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A dynamical theory for the evolution of the genetic code is
presented, which accounts for its universality and optimality. The
central concept is that a variety of collective, but non-Darwinian,
mechanisms likely to be present in early communal life generically
lead to refinement and selection of innovation-sharing protocols,
such as the genetic code. Our proposal is illustrated by using a
simplified computer model and placed within the context of a
sequence of transitions that early life may have made, before the
emergence of vertical descent.

horizontal gene transfer

The genetic code could well be optimized to a greater extent than
anything else in biology and yet is generally regarded as the

biological element least capable of evolving.
There would seem to be four reasons for this paradoxical

situation, all of which reflect the reductionist molecular perspective
that so shaped biological thought throughout the 20th century.
First, the basic explanation of gene expression appears to lie in its
evolution, and not primarily in the specific structural or stereochem-
ical considerations that are sufficient to account for gene replica-
tion. Second, the problem’s motto, ‘‘genetic code,’’ is a misnomer
that makes the codon table the defining issue of gene expression.
A satisfactory level of understanding of the gene should provide a
unifying account of replication and expression as two sides of the
same coin. The genetic code is merely the linkage between these
two facets. Thus, and thirdly, the assumption that the code and the
decoding mechanism are separate problems, individually solvable,
is a reductionist fallacy that serves to deny the fundamental
biological nature of the problem. Finally, the evolutionary dynamic
that gave rise to translation is undoubtedly non-Darwinian, to most
an unthinkable notion that we now need to entertain seriously.
These four considerations structure the approach we take in this
article.

To this point in time, biologists have seen the universality of the
code as either a manifestation of the Doctrine of Common Descent
or simply as a ‘‘frozen accident.’’ Viewing universality as following
from common descent renders unthinkable the notion explored
here that a universal code may be a necessary precondition for
common ancestry, indeed even for life as we know it. We will argue
in this article [a maturation of the earlier concept of the progenote
(1)] that the very fact of the code’s evolvability, together with the
details of its internal structure, provides strong clues to the nature
of early life, and in particular its essential communal character (2).

Beyond the code’s universality we have very few clues to guide
us in trying to understand its evolution and that of the underlying
decoding mechanism. The principal ones again are properties of the
code itself; specifically, the obvious structure of the codon table.
The table possesses (at least) two types of order: synonym order and
relatedness order. The first is the relatedness of codons assigned to
the same amino acid; the second is the relatedness of codons
assigned to related amino acids. Relatedness among the amino
acids is context-dependent and in the context of the codon table
could a priori reflect almost anything about the amino acids: their
various properties, either individually or in combination; the several
macromolecular contexts in which they are found, such as protein
structure, the translation mechanism, and the evolution of trans-
lation; or the pretranslational context of the so-called RNA world.
Although we do not know what defines amino acid ‘‘similarity’’ in

the case of the code, we do know one particular amino acid measure
that seems to express it quite remarkably in the coding context. That
measure is amino acid polar requirement (3–5). Although the
relatedness order of the code is marginally evident from simple
inspection of the codon table (3, 4, 6–8), it is pronounced when
the amino acids are represented by their respective polar require-
ments (4).

A major advance was provided by computer simulation studies
(9–14) of the relatedness ordering of the amino acids over the
codon table, which showed that the code is indeed relationally
ordered and moreover is optimized to near the maximum extent
possible. Compared with randomly generated codes, the canonical
code is ‘‘one in a million’’ when the relatedness measure is the polar
requirement. No other amino acid measure is known to possess this
characteristic (14) (in our opinion, the significance of this obser-
vation has not been adequately recognized or pursued). These
precisely defined relatedness constraints in the codon table were
unexpected and still cry out for explanation.

As far as interpretation goes, the optimal aspect of the genetic
code is surely a reflection of the last aspect of the coding problem
that needs to be brought into consideration: namely, the precision
or biological specificity with which translation functions. Precision,
along with every aspect of the genetic code, needs to be understood
as part of an evolutionary process. We would contend that at early
stages in cellular evolution, ambiguous translation was tolerated
(there being no alternative) and was an important and essential part
of the evolutionary dynamic (see below). What we imply by
ambiguity here is inherent in the concept of group codon assign-
ments, where a group of related codons is assigned as a whole to a
corresponding group of related amino acids (3). From this flows the
concept of a ‘‘statistical protein,’’ wherein a given gene can be
translated not into a unique protein but instead into a family of
related protein sequences. Note that we do not say that these are an
approximation to a perfect translation of the gene, thereby implying
that these sequences are in some sense erroneous. Early life did not
require a refined level of tolerance, and so there was no need for
a perfect translation. Ambiguity is therefore not the same thing as
‘‘error.’’

The phylogenetic expression of ambiguity is reticulate evolution.
In reticulate evolution, there is no unique notion of genealogical
descent: genetic content can be distributed collectively. Accord-
ingly, as we now turn the emphasis away from the documentation
of the static features of the genetic code and toward their evolu-
tionary origins, we must necessarily invoke an evolutionary dynamic
distinct from that identified originally by Darwin. This dynamic can
be seen as a kind of biological game in which both the players and
the rules of play are unfamiliar, at least in the non-microbial world.
The players are cell-like entities still in early stages of their
evolutions. The evolutionary dynamic (the ‘‘rules’’) involves com-
munal descent. The key element in this dynamic is innovation-
sharing, an evolutionary protocol whereby descent with variation
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from one ‘‘generation’’ to the next is not genealogically traceable
but is a descent of a cellular community as a whole. Even if an
organismal ancestry were to some extent traceable, it would have no
significance, because it is the community as a unit, not the indi-
vidual organismal lineages therein, that varies in descent.

The purpose of this article is to show that evolvability, univer-
sality, and optimality can all be understood naturally and compre-
hensively, but not within a framework of strictly vertical evolution.
Specifically, we will herein model the evolution of translation, the
codon table, the constraints therein, the universality of the code,
and the decoding mechanism, not as a sum of parts but as a whole.
The central conjecture in our model is that innovation-sharing,
which involves horizontal transfer of genes and perhaps other
complex elements among the evolving entities [a dynamic far more
rampant and pervasive than our current perception of horizontal
gene transfer (HGT)], is required to bring the evolving translation
apparatus, its code, and by implication the cell itself to their current
condition.

Our point of view alleviates the need for any assumption of a
unique common ancestor. We argue that the universality of the
code is a generic consequence of early communal evolution medi-
ated by HGT, and that HGT enhances optimality. Our arguments
are backed up by computer simulation studies, which are necessary
to probe the complex interactions between the variety of collective
mechanisms that we shall present. We show that there are virtuous
cycles of cooperativity: (i) the more similar the genetic codes, the
greater the intensity of HGT, and the stronger the tendency for
codes to become more similar; and (ii) HGT helps the codes to
optimize, and optimization enforces universality and compatibility
between translational machineries. These cooperative dynamics
arise because of the dual role played by the genetic code: it is not
only a protocol for encoding amino acid sequences in the genome
but also an innovation-sharing protocol. Here, we identify two
synergistically interacting mechanisms for the emergence of a
universal innovation-sharing protocol: dynamic competition be-
tween protocols favoring the popular ones and effective attraction
of codes due to exchange of protein coding regions.

If Darwin had been a microbiologist, he surely would not have
pictured a ‘‘struggle’’ for existence as ‘‘red in tooth and claw.’’ Our
view of competition in a communal world as a dynamical process
is very different from the widely understood notion of Darwinian
evolution. ‘‘Survival of the fittest’’ literally implies that there can
only be one winner from the forces of selection, whereas in a
communal world, the entire distributed community benefits and its
structure becomes modified by the forces of a selection that is an
inherently biocomplex phenomenon involving the dynamics be-
tween the community elements and the interaction with the envi-
ronment. The most general sense in which we mean competition in
this article is the complex dynamical rearrangement of the com-
munity structure.

Our framework fits naturally the recently proposed picture that
early evolution was dominated by HGT, as evidenced by detailed
phylogenetic (15), biochemical (16), and structural (17) analyses of
the aminoacyl-tRNA synthetases. The broader implication of this
scenario is that innovation-sharing led to the emergence of modern
cell designs (18) from a communal state, not a unique, shared
ancestor. Such a communal state existed before the point of
emergence of vertical evolution, which has been termed the Dar-
winian transition (18). The defining property of the communal state
was that it was capable of tolerating and using ambiguity, as
reflected in the pervasive role of HGT. A Darwinian transition
corresponds to a state of affairs when sufficient complexity has
arisen that the state is incapable of tolerating ambiguity, and so
there is a distinct change in the nature of the evolutionary dynamics
(to vertical descent). We envision that such Darwinian transitions
occurred in each of the three major lineages. The present work does
not address the Darwinian transition itself but explains how the
communal state could have arisen in the first place: in our scenario,

it is the inevitable by-product of the establishment of an innovation-
sharing protocol (the genetic code), leading to the explosive growth
of complexity. Thus, we may speculate that the emergence of life
should best be viewed in three phases, distinguished by the nature
of their evolutionary dynamics. In the first phase, treated in the
present article, life was very robust to ambiguity, but there was no
fully unified innovation-sharing protocol. The ambiguity in this
stage led inexorably to a dynamic from which a universal and
optimized innovation-sharing protocol emerged, through a coop-
erative mechanism. In the second phase, the community rapidly
developed complexity through the frictionless exchange of novelty
enabled by the genetic code, a dynamic we recognize to be patently
Lamarckian (19). With the increasing level of complexity there
arose necessarily a lower tolerance of ambiguity, leading finally to
a transition to a state wherein communal dynamics had to be
suppressed and refinement superseded innovation. This Darwinian
transition led to the third phase, which was dominated by vertical
descent and characterized by the slow and tempered accumulation
of complexity.

Universality and HGT
Previous arguments about universality rely on the existence of a
universal common ancestor with a frozen code. A detailed decon-
struction of such arguments is presented in Supporting Text (which
is published as supporting information on the PNAS web site) and
further supported by the computer simulations presented in Model
of Code Attraction Due to HGT, but the unambiguous conclusion is
that vertical descent on its own is insufficient to explain the
universality of the genetic code. Here, we present an alternative:
the universality of the genetic code is a generic consequence of the
communal evolution of early life. HGT of protein coding regions
and HGT of translational components ensures the emergence of
clusters of similar codes and compatible translational machineries.
Different clusters compete for niches, and because of the benefits
of the communal evolution, the only stable solution of the cluster
dynamics is universality. Within clusters, concerted optimization of
codes is possible. These mechanisms are consistent with two
macroevolutionary scenarios. (i) The code stayed nearly universal
at all times. (ii) The codes diverged at first but then gradually
became universal.

Competition Between Innovation Pools. One of the advantages of
communal evolution is that universally good traits and refinements
can spread through HGT to organisms occupying different niches,
preserving their diversity. In a world increasingly dominated by
protein, most innovations would involve them, and correspondingly
HGT will be most effective between organisms having the same
genetic code. In this way, the organisms sort into communities
sharing related genetic codes. A single code community can span
cells adapted to different niches and with different organization.

The larger the community and diversity of organisms sharing
sufficiently related genetic codes, the larger the pool of protein
innovations accessible to everyone. This leads to faster evolution
among the larger communities than the smaller ones and therefore
a greater potential to invade niches occupied by organisms with
different incompatible genetic codes. With this dynamics larger
communities will tend to become even larger at the expense of
smaller ones. The only stable solution is a universal genetic code.
Thus, it is not better genetic codes that give an advantage but more
common ones.

The elementary step in this process is the overtaking of an
occupied niche by the descendants of an organism with a different
genetic code. If two groups of organisms compete with each other,
the one that has access to more innovations (the one belonging to
the larger community of common�compatible genetic codes) will
on average out-compete the other. In contrast to the case with only
vertical evolution, there is an active feedback loop, driven by
innovation-sharing through HGT, which not only singles out the
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genetic code from all other properties of a cell but also provides a
mechanism that drives competition between codes.

This mechanism (referred to below as ‘‘competition between
innovation pools,’’ or CIP) assumes that the protocols are fixed.
But how did the protocols themselves emerge and evolve? How
can a protocol be upgraded without destroying it?

Code Attraction and Optimization Due to HGT of Protein Coding
Regions. A population of organisms occupying a niche is subject to
spontaneous code mutations and is bombarded by foreign genetic
material from organisms occupying different niches. Horizontally
transferred genes can be useful for the recipient even if the donor
has a (somewhat) different code. For example, the codon usage
(e.g., synonym codon usage frequency) of a transferred gene is
adapted to the donor code and is therefore different from that of
the recipient. Correspondingly, there will be indirect pressure for
the recipient code to readjust itself to make a better use of the new
gene.

We expect that the code response would involve several charac-
teristic time scales. On the long scale, the direction of change is to
reduce ambiguity, but on the short scale, the code must be able to
tolerate a greater level of ambiguity while ingesting new genes. The
means available to the cell to detune the level of precision of
translation may be considered to be of two essential origins: those
internal to the cell, and those which are communal, reflecting the
influence of the environment and neighboring cells. Mechanisms
internal to the cell include change in tRNA expression levels and
detuning of the ribosomal machinery itself, as is known to occur
through variations in Mg ion concentration, antibiotics, and struc-
tural mutations. Communal mechanisms are likely to involve the
import of tRNA from other organisms. The increase on the short
time scale in translational ambiguity is compensated for on the same
time scale by the beneficial effects of the new gene. Eventually, the
codon and amino acid usage of the newly transferred segment will
equilibrate with the rest of the genome and the indirect pressure of
the donor code on the recipient code will disappear, while leaving
behind its accumulated effects.

In somewhat more detail, these arguments indicate that, after a
HGT event, the genetic code of the donor influences the genetic
code of the acceptor. Given an alien gene, the host–alien gene
system undergoes a cyclical dynamical process leading to full
utilization of the new gene. In one part of the cycle, the host detunes
its own code for purposes of recognizing the alien code; an example
of such a detuning process has been documented in streptomycin-
dependent mutants (20, 21) and ribosomal ambiguity mutants (22,
23) in bacteria. In the other part of the cycle, the alien gene codons
are mutated to conform to the host code. This process results in the
detection with greater precision of the alien signal. A snapshot of
this process would reveal a genome as a mosaic of horizontally
transferred fragments from other genomes with different charac-
teristic patterns of codon usage. However, these are only the tip of
the iceberg: beyond codon usage are the subtle but important
changes in aminoacyl tRNA synthetase precision and the ambiguity
level of the translational mechanism itself.

The interaction between the genetic codes is attractive. Typically,
the closer the translation of a foreign coding region is to that in the
donor, the higher is the probability that it is functional. Therefore,
the selective pressure will be to change codons of the recipient code
in the direction of the donor code, even if only in a probabilistic
fashion. The dynamical outcome of this attraction must be uni-
formization. This expectation is confirmed by the computer simu-
lations presented below.

HGT requires that the genetic codes of the host and the recipient
are sufficiently similar, but how similar is sufficient depends on the
nature of the proteins and the overall accuracy of decoding. There
are strong reasons to believe that the more primitive the code of the
donor, the greater the genetic code distance over which HGT is
possible. This is because the tolerance of the proteins to errors in

their primary structure is coadapted to the error rates of the
translational machinery. A cell with a non-optimal code cannot
afford very capricious and therefore highly fine-tuned proteins
because of the cost of discarding defective proteins. A protein that
is robust to translational errors a fortiori is also more tolerant to
translation with a different code. Conversely, the less optimized the
recipient code, the more error-tolerant its proteins, and therefore
the less harmful the effect on the established genes of a code change
in the direction of the donor code. This has the important conse-
quence that in the initial stages of the genetic code evolution, when
the diversification tendency of codes was strongest, HGT was
possible and must have been extensive despite the presence of many
different codes.

HGT of Translational Components. To this point, our discussion has
managed to avoid the specifics of how the genetic code is imple-
mented in hardware, as it were. However, we cannot ignore the
possibility that the translational components themselves benefited
from HGT, and we now turn to this briefly.

The genetic code is a representation of a family of modules, which
are universal across all organisms and are specified by the mech-
anisms of translation, such as tRNAs and charging enzymes (ami-
noacyl-tRNA synthetases in a modern-day setting). The task of
improving translation and the code is also universal, i.e., largely
insensitive to the niches organisms are occupying. So, is it possible
that HGT of translational components played an important role in
the evolution of the codes? Is there any significance in the func-
tional separation between the translational machinery (the ribo-
some) and the code specificators (tRNAs and charging enzymes)?
Imagine for simplicity a situation in which organisms occupying
diverse niches have the same malleable genetic code and ensembles
of tRNAs. The discovery of a tRNA modification that changes the
code and increases its optimality (and therefore the efficiency of
translation) in one organism will also be beneficial for organisms in
the other niches, because of the universal benefit of optimality.
Therefore, a spread of the discovery is beneficial to all recipients
and can be assumed to occur through various HGT mechanisms
including via active elements such as viruses and plasmids.

Therefore, if the spread through HGT is rapid compared with
innovations, a core of organisms having the same genetic code can
maintain its integrity while evolving toward optimality. Notice that
this mechanism does not rely on common ancestry and preserves
the diversity of the organisms. Moreover, this mechanism is distinct
from any survival of any ‘‘fittest’’ species. In the absence of an
attractive force that restrains deviant codes, this core of organisms
would become depleted, if there was any circumstance that pre-
vented a code update from invading specific populations. If the
depletion is slow enough, the deviants will be at a communal
disadvantage and disappear as described in Competition Between
Innovation Pools. The depletion mechanism will compete against an
expansion of the core because of the benefit of a common protocol
shared by a large population.

Diversification of the Translation Mechanism. The special role of the
genetic code as an innovation-sharing protocol leads to a possible
observational consequence. In a core community of organisms that
is in the process of code optimization, the compatibility of code
specificators is enforced. Once the optimization of the genetic code
is complete, there is no pressure to maintain compatibility. There-
fore, the ‘‘freezing’’ of the universal genetic code could trigger the
radiation of the underlying translational machineries. So, even if
translation emerged earlier than the other basic cellular systems,
but the optimization of the code took an extended time, the
translational componentry would have diversified less. This is
consistent with the observation that the translation mechanism is
more conserved evolutionarily than the replication and transcrip-
tion mechanisms. Although we do not have a complete under-
standing of the Darwinian transition (18), our argument suggests

10698 � www.pnas.org�cgi�doi�10.1073�pnas.0603780103 Vetsigian et al.



that code universality and optimality were necessary but not
sufficient mechanisms for the transition to vertical evolution.

Interactions Between HGT Mechanisms. The different collective
mechanisms enabled by HGT and outlined above are also capable
of synergistically interacting with each other.

We saw above that the evolutionary expansion of the most
popular cluster of codes provides the necessary support for the
maintenance of an otherwise weakly depleting universal core. The
opposite is also true. The CIP mechanism is ineffective if there are
no clusters of sufficient size on which it can operate. The estab-
lishment of such clusters is greatly facilitated by the HGT of code
specificators and protein coding regions. Distribution of modules
enforces modularity that in turn enforces the distribution of mod-
ules. Similarly, exchange of protein coding regions enforces uni-
versality, thus making it easier to exchange genes. Therefore, there
are positive feedback loops that provide at least local stability to the
protocols and turn them into effective degrees of freedom at a
longer time scale. The global stability and universality is then
guaranteed by the ‘‘winner takes all’’ nature of the CIP.

HGTs of code specificators and protein coding regions interact
not only through the CIP mechanism but directly as well. If an
organism obtains a gene from another niche, its place in the
ecosystem is such that it has potential contact with the genetic
material of the donor. Therefore, the recipient has a better than
random chance to obtain the right code specificator from the donor
as well, before the special codon usage of a recently acquired trait
drifts. The exchange of code specificators provides a channel
through which codes can become more similar in response to the
attraction of codes due to exchange of protein coding regions.

In summary, it is the interaction between the different mecha-
nisms outlined above that makes the emergence and maintenance
of universality robust. At the same time, because of the complexity
of the problem, it is useful to study the different components in
isolation as well.

HGT and the Observed Statistical Properties of the Genetic Code. So
far, we have argued that HGT and the special role of the genetic
code as an innovation-sharing protocol alleviate the conceptual
difficulties in understanding the simultaneous universality and
evolvability of the genetic code. Does this improved understanding
help us explain some of the statistical features of the modern genetic
code? And how can we expose the signatures of the above mech-
anisms that are buried in the functional and structural design of the
translational system and its phylogenetic variations?

To address this, one needs to complement the above generic
mechanisms with insight about the elementary evolutionary
changes of the genetic code. Our goal in the remainder of this article
is to attempt to identify robust or generic statistical properties of
translation that arise from our proposed evolutionary mechanisms
but that are relatively insensitive to fine details. To begin, we model
the code attraction mechanism and ask, What is the effect of HGT
on the optimality of the genetic code?

We employ genetic code dynamics similar to that first introduced
by Sella and Ardell (24–26). The main feature is the coevolution
between the genetic code and codon usage at different functional
sites. The code determines the codon usage at mutation selection
equilibrium. In turn, the codon usage determines the fitness costs
or benefits of the accessible code changes, thus guiding the code’s
evolution. Code changes that are beneficial given the typical codon
usage of a population can invade it. To account for HGT, we couple
the evolution of different codes by postulating that a fraction of
each genome consists of pieces coming from other genomes.

The virtue of the model of Sella and Ardell is that it is a closed
model of the evolution of the genetic code and shows that the
evolvability barrier is surmountable in a protein-dominated world.
Its shortcoming is that it does not address the fact that translation
is a dynamical process, with competition between its various

components. This means that the model of Sella and Ardell on its
own is not adequate to identify generic statistical signatures of the
evolutionary mechanisms of translation, because the statistical
properties of the code and the structure of the translational system
are precisely the stable resolutions of the design tradeoffs and
evolutionary conflicts inherent to translation.

The code attraction mechanism that we use at this point is also
insensitive to the implementation of translation and so has the same
shortcoming. Thus, combining it with the model of Sella and Ardell,
we will still not be able to address all evolutionary aspects of the
problem. Nevertheless, such a model, although admittedly too
simple for our ultimate goals, can, encouragingly, still explain the
universality and optimality of the genetic code. The only key aspect
of translation that it is necessary to incorporate, even if by intro-
ducing it by hand, is mistranslation.

At a next level in the hierarchy of models, one needs to
incorporate the tRNAs as agents of both the collective molecular
effort of translation and the communal evolution of the genetic
codes. In contrast to the above, in such models mistranslation would
become a dynamical variable that emerges from the competition
itself. This lower level of description entails a richer suite of
observational outcomes and provides a unique and essential role for
the organism as a resource manager and conflict regulator for the
various dynamical processes within it.

Model of Code Attraction Due to HGT
We first describe the modeling of the genetic code and mistrans-
lation errors, then define the proteome structure and the repro-
ductive success of genomes as a function of their codon sequences.
We show how to compute the probability distribution of codons at
different functional sites at mutation selection equilibrium. Finally,
we present a simulation algorithm that incorporates HGT.

Genetic Code. The genetic code is a probabilistic map Prob(c3 �)
between codons and amino acids. The map is probabilistic because
the charging of tRNAs with particular amino acids and the decod-
ing of codons through competition of tRNAs are probabilistic
molecular events. Quite generally,

Prob�c 3 �� � �
t

TctCt�, [1]

where Tct is the probability that a codon c is read by tRNA species
t, and Ct� is the probability that it is charged with amino acid �.
Assuming one-to-one mapping between tRNA species and codons
and equal concentrations of different tRNAs, and ignoring mis-
charging, we set

Prob�c 3 �� � �
c�

Tcc��aa�c��,�, [2]

where the sum is over the codons and Tcc� � ��9 if c and c� are
nearest neighbors, Tcc � 1 � � and Tcc� � 0 otherwise, with � being
the mistranslation rate. (9 is the number of neighbors for codons
consisting of three letters and an alphabet of size 4.) aa(c) is a map
between the codons and amino acids, which will be referred to as
the code.

Genome and Proteome Structure. A genome is a sequence of codons
that is translated to an amino acid sequence. Each genome position
x belongs to a site type s(x). A site type s is characterized by the
fitness score W�s of the different amino acids that can be present at
that site. The matrix W, together with the frequencies {Ls} of the
different site types in the genome, constitutes the structure of the
proteome. Assuming that amino acid substitutions at different
genome positions have independent effects on fitness, we construct
the proteome fitness score
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A����x��� � �
x

W��x�,s�x�, [3]

where the product is over all genome positions and �(x) is the
amino acid at position x.

Codon Usage. Since different positions belonging to the same site
type are phenotypically indistinguishable in the model, we can
describe the genome by the matrix {usc} that specifies the frequency
of codon c among sites of type s.

Genome Fitness. Accommodating the probabilistic nature of trans-
lation, we set the fitness of a genome to be the average of the
proteome fitness score over many translations, i.e., f � �A	. Since
translations of different codons are independent,

f��c�x��, code� � �
x

�W��x�,s�x�	 � �
x

Fs�x�,c�x�. [4]

Putting everything together and switching from codon sequence
to codon usage representation, we end up with

f�code, �u�� � �
c

�
s
� �

c�

Tcc�Waa�c��,s� Lsusc

. [5]

Equilibration of Codon Usage. Given the matrix of mutational effects
{Fsc(code)}, defined above, what is the codon usage {usc} in an
asexual population of an infinite size and large genomes at a
mutation selection equilibrium? Mutational pressure is character-
ized by the matrix Mcc� specifying the probability that codon c will
mutate into codon c� in one generation. It is assumed independent
of the site type and genome position. Any mutational biases could
be incorporated in Mcc�. Here, we focus on equally probable single
nucleotide changes. In this case, M is specified by a single parameter
�, which is the probability for a mutation at a given site in one
generation. Following Sella and Ardell (24), the codon usage at a
site of type s is given by the eigenvector corresponding to the largest
eigenvalue of the matrix

Qcc�
�s� � Mcc�Fsc�. [6]

The matrix Q reflects the application of selection followed by
mutation.

The parameters of the model described above are Ns, the number
of site types; Na, the number of amino acids; the Na 
 Ns matrix W;

and a vector {Ls}, specifying the relative frequencies of the different
site types, the mutation rate �, and the mistranslation rate �.

Model Dynamics. Now we consider an ensemble of populations
with different codes and present the dynamics.

1. There are N entities, each with its own genetic code aa(c) and
codon usage usc.

2. At each step an entity, the acceptor, and K random donor
entities are chosen at random. The acceptor codon usage is
updated according to the rule

�1 �
H
K �

k�1

k

Pk	usi �
H
K �

k�1

K

Pkusi
�k�3 usi, [7]

where usi
(k) is the codon usage of donor k, and pk is some measure

of the compatibility between the donor and acceptor codes
expressing the probability of acceptance. Here, we study the case
with no barrier to HGT of coding regions, i.e., pk � 1. H is the
fraction of the acceptor genome that is a mosaic due to HGT.

3. We attempt to change the code of the acceptor. We examine in
random order the possible elementary changes of the code until
we find one that is acceptable or exhaust all of the possibilities.
We accept a candidate change if it increases or at least preserves
the fitness, calculated by using the mosaic codon usage {usc} and
Eq. 5. An elementary code change reassigns a single codon to
a different amino acid.

4. We equilibrate the acceptor codon usage by finding the
eigenvectors corresponding to the largest eigenvalues of the
matrices Qs.

5. We repeat the cycle.

The CIP mechanism, which clearly facilitates universality (and
given enough time generically leads to universality), is factored
out from the simulations to concentrate on the code attraction
mechanism. Each evolving entity in the ensemble can be thought
of as a different ‘‘species’’ (or ecotype). While within each
species the evolution proceeds through invasions of code variants
with higher fitness, the different species are stable and their
number is fixed, thus blocking the CIP mechanism.

Results: Genetic Code Coevolution Toward Optimality
and Universality
We evolved ensembles of codes with and without HGT and
measured the time evolution of the average distance between codes

Fig. 1. Communal evolution toward optimality of 80
codes with (blue) and without (red) HGT of coding
regions. There is no barrier to HGT between different
codes. The initial conditions are the same for both runs.
Parameters: H � 0.4, � � 0.99, � � 10�4, � � 0.01. (A)
Time development of the average amino acid distance
between neighboring codons, a proxy for code optimal-
ity. (B) Probability distribution histogram of code opti-
mality for randomly generated codes. The horizontal
axis is the frequency with which a given code optimality
occurs; the vertical axis is the same as in A. (C) Time
development of the average distance between codes.
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and the distribution of optimality scores. We compare the optimal-
ity scores with the corresponding distribution for randomly gener-
ated codes. The ensemble of randomly generated codes is con-
structed by assigning random amino acids to the codons. Initially,
all of the codes are identical, and the initial code is generated by
randomly assigning amino acids to the codons.

The average code distance is obtained by considering all pairs
of entities with equal weight. The code distance between two
entities is the Hamming distance, which counts the numbers of
codons that code for different amino acids.

We define the optimality score of a code as the average amino
acid similarity distance between neighboring codons.

�
c

�
c�

Ncc�Saa�c�,aa�c��, [8]

where Ncc� is 1 if codons c and c� differ by a single letter, and zero
otherwise. S is an the amino acid similarity matrix defined as
follows:

S�	 � �
s

�W�,s � W	,s�. [9]

Fig. 1 presents the simulation results for the following parameters:
N � 80; Na � Ns � 20; 64 codons; � � 10�4; � � 0.01; W�	 �
��A��A	� with {A�} being uniformly distributed random numbers in
the interval (0, 1); and � � 0.99. The HGT parameters are H � 0.4
and K � 1.

Fig. 1A demonstrates that HGT of coding regions not only
brings universality but greatly enhances the joint ability of the
codes to optimize. Comparison with the distribution of optimal-
ity scores for random codes, Fig. 1B, shows that, in the presence
of HGT, the achieved optimality is highly significant. Thus, in a
qualitative way, we have provided a dynamical mechanism that
would give rise to the statistical properties of the genetic code
identified in refs. 9 and 10.

Fig. 1C shows that without HGT the codes diversify form each
other. However, when HGT is present the tendency to diversify is
eventually reversed and the codes get attracted to each other,
gradually achieving near universality. It should be stressed that the
probability for achieving universality, in the absence of the CIP
mechanism, depends on H, and is equal to one above a threshold.
Whereas H is a constant in this set of simulations, the discussion in
ref. 18 suggests that it is in fact a dynamical variable that is initially
large and gradually decreases as better translation allows the
evolution of a protein network with more specific interactions.

We interpret these results as supporting two key concepts that
underlie the arguments in this article. First and foremost is the role
of communal evolution in leading to a universal genetic code.
Vertical or Darwinian evolution does not lead to a reduction in the
distance between codes. This is seen from the long-time behavior
of the red curves in Fig. 1A. Only the incorporation of HGT gives

rise to code convergence, as shown by the long-time behavior of the
blue curves in Fig. 1A: they get closer together with time. In a sense,
a Darwinian (genealogical) evolution would get trapped or, per-
haps, frozen into metastable states. Second is the role of communal
evolution in leading to an optimal code. Vertical or Darwinian
evolution gets frozen into non-optimal states, whereas with HGT,
the code becomes optimized to a much greater extent. This is seen
by comparing the final values of the Darwinian evolution (red)
curves and the communal evolution (blue) curves with the vertical
axis of Fig. 1B. Communal evolution results in a genetic code that
is much further from the mean of random distributions than the
results of Darwinian evolution.

Conclusions
With this work, we have revisited the largely overlooked problem
of genetic code universality and the conceptual difficulties associ-
ated with it. These difficulties can all be avoided if one takes, as we
do, the stance that evolution was essentially communal from the
very beginning. We have argued that there are three distinct stages
of evolution, which we might classify as (i) weak communal evo-
lution, which gave way via development of an innovation-sharing
protocol and the emergence of a universal genetic code to (ii) strong
communal evolution, which developed exponential complexity of
genes, finally leading via the Darwinian transition to (iii) individual
evolution—vertical, and so, Darwinian.

Most of our analysis explored the transition between regimes i
and ii, through detailed consideration of the way in which a
generalized form of HGT operating on long evolutionary time
scales brings universality via dynamic competition between a wide
variety of collective innovation-sharing protocols. In particular, we
argued how such protocols emerge through the important coevo-
lutionary mechanism of code attraction and presented a specific
model that is capable of explaining the simultaneous universality
and optimality of the genetic code.

The genetic code is an expression of the translation process, and
therefore its state and significance reflect the various stages in the
evolutionary development of translation and the organization of the
cell. Thus, a fuller account of the evolution of the genetic code
requires modeling physical components of the translational appa-
ratus, including the dynamics of tRNAs and the aminoacyl tRNA
synthetases. Only with this level of description is it possible to
address issues such as the special role played by the polar require-
ment. This latter point is, we believe, an essential clue to the early
evolution of translational components, when the genetic code
presumably had a rather different function.

Evolution of the genetic code, translation, and cellular orga-
nization itself follows a dynamic whose mode is, if anything,
Lamarckian.
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