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Nuclear resonance vibrational spectroscopy (NRVS) is an emerging site-specific probe of
active site vibrational dynamics in metalloproteins.1,2 NRVS is a synchrotron-based technique
that uniquely targets the vibrations of a Mössbauer nucleus, such as 57Fe, without interference
from vibrations of other atoms, and reveals not only the frequency, but also the (mean squared)
amplitude,1b,2a of all vibrations of the probe nucleus along the direction of the incident X-ray
beam. Quantitative characterization of vibrational modes involving a reactive probe atom can
illuminate mechanisms of complex biomolecules.

Reactions with heme proteins mediate the physiological effects of nitric oxide (NO). The
proposed trigger for activation of soluble guanylate cyclase (sGC) is rupture of the covalent
Fe-His bond3a,b in the heme-containing domain3c,d upon NO binding to the Fe. A
thermodynamic consequence of NO-induced weakening of a trans Fe-imidazole bond, as
observed in several heme systems, is that imidazole binding should weaken a trans Fe-NO
bond. Model compound structures support such a reciprocal negative trans interaction,4a
although protein structural data4b-d may not have sufficient precision to resolve the 3 pm
increase in Fe-NO bond length due to imidazole binding.

On the other hand, vibrational frequencies respond sensitively to bond length changes of this
magnitude, and it is therefore puzzling that the frequency attributed to stretching of the Fe-NO
bond in six-coordinate imidazole-ligated heme proteins5 is higher, rather than lower, than the
frequencies observed for five-coordinate iron nitrosyl hemes. For example, the assigned Fe-
NO stretching frequencies of the 5- and 6- coordinate NO complexes with myoglobin (MbNO)
are 521 cm−1 and 552 cm−1, respectively.5c

NRVS measurements on 6-coordinate MbNO suggest reexamination of this issue (Fig. 1A).
The Fe-weighted vibrational density of states (VDOS) D(ν) samples the vibrational kinetic
energy distribution (KED), with each mode contributing an area eFe

2 equal to the fraction of
mode energy associated with Fe motion.2a,d The eFe

2 = 0.11 area of the feature at 547 cm−1

is well below the eFe
2 = 0.23-0.33 range that we observed for the FeNO stretching mode in a

series of 5-coordinate nitrosyl porphyrins,2d but is clearly visible because of the distinctly
improved signal quality compared to previously published NRVS measurements on
myoglobin.1a,b,d In contrast, a mode with an area eFe

2 = 0.25 appears at 443 cm−1, near a
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mode in the MbNO Raman spectrum previously shown to be sensitive to NO isotope
substitution.5b,c

The frequency shift upon isotopic substitution of atom j provides an indirect estimate2a of
ej
2, assuming an unaltered mode composition. Raman measurements on isotopically enriched

MbNO at ambient temperature (Fig. 1B, C) reveal a 3 cm−1 54Fe/57Fe isotope shift for a mode
at 451 cm−1, and no significant Fe isotope sensitivity for the 556 cm−1 feature, in qualitative
concord with the NRVS results. Furthermore, the value eFe

2 = 0.29 calculated2a from the
isotope shift of the 451 cm−1 mode is in reasonable quantitative agreement with that determined
for the 443 cm−1 mode observed in the NRVS data. The value eFe

2 = 0.18 determined from
the isotope shift of an additional Fe-sensitive Raman feature at 360 cm−1 can be reconciled
with a significantly larger value for the corresponding NRVS feature (Table 1) if both consist
of two unresolved modes. These may be the (nominally degenerate) in-plane Fe-Npyr
vibrations, which we previously observed to contribute prominently to the Fe VDOS of
deoxyMb1b and of iron porphyrins.2 NRVS and Raman isotope shift measurements reveal the
KED (eFe

2, eN
2, and eO

2) over the FeNO fragment (Table 1).

The 556 cm−1 feature is characteristic for six-coordinate hemes with NO and imidazole as axial
Fe ligands, and has successfully monitored interconversion between five- and six-coordinate
states.7a-c One component of this complex feature undergoes a large frequency shift
upon 14→15NO substitution (Fig. S2), and has previously been identified as Fe-NO stretching.
5 The KED (Table 1) indicates that 80-90% of the mode energy is localized on the FeNO
fragment, but with the majority associated with motion of the NO nitrogen atom. This contrasts
with the relatively uniform distribution of kinetic energy among all three atoms predicted2d
for Fe-NO stretching in five-coordinate iron nitrosyls. On the other hand, Fe motion accounts
for 25-30% of the 451 cm−1 mode energy, similar to the value eFe

2 = 0.30 determined
experimentally for the Fe-NO mode in Fe(TPP)(NO).2d

NRVS measurements on oriented samples provide additional insight into vibrational mode
character.2b,1d Fig. 2 compares the NRVS excitation probability measured on a powder and
on a single crystal of Fe(TPP)(1-MeIm)(NO), oriented to enhance the contribution of modes
involving Fe motion perpendicular to the mean plane of the porphyrin, and suppress in-plane
Fe vibrations.

The data in Fig. 2 identify a mode at 440 cm−1 with dominant Fe motion perpendicular to the
mean porphyrin plane. Normal mode analyses2b,d,5a indicate significant vibrational mixing
between Fe-NO stretching and FeNO bending, and the reduced amplitude (eFe

2=0.16) of the
440 cm−1 mode determined from the VDOS of Fe(TPP)(1-MeIm)(NO) (Table S2) relative to
the 443 cm−1 mode in MbNO and the 540 cm−1 mode in Fe(TPP)(NO) might reflect an
enhanced contribution from FeNO bending. Nevertheless, the absence of any other mode above
200 cm−1 with dominant out-of-plane Fe motion supports a dominant Fe-NO stretching
contribution. The 100 cm−1 frequency decrease from the 540 cm−1 frequency
identified2a,b,d with Fe-NO stretching in the analogous 5-coordinate complex Fe(TPP)(NO)
indicates that this mode is highly sensitive to the strength of the Fe-NO bond. DFT calculations
on Fe(TPP)(NO) also revealed a strong sensitivity of the Fe-NO frequency to the Fe-N bond
distance.2b

It would be desirable to confirm the negative trans interaction between the NO and Im ligands
by monitoring the vibration of the Fe-Im bond in the presence and absence of NO. In fact, the
Fe(TPP)(1-MeIm)(NO) single crystal data identify several modes below 200 cm−1 whose Fe
motion is primarily orthogonal to the porphyrin plane. However, none approach the area
eFe

2 = 0.59 predicted for a two-body Fe-1-MeIm oscillator. Further work will be needed to
determine whether any of these modes correlates with the strength of the Fe-His bond.
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The vibrational data presented above identify modes with FeNO stretching character in the
440-450 cm−1 region for MbNO and Fe(TPP)(1-MeIm)(NO). The 70-100 cm−1 decrease
relative to the Fe-NO frequencies in the corresponding 5-coordinate NO complexes2a,5
confirms the weakening of the Fe-NO bond in the presence of a trans imidazole ligand. These
results support a proposed mechanism3a,b for NO activation of heme proteins, and underline
the value of NRVS as a direct probe of metal reactivity in complex biomolecules. The revised
assignment for the Fe-NO stretch mode may also facilitate attempts7b,d to identify correlations
between Fe-NO and N-O stretching vibrations, analogous to the well-established vibrational
Fe-CO/C-O anticorrelation7e in heme-CO complexes.
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Figure 1.
Fe-weighted VDOS determined from NRVS data on 57Fe-enriched horse MbNO at 21 K (A)
using the program PHOENIX and Raman data on 57Fe- and 54Fe-enriched MbNO at ambient
temperature (B, C) reveal modes with significant Fe contribution. An expanded trace shows
the calculated Raman difference spectrum between B and C.
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Figure 2.
Excitation probabilities determined from NRVS measurements on a powder (13 K, red) and
on a crystal (82 K, green) of Fe(TPP)(1-MeIm)(NO), oriented with the X-ray beam incident
along the {001} direction, which lies 13.8° from the normal of all porphyrins. The single crystal
spectrum only includes motion along the X-ray beam, so that modes with Fe motion
perpendicular to the porphyrin plane are therefore enhanced, and in-plane modes suppressed,
in the crystal spectrum relative to the powder spectrum.
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Table 1
Vibrational kinetic energy distributions on the FeNO fragment in MbNO

NRVS (21 K) Raman (293 K)

frequencya ΣeFe
2 frequencya eFe

2 eN
2 eO

2b Σej
2

352 cm−1 0.28 360 cm−1 0.18 0.03 0.02c 0.2
443 cm−1 0.25 451 cm−1 0.29 0.10 0.04 0.43
547 cm−1 0.11 556 cm−1 0.14c 0.8 0.06 0.9

a
Temperature-dependent frequency shifts may indicate structural changes,6 and are under further investigation.

b
Calculated from reported5c N18O/N16O frequency shift.

c
Estimated upper limit based on noise level; no shift observed.

J Am Chem Soc. Author manuscript; available in PMC 2006 July 14.


