron, set the height of the tetrahedron equal
to the apothem of the icosahedron. Therefore, st = 7/(2V/2)s; =
0.9256147 . ..s;. Thus, the fraction of the icosahedral volume
occupied by the 20 regular tetrahedra sharing a vertex positioned at
the centroid of the icosahedron is given by

ZOVT T4

v, 8

=0.8567627. ... [6]

The density A of the Scottish icosahedron packing is 45/(87%) =
0.8214 . ... This result is obtained from the fact that the associated
circumscribed truncated octahedron (see Displaced and Reformed
Regulars) occupies 8/9 the volume of the associated octahedron,
and the icosahedron-to-octahedron volume ratio is 5/74. Packing
each icosahedron with 20 tetrahedra in the fashion described above
leads to a packing of congruent regular tetrahedra with density A =
45/(87%) X /8 = 45/64 = 70.3125%. If the icosahedra are instead
arranged on the points of the optimal (Bravais) lattice (19), which
has density A = 0.8363574 . . ., then packing each icosahedron with
20 tetrahedra gives a packing of regular tetrahedra that has density
A = 0.8363574 X 0.8567627 = 0.716559 . ... Of course, it is not
known whether there are denser packings of icosahedra than the
optimal lattice packing.
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It is useful here to specify the optimal icosahedral lattice packing
(19). Let 7 and A denote the icosahedron and lattice, respectively.
The optimal lattice is specified as follows:

I=xER: x| + poof + | = 1, oy | + |77 s = 1,
|| + |77 | = 1, || + |77 0| = 10, [71
A= (1+ DD =2W'E)W ), wk)2Z, [8]

where the basis vectors wi(X) (i = 1, 2, or 3) are given by

33 39 _ 39 33 _ 11 3
S - ) N = _ - _ >~ |z
( S SVS)x +<4+4\/5)x 7 3 \S

1 1 1
1(7) = — 5
w'(x) ( 4 4\/5)x+1+2w5 ,
33 39 -19 — 13 3
oy 72 7 z 4 =4 g
<8+8\/§>x +<2 8\/5>x+4+2v5
91
(52 (e 23 B
2057 s 20V T )T 00
) 5 01 -\ 1
w(x) = (Z — )x -1- 5\/5 ,
33 39 9 15 3
s — T )52 -z bl - S
1 3
W(x)i X >
0
and ¥ € (1, 2) is the unique root of the polynomial 1,086x> —

(1,603 + 113V3)x2 + (15\f5 + 43)x + 102 + 44V/5. It is found
that ¥ = 1.59160301 . . ., and therefore Eq. 9 yields

wl(x) = (0.711782425, 0.830400102, 1.07585146)"
w?(x) = (—0.871627249, 0.761202911, 0.985203828)T

w3(®) = (—0.069197191, 1.59160301, 0). [10]
The density is given by
A = S + 1) = 0.836357445.
o= 6|det(w'(x), w(x), w(x))|

[11]

The formulas for the polynomial and the density given in the
original paper (19) contained typographical errors, as pointed
out by one of the authors (M. Henk, personal communication).
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