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Abstract

Despite remarkable advances in our understanding of a

genetic basis of cancer, the precise molecular defini-

tion of the phenotypically relevant genetic features

associated with human epithelial malignancies remains

a significant and highly relevant challenge. Here we

performed a systematic analysis of the chromosomal

positions of cancer-associated transcripts for prostate,

breast, ovarian, and colon tumors, and identified short

segments of human chromosomes that appear to

represent a common target for transcriptional activa-

tion in major epithelial malignancies in human. These

cancer-associated transcriptomeres correspond well

to the regions of transient transcriptional activity

on chromosomes 1q21–q23 (144–160 Mbp), 12q13

(52–63 Mbp), 17q21 (38–50 Mbp), 17q23–q25 (72–82

Mbp), 19p13 (1–16 Mbp), and Xq28 (132–142 Mbp)

during human cell cycle, suggesting a common epi-

genetic mechanism of transcriptional activation. Con-

sistent with this idea, two of these transcriptomeres

(12q13 and 17q21) seemed to be related to the p53-

regulated transcriptional clusters, and some of the

cancer-associated transcriptomeres appeared to cor-

respond well to the recently identified regions of

increased gene expression on human chromosomes.
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Introduction

During malignant progression, genomic instability leads to

continuously emerging phenotypic diversity, clonal evolu-

tion, and clonal selection, resulting in the remarkable cel-

lular heterogeneity of tumors. The phenotypic diversity of

cancer cells is associated with significant mutation-driven

changes in gene expression, although not all mutations and

differences in gene expression are crucial to the malignant

phenotype. Important goals are to identify mutations and

gene expression changes that are highly relevant and

characteristic of malignant phenotypes and progression

pathways, more than one of which may exist [1]. At least

some of the phenotypically relevant changes in the mRNA

abundance levels characteristic of malignancy are mutation-

driven and associated with the recurrent genetic alterations.

Recent parallel comparisons of the alterations in DNA copy

number and gene expression in human breast cancer cell lines

[2,3] revealed that most differentially expressed genes were

not amplified or deleted, nor did all regions of DNA amplifica-

tions or deletions cause gene expression changes. However,

both groups reported that several genes highly overexpressed

in the multiple human breast cancer cell lines were involved in

recurrent DNA amplifications, suggesting that these genes are

more likely to represent important mediators of the breast

cancer progression. Collectively, these data support the idea

that the systematic analysis of the recurrent transcriptional

aberrations in cancer may be useful in the identification of the

recurrent phenotypically relevant genomic changes.

Completion of the draft sequence of the human genome

allowed identification of the chromosomal positions of human

genes with unprecedented accuracy. Integration of these

mapping data with genome-wide messenger RNA expression

profiles as provided by serial analysis of gene expression for

12 tissue types resulted in generation of the human tran-

scriptome map [4]. The map reveals an apparently nonrandom

pattern of chromosomal distribution of transcriptionally active

regions along human chromosomes reflected in a clustering of

highly expressed genes to specific chromosomal segments.

Therefore, we thought to take advantage of these novel

analytical tools and determine whether a systematic analysis

of the chromosomal positions of the cancer-associated genes

with increased mRNA abundance levels would reveal recur-

rent chromosomal regions of transcriptional activations char-

acteristic of cancer. Global gene expression monitoring in
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cancer cell lines and clinical tumor samples showed that

genes with increased mRNA abundance levels exhibited

largely nonoverlapping cancer type–specific patterns of

expression [5–8], consistent with the concept of multiple

independent pathways of tumor progression [1]. In this paper,

we performed an analysis of chromosomal positions of

cancer-associated transcripts identified in multiple independ-

ent data sets, including oligonucleotide microarray data gen-

erated by the Affymetrix gene expression profiling of human

prostate cancer cell lines (this study) and previously pub-

lished microarray data of clinical samples [5–8]. Surprisingly,

analysis of the chromosomal positions of the cancer-associ-

ated genes revealed several recurrent malignancy-associ-

ated regions of transcriptional activation (MARTAs) common

for human prostate, breast, ovarian, and colon cancers.

Materials and Methods

Cell Culture

Cell lines used in this study are described in Table 1. The

PC3-derived and LNCaP-derived cell lines were developed

by consecutive serial orthotopic implantation, either from

metastases to the lymph node (for the LN series), or

reimplanted from the prostate (Pro series). This procedure

generated cell variants with differing tumorigenicity, fre-

quency, and latency of regional lymph node metastasis

[9]. The LNCaP and PC-3 panels of human prostate carci-

noma cell lines of graded metastatic potential were provided

by Dr. C. Pettaway (M.D. Anderson Cancer Center, Hous-

ton, TX) and described earlier [9]. A third progression

model is represented by the P69 cell line, an SV40 large

T-antigen–immortalized prostate epithelial line, and M12, a

metastatic derivative of P69 [10–12]. The P69 and M12 cell

lines [11–13] were obtained from Dr. S. Plymate and Dr. J.

Ware. Two primary human prostate epithelial and one pri-

mary human prostate stromal cell line were obtained from

Clonetics/BioWhittaker (San Diego, CA ) and grown in com-

plete prostate epithelial and stromal growth medium provided

by the supplier. Except where noted, other cell lines were

grown in RPMI 1640 supplemented with 10% fetal bovine

serum and gentamicin (Gibco BRL, Gaithersburg, MD) to

70% to 80% confluence and subjected to serum starvation as

described [13,14], or maintained in fresh complete media,

supplemented with 10% FBS.

RNA Extraction

For gene expression analysis, cells were harvested in

lysis buffer 2 hours after the last media change at 70% to

80% confluence, and total RNA or mRNA was extracted

using the RNeasy (Qiagen, Chatsworth, CA) or FastTract

kits (Invitrogen, Carlsbad, CA). Cell lines were not split more

than five times, except where noted.

Table 1. Divergent Evolution During Experimentally Extended Tumor Progression In Vivo in Nude Mice of Human Prostate Carcinoma Cell Lines Derived from

Androgen-Dependent (LNCaP) and Androgen-Independent (PC3) Lineages (See Text for Details and References).

Cell Lines Cycles of

Progression

Site of

Transplantation/Recovery

Orthotopic

Tumorigenicity

Metastatic

Potential

RNA Sources Used in This Study

Normal epithelia 0 None None None In vitro; triplicate samples

PC3 0 None High Intermediate

PC3M 1 Prostate/liver High High

PC3M-LN4 4 Prostate/lymph nodes High Very high In vitro; duplicate samples

PC3M-Pro4 4 Prostate/prostate High Intermediate

LNCaP 0 None Intermediate Low

LNCaP-LN3 3 Prostate/lymph nodes High High In vitro; duplicate samples

LNCaP-Pro5 5 Prostate/prostate High Low

P69 0 None Very low None

M12 3 Subcutaneous/prostate High High

RNA from all conditions was prepared twice from independent experiments to assure reproducibility.

Figure 1. RT-PCR confirmation analysis of the upregulation of two genes

representing Xq28 transcription activation cluster in human prostate carcinoma

cell lines [MAGEA12 (top panel) and MAGEA3 transcripts (bottom panel)].

Standard RT-PCR protocol was used to amplify fragments of corresponding

genes from mRNA of the normal human prostate epithelial cells (PrEc) and

highly metastatic PC3MLN4 and LNCaPLN3 human prostate carcinoma cell

lines. To control PCR amplification efficiency and loading, the experiments

were carried out using coamplification in the same tube with each experimental

gene of a fragment of control gene (SYBL1) that was selected to have a similar

chromosomal location but distinct amplification product size and regulation

pattern. In the control experiments (C), PCR amplification was carried out only

for corresponding control genes. H2O—negative control of PCR amplification;

M—molecular weight markers.
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Affymetrix Arrays

The protocol for mRNA quality control and gene expres-

sion analysis was that recommended by Affymetrix (http://

www.affymetrix.com). In brief, approximately 1 Ag of mRNA

was reverse-transcribed with an oligo(dT) primer that has a

T7 RNA polymerase promoter at the 5V-end. Second strand

synthesis was followed by cRNA production incorporating a

biotinylated base. Hybridization to Affymetrix Hu6800 arrays

representing 7129 transcripts overnight for 16 hours was

followed by washing and labeling using a fluorescently

labeled antibody. The arrays were read and data were

processed using Affymetrix equipment and software [16].

Detailed protocols for data analysis and documentation of

the sensitivity, reproducibility, and other aspects of the

quantitative microarray analysis using Affymetrix technology

have been reported [16]. To determine the quantitative

difference in the mRNA abundance levels between two

samples, in each individual sample for each gene, the

average expression differences were calculated from inten-

sity measurements of perfect match (PM) probes minus

corresponding control probes representing single nucleotide

mismatch (MM) oligonucleotides for each gene-specific set

of 20 PM/MM pairs of oligonucleotides, after discarding the

maximum, minimum, and any outliers beyond 3SD. The

averages of pairwise comparisons for each individual gene

were made between the samples and the corresponding

expression difference calls (see below) were made with

Affymetrix software. Microsoft Access was used for other

Figure 2. Genome-wide representation of distribution of transcription activation clusters within a PC3MLN4/LNCaPLN3 consensus class of 165 genes with

increased mRNA abundance levels. The clustering effect in the experimental data set was calculated as a ratio of the average random clustering distance to the

individual measurements of the experimental clustering distance within a given class of differentially regulated transcripts. Higher ratio due to a shorter

experimental clustering distance was interpreted as more significant clustering effect. The cutoff value for identification of the transcription activation clusters was

set to exceed the expected random density of gene distribution by at least 10-fold. The random distribution of the individual clustering distances (d) was obtained by

performing similar analysis for the random gene set (a total of 105 individual measurements). There were no random pseudo-clusters exceeding the cutoff value

that was set for identification of the transcription activation clusters. Note that for more accurate visual comparisons of the clustering effects within experimental and

random gene sets, (a) and (b) scaled to the different Y-axis values, and (c) and (d) scaled to the same Y-axis value. A similar analysis of a genome-wide distribution

of transcription activation clusters was performed for genes upregulated in ovarian (Figure 1S), breast (Figure 2S), and colon (Figure 3S) cancers as well as genes

activated during human cell cycle (Figures 4S and 5S), dsRNA-induced transcripts (Figure 6S), and p53-regulated genes (Figures 7S). These data are presented in

the supplement.
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aspects of data management and storage. For each gene, a

matrix-based decision concerning the difference in the

mRNA abundance level between two samples was made

by the software and reported as a ‘‘difference call’’ [No

change (NC), Increase (I), Decrease (D), Marginal increase

(MI), and Marginal decrease (MD)], and the corresponding

fold change ratio was calculated. The results of 7 array

experiments are presented in this paper. Forty to 50% of

the surveyed genes were called present by the Affymetrix

software in these experiments. The concordance analysis

of differential gene expression across the data set was

performed using Microsoft Access and Affymetrix MicroDB

software. Three of the normal prostate epithelial (NPE)

microarrays are used as controls and referred to as the

NPE expression profile. Thus, when a gene is required to

show a two-fold or greater change relative to NPE, this

must occur in all three microarrays, for either positive or

negative changes. These stringent criteria exclude genes

for which one of the three microarrays is in error. The

strategy in this study is based on the idea that expression

differences will not be called by chance in the same

direction in multiple arrays (see Statistical Analysis and

Quality Performance Criteria section for statistical justifica-

tion). Each gene in the final list of the 165 differentially

expressed genes was required to be called exclusively as

either concordantly upregulated or downregulated in 12

separate comparisons (2 prostate cancer cell lines � 2

experimental serum conditions � 3 NPE controls).

Statistical Analysis and Quality Performance Criteria

We used stringent analytical approach to test the

hypothesis that there are common genes with altered

Figure 2. (continued)

Cancer-Associated Transcriptomeres Glinsky et al. 221

Neoplasia . Vol. 5, No. 3, 2003



T
a
b

le
2
.

C
o
m

m
o
n

M
A

R
T

A
s

fo
r

H
u
m

a
n

P
ro

s
ta

te
,

B
re

a
s
t,

O
v
a
ri
a
n
,

a
n
d

C
o
lo

n
C

a
n
c
e
rs

.

T
y
p
e

o
f

C
a
n
c
e
r

C
y
to

b
a
n
d
s

P
ro

s
ta

te
C

a
n
c
e
r;

C
e
ll

L
in

e
s

B
re

a
s
t

C
a
n
c
e
r;

C
e
ll

L
in

e
s

P
ro

s
ta

te
C

a
n
c
e
r;

C
lin

ic
a
l
S

a
m

p
le

s

B
re

a
s
t

C
a
n
c
e
r;

C
lin

ic
a
l
S

a
m

p
le

s

O
v
a
ri
a
n

C
a
n
c
e
r;

C
lin

ic
a
l
S

a
m

p
le

s

C
o
lo

n
C

a
n
c
e
r;

C
lin

ic
a
l
S

a
m

p
le

s

H
u
m

a
n

C
e
ll

C
y
c
le

G
e
n
e
s

G
e
n
e

ID
R

H
m

a
p

(k
b
p
)

G
e
n
e

ID
R

H
m

a
p

(k
b
p
)

G
e
n
e

ID
R

H
m

a
p

(k
b
p
)

G
e
n
e

ID
R

H
m

a
p

(k
b
p
)

G
e
n
e

ID
R

H
m

a
p

(k
b
p
)

G
e
n
e

ID
R

H
m

a
p

(k
b
p
)

G
e
n
e

ID
R

H
m

a
p

(k
b
p
)

1
2
q

1
3

X
7
8
1
3
6

5
6
,6

7
3
,7

9
8

T
E

G
T

5
0
,8

0
7
,7

7
8

U
0
4
8
1
0

5
2
,3

5
4
,3

0
4

X
7
4
9
2
9

5
4
,6

4
4
,7

6
5

H
N

R
P

A
1

5
7
,7

0
7
,7

4
4

X
7
8
1
3
6

5
6
,6

7
3
,7

9
8

X
7
9
5
3
6

5
7
,7

0
2
,9

4
1

K
R

T
8

5
4
,6

3
4
,1

7
0

K
R

T
7

5
5
,9

3
1
,4

7
0

X
1
2
8
7
6

5
4
,7

2
3
,9

6
1

M
2
2
3
8
2

5
9
,9

2
8
,4

7
1

X
0
6
2
5
6

5
7
,8

2
4
,7

0
3

M
1
9
4
8
3

6
0
,0

5
0
,9

1
3

H
s
.1

9
9
0
6
7

5
9
,4

6
3
,4

3
8

K
R

T
1
8

5
4
,7

2
7
,6

1
8

K
R

T
5

5
6
,2

7
2
,8

7
3

H
s
.2

3
8
8
1

5
5
,9

3
1
,4

7
0

P
2
3

6
0
,1

2
3
,7

6
2

U
4
8
7
0
7

5
8
,0

0
9
,5

9
4

X
9
4
7
5
4

6
2
,5

8
5
,1

0
9

E
R

B
B

3
5
9
,4

8
6
,7

9
4

H
s
.5

1
8
1

5
9
,5

1
6
,0

5
6

M
3
4
3
0
9

5
9
,4

6
3
,4

3
8

M
2
2
9
1
9

5
9
,3

6
8
,8

9
3

U
3
7
0
2
2

6
2
,7

7
7
,3

0
7

H
s
.2

5
6
0
,0

5
0
,9

1
3

X
7
0
9
9
1

6
0
,7

7
3
,5

7
4

U
4
1
6
3
5

6
2
,8

0
4
,2

4
8

D
7
9
9
8
9

6
2
,7

8
3
,6

4
3

1
7
q

2
1

U
8
1
5
9
9

4
7
,8

6
8
,4

8
2

H
s
.1

5
6
3
4
6

4
1
,0

3
2
,4

9
1

H
S

D
1
7
B

1
4
1
,9

5
0
,8

8
9

G
R

B
7

3
8
,7

7
4
,5

5
7

Y
0
0
5
0
3

3
9
,7

3
4
,7

3
8

X
6
4
3
3
0

4
1
,3

3
5
,1

6
9

X
5
5
9
5
4

3
7
,7

9
2
,0

3
8

D
1
3
1
1
8

4
8
,0

3
8
,1

1
3

D
1
2
7
6
5

4
3
,7

9
6
,4

5
5

E
R

B
B

2
3
8
,8

2
0
,7

2
5

L
4
7
2
7
6

4
1
,0

3
2
,4

9
1

L
3
8
9
5
1

4
4
,6

7
8
,6

1
0

X
7
2
6
3
2

3
9
,4

7
8
,7

5
1

S
8
5
6
5
5

4
8
,5

7
2
,1

3
9

K
R

T
1
3

3
9
,7

5
7
,4

1
7

X
1
7
6
2
0

5
0
,3

1
1
,0

7
2

X
9
0
7
6
3

3
9
,7

8
1
,5

9
8

D
8
7
9
8
9

4
8
,8

6
9
,4

4
1

H
s
.6

9
5
6
3

4
0
,9

2
7
,7

3
8

L
4
7
2
7
6

4
1
,0

3
2
,4

9
1

X
1
7
6
2
0

5
0
,3

1
1
,0

7
2

H
s
.1

5
6
3
4
6

4
1
,0

3
2
,4

9
1

J
0
4
0
8
8

4
1
,0

3
2
,4

9
1

H
s
.1

1
8
6
3
8

5
0
,3

1
1
,0

7
2

L
1
9
5
2
7

U
1
8
0
1
8

4
2
,4

2
3
,4

9
9

4
3
,7

9
6
,4

5
5

X
8
2
8
9
5

4
4
,0

9
6
,2

0
5

1
7
q

2
3

–
q

2
5

X
8
1
7
8
8

7
5
,4

3
2
,5

5
5

S
O

X
9

7
2
,3

3
4
,1

4
8

H
s
.1

0
5
0
9
0
7

7
8
,2

3
1
,4

9
4

Z
4
6
6
2
9

7
2
,3

3
4
,1

4
8

M
1
5
2
0
5

7
8
,2

3
1
,4

9
4

S
Y

N
G

R
2

7
8
,2

4
5
,8

5
0

IT
G

B
4

7
6
,1

1
5
,9

9
0

J
0
2
7
8
3

8
1
,7

2
7
,7

3
4

X
8
1
7
8
8

7
5
,4

3
2
,5

5
5

M
3
2
3
0
4

7
9
,2

1
7
,6

8
7

H
s
.7

9
3
3
9

7
9
,5

5
5
,9

2
7

P
4
H

B
8
1
,7

2
7
,8

7
9

H
s
.1

5
7
8

7
8
,4

3
8
,0

0
0

M
7
7
8
3
6

8
1
,7

5
0
,6

3
3

D
9
0
2
0
9

7
6
,6

4
4
,0

8
2

D
2
1
8
5
3

8
0
,4

6
4
,0

3
3

P
Y

C
R

1
8
1
,7

5
0
,6

3
3

M
3
2
3
0
4

7
9
,2

1
7
,6

8
7

U
3
0
8
9
4

8
0
,5

6
5
,1

5
1

M
7
7
8
3
6

8
1
,7

5
0
,1

6
1

M
7
7
8
3
6

8
1
,7

5
0
,1

6
1

1
9
p

1
3

U
7
5
3
7
0

1
,1

8
6
,0

7
1

H
s
.2

4
8
7
9

9
9
1
,8

2
1

U
Q

C
R

4
6
9
,8

2
8

M
6
3
9
0
4

2
,0

2
6
,7

4
5

U
4
9
0
7
0

9
,8

1
8
,5

7
5

H
s
.1

6
8
3
8
3

1
0
,2

1
4
,4

1
0

A
T

P
5
D

8
2
4
,1

9
7

H
s
.7

6
0
8
4

7
,1

2
4
,1

3
6

X
1
2
4
9
2

4
,0

0
3
,9

4
3

X
6
9
8
1
9

1
0
,3

2
0
,1

7
9

H
s
.1

1
0
8
3
7

1
1
,1

0
5
,9

3
7

H
s
.7

7
4
6
2

1
0
,1

1
5
,0

0
2

X
6
3
6
9
2

1
0
,1

1
5
,0

5
9

U
4
0
3
4
3

1
0
,5

5
3
,7

8
3

D
5
0
9
2
2

1
0
,4

7
3
,4

5
4

J
0
4
4
3
0

1
3
,7

3
9
,0

6
5

C
N

N
1

1
3
,7

0
3
,2

5
3

X
8
1
4
7
9

1
2
,0

5
6
,4

6
3

Z
5
0
8
5
3

1
0
,9

1
4
,8

6
2

H
s
.2

5
2
9
2

1
4
,5

6
3
,1

1
6

K
0
2
7
6
5

1
1
,8

2
1
,7

6
6

U
2
0
7
3
4

1
4
,5

4
8
,0

1
0

U
4
1
8
0
4

1
2
,9

9
4
,3

5
4

H
s
.3

1
0
7

1
5
,9

3
6
,5

7
2

H
s
.7

8
2
0
2

1
3
,1

2
3
,0

2
3

X
5
1
3
4
5

1
4
,5

4
8
,0

1
0

M
6
0
4
5
9

1
3
,5

3
8
,7

1
2

H
s
.1

1
8
1
1
0

1
9
,4

1
2
,7

9
5

H
s
.1

8
0
4
5
5

1
4
,7

0
2
,4

3
2

U
7
6
7
6
4

1
5
,9

3
6
,5

7
2

U
0
7
4
2
4

1
4
,6

7
9
,0

0
5

U
9
0
4
2
6

1
5
,9

6
3
,9

4
0

U
9
0
4
2
6

1
5
,9

6
3
,9

4
0

U
3
3
0
5
3

1
5
,9

8
8
,5

7
8

U
6
1
2
6
3

1
7
,0

7
6
,5

4
7

U
3
3
0
5
3

1
5
,9

8
8
,5

7
8

M
IC

-1
2
0
,6

1
0
,7

3
0

X
1
2
7
9
4

1
8
,8

6
5
,6

4
8

X
7
9
4
3
9

1
7
,0

0
1
,2

3
9

L
3
7
0
3
3

2
0
,7

8
6
,0

1
3

X
q

2
8

U
3
6
3
4
1

1
3
2
,4

1
6
,3

8
9

Z
6
9
0
4
3

1
3
2
,5

2
3
,0

9
2

L
2
2
2
0
6

1
3
2
,6

3
3
,3

6
7

Z
6
9
0
4
3

1
3
2
,5

2
3
,0

9
2

X
7
8
8
1
7

1
3
2
,6

3
5
,8

2
8

X
5
3
4
1
6

1
3
2
,9

6
5
,7

0
2

X
7
7
5
8
8

1
3
2
,6

5
8
,3

7
7

H
s
.3

1
0
9

1
3
2
,6

3
5
,8

2
8

H
s
.1

8
2
0
1
8

1
3
2
,7

3
8
,9

5
7

X
1
2
4
5
8

1
3
3
,1

0
4
,3

8
1

X
7
9
3
5
3

1
3
3
,0

5
4
,2

5
7

H
s
.1

8
2
1
2

1
3
3
,0

9
4
,8

5
9

X
q

2
8

D
8
3
2
6
0

1
3
3
,0

6
1
,2

4
2

H
s
.8

7
2
2
5

1
3
3
,2

2
8
,5

0
7

X
9
2
8
9
6

1
3
3
,0

9
4
,8

5
9

L
1
8
9
2
0

1
3
8
,2

9
7
,6

5
7

H
s
.3

6
9
8
0

1
3
8
,2

9
7
,6

5
7

L
1
8
8
7
7

1
3
8
,3

1
1
,8

9
2

H
s
.1

6
9
2
4
6

1
3
8
,3

1
1
,8

9
2

U
0
3
7
3
5

1
3
8
,3

4
7
,2

0
0

H
s
.3

6
9
7
8

1
3
8
,3

4
7
,2

0
0

M
7
7
4
8
1

1
3
8
,7

0
2
,8

4
5

U
4
7
1
0
5

1
3
8
,4

1
1
,4

8
9

X
9
2
3
9
6

1
4
1
,6

4
1
,4

8
9

U
4
6
0
2
3

1
4
0
,4

6
6
,9

9
1

M
3
4
6
7
7

1
4
2
,0

2
0
,3

7
6

T
h
e

g
e
n
e
s

w
ith

in
c
re

a
s
e
d

m
R

N
A

a
b
u
n
d
a
n
c
e

le
v
e
ls

in
h
u
m

a
n

p
ro

s
ta

te
,
b
re

a
s
t,

o
v
a
ri
a
n
,
a
n
d

c
o
lo

n
c
a
n
c
e
rs

a
s

w
e
ll

a
s

g
e
n
e
s

in
d
u
c
e
d

d
u
ri
n
g

th
e

h
u
m

a
n

c
e
ll

c
y
cl

e
w

e
re

id
e
n
tif

ie
d

a
s

d
e
s
c
ri
b
e
d

in
th

e
le

g
e
n
d

to
F

ig
u
re

3
.
R

H
m

a
p
p
in

g

d
a
ta

fo
r

e
a
c
h

in
d
iv

id
u
a
l

g
e
n
e

w
e
re

re
tr

ie
v
e
d

u
s
in

g
th

e
L
o
c
u
s
L
in

k
d
a
ta

b
a
s
e

a
n
d

u
til

iz
e
d

to
id

e
n
tif

y
c
o
m

m
o
n

m
a
lig

n
a
n
c
y
-a

s
s
o
c
ia

te
d

c
h
ro

m
o
s
o
m

a
l

re
g
io

n
s

o
f

tr
a
n
s
c
ri
p
tio

n
a
l

a
c
tiv

a
tio

n
s
.

T
h
e

g
e
n
e
s

c
o
m

m
o
n
ly

in
d
u
c
e
d

in
h
u
m

a
n

c
a
n
c
e
r

a
n
d

d
u
ri
n
g

th
e

h
u
m

a
n

c
e
ll

c
y
c
le

a
re

in
b
o
ld

.

222 Cancer-Associated Transcriptomeres Glinsky et al.

Neoplasia . Vol. 5, No. 3, 2003



mRNA abundance levels, which appear to be significantly

associated with the prostate cancer phenotype in PC3/

LNCaP model systems of human prostate cancer. The

Affymetrix GeneChip gene expression analysis software

identifies in any given comparison of two chips only genes

that are determined to be expressed at the levels of

difference in the expression values determined to be

statistically significant ( P<.05). These transcripts are

Figure 3. Profiles of the chromosomal distribution of human breast cancer –associated transcripts (a), dsRNA-induced genes (b), and cell cycle-activated genes

(c) residing on chromosome 17. A total of 132 estrogen receptor-negative breast cancer– associated transcripts was obtained from Ref. [5] by combining the lists of

genes comprising basal epithelial cell clusters 1 and 2, Erb-B2 overexpression cluster, and a proliferative cluster. A total of 144 ovarian cancer –associated

transcripts was derived from Ref. [6] as a sum of the top 100 biomarker genes, proliferative and tumor clusters. The redundant entries were eliminated from the final

gene lists. A total of 165 prostate cancer– associated transcripts was identified by comparing gene expression profiles of two human prostate carcinoma cell lines

(PC3MLN4 and LNCaPLN3) to the gene expression pattern of cultured normal human prostate epithelial cells using the Affymetrix GeneChip system. A concordant

set of 165 genes upregulated in cancer cell lines was generated utilizing the Affymetrix software for pairwise comparisons of duplicate cancer mRNA samples from

each cell line versus a triplicate normal mRNA samples derived from two different normal prostate epithelial cell lines. Thus, each differentially expressed gene was

required to be called in the same direction in 12 pairwise comparisons. The list of 378 genes comprising the human cell cycle transcriptome was obtained from Ref.

[19]. The list of the dsRNA-induced genes was derived from Ref. [20]. RH mapping data were retrieved using the LocusLink database and utilized to generate the

chromosome-specific map of gene distribution. One unit value on the Y-axis corresponds to a single gene with a placement resolution of 1 Mb along the length of

the chromosome. The complete lists of genes and RH mapping data are presented in the supplement (Tables 1S – 8S).
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called differentially expressed. To be included in our final

differentially regulated gene class, the given transcript was

required to be determined differentially regulated in the

same direction (up or down) at the statistically significant

levels ( P<.05) in 12 independent comparisons (2 exper-

imental cell lines�2 experimental conditions�3 control cell

lines). Despite that an identified set of 165 upregulated

genes has been differentially expressed in described

experimental systems with an extremely high level of

confidence, we carried out Q-PCR confirmation analysis

for a subset of identified genes and confirmed their differ-

ential expression in all instances using an additional

independent normal human prostate epithelial cell line as

a control.

Quality Performance Criteria Adopted for the Affymetrix

GeneChip System and Applied in This Study

Forty to 50% of the surveyed genes were called present

by the Affymetrix software in these experiments. This is at

the high end of the required standard adopted in many

peer-reviewed publications using the same experimental

system. Transcripts that are called present by the Affyme-

trix software in any given experiment were determined to

have the signal intensities higher in the PM probe sets

Figure 3. (continued)

Figure 4. Cancer-associated transcriptomeres located on chromosome 11 correspond well to the region of increased gene expression identified on human

chromosome 11 [4]. The experimental protocols are described in the legends to Figures 1 –3 and in the Materials and Methods section. The distribution of regions

of increased gene expression and gene density along human chromosome 11 are shown in the box and originally described in Ref. [4].
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compared to single-nucleotide MM probe sets and back-

ground at the statistically significant level. This analysis

was performed for each individual transcript using a unique

set of 20 PM probes vs 20 single nucleotide MM probes. In

our final list of 165 genes, all transcripts were called

present in at least one experimental setting.

The inclusion error associated with two mRNA samples

from identical cell lines was 2.7% for a difference called by

the Affymetrix software. Thus, two independently obtained

mRNA from the same cell lines will have 2.7% false pos-

itives. When a third independently derived epithelial cell line

was included, only 4 (0.06%) of 7129 genes were called

differentially expressed. The expression profiles of the NPE

cell lines used in our experiments were determined to be

indistinguishable. Therefore, controls are not likely sources

of errors in gene expression analysis performed in this study.

This is particularly important because the strategy adopted in

this study is based on the idea that expression differences

will not be called statistically significant by chance in the

same direction in multiple arrays and during multiple inde-

pendent comparisons of different phenotypes and variable

experimental conditions. To impose additional stringent

restrictions on the possibility of a gene to be detected as

concordantly differentially regulated by chance, we apply the

use of multiple experimental models and vastly variable

experimental settings such as in vitro and in vivo growth

and varying growth conditions. A similar strategy for the

identification of consistent gene expression changes based

on a concordant behavior of the differentially regulated

genes using the Affymetrix GeneChip system and software

was applied and validated in several peer-reviewed pub-

lished papers (e.g., see Refs. [17,18]). We applied more

stringent criteria in our study, requiring a concordance in at

least 12 of 12 experiments compared to six of six compar-

isons in Ref. [17] and four of six comparisons in Ref. [18].

Ishida et al. [18] provided a formal statistical justification that

four or more concordant calls out of six comparisons cannot

be explained by chance, with the probability in the range

of 10�4.

Calculation of a Clustering Effect

For every member of individual sets of genes with

increased mRNA abundance levels, we identified the pre-

cise chromosomal position by retrieving the RH mapping

data using the LocusLink database (http://www.ncbi.nlm.

nih.gov). Within each gene set for all combinations of the

three nearest neighbors distributed along the length of the

individual chromosomes, we calculated the average dis-

tance between three nearest neighboring genes (the exper-

imental clustering distance). A clustering effect analysis

was performed for each individual data set (set of tran-

scripts differentially regulated in the prostate cancer cell

lines as well as sets of transcripts identified in published

papers for corresponding type of human cancer, human

cell cycle, p53 response, and dsRNA response). As a first

step of this analysis, we identified a precise chromosomal

position (in Mb) for every gene listed in individual data

sets. We were able to calculate the average distance

between three nearest neighbors only for genes with

chromosomal position defined in Mb. Typically, the fraction

of genes with chromosomal positions defined with this

precision constitutes f65% to 80% of total genes included

in data sets based on a gene expression analysis. To

account for random pseudo-clustering effect, we performed

a similar analysis for a randomly selected set of 165 genes

from the list of 7129 transcripts comprising Affymetrix

Hu6800 probe set (the random gene set). To determine

the expected random density of gene distribution, we

calculated the average distance between three nearest

neighbors within a random gene set from a total of 102

individual measurements (the average random clustering

distance). The clustering effect in the experimental data set

was calculated as a ratio of the average random clustering

distance to the individual measurements of the experimen-

tal clustering distance within a given class of differentially

regulated transcripts. To account for the effect of random

chromosomal distribution of transcripts present on the

array, we generated two independent random lists of

genes derived from genes present on the array. We utilize

one random gene list as a control set to generate the

expected density of transcript distribution and a second

random gene list was used as mock experimental tran-

script set. The cutoff value for the identification of the

transcription activation clusters in the experimental data

sets was set to exceed the expected random density of

gene distribution by at least 10-fold. A higher ratio due to a

shorter experimental clustering distance was interpreted as

a more significant clustering effect. The random distribution

of the individual clustering distances was obtained by

performing a similar analysis for the second random gene

set (a total of 105 individual measurements). There were

no random pseudo-clusters exceeding the cutoff value that

was set for the identification of the transcription activation

clusters. The data were plotted for genome-wide visual-

ization of distribution of transcription activation clusters

(Figure 2 and Figures 1S–7S, Supplement).

Q-PCR Confirmation Analysis of the Differentially Regulated

Genes

To confirm the differential regulation of the transcripts

comprising a PC3/LNCaP consensus class using an inde-

pendent method, a sample of 14 genes (12 upregulated and

2 downregulated genes) was tested using Q-PCR (quantita-

tive polymerase chain reaction) on an ABI7900 according to

the vendor’s recommended protocols (http://www.applied-

biosystems.com/support/tutorials/). This PCR experiment

used a further new batch of RNA from a third normal human

prostate epithelial cell line and human transcript–specific

pairs of PCR primers. In addition, for seven genes (two

upregulated, three downregulated, and two controls), we

carried out a semiquantitative reverse transcription (RT)

PCR confirmation analysis (Figure 1 and data not shown).

For confirmation of array results, RNA expression levels

were quantified by semiquantitative PCR. An amount of 0.5

Ag of total RNA from NPE cells or prostate tumor cells was

reverse-transcribed into cDNA using Superscript II RNase
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H� Reverse Transcriptase Kit (Invitrogen) according to the

manufacturer’s instructions. Semiquantitative PCR primer

sequences were selected for each cDNA with the aid of

commercial software: chromosome 18—oligo 3 (CYB5) for-

ward: 5V AAA TTA CAC ATT AAG GAA ACA TCA A 3V,

reverse: 5V GAA GAG CCT GCT TTG GAC AC 3V, product

size: 216 bp; oligo 4 (maspin) forward: 5V AGA CATT CTC

GCT TCC CT 3V, reverse: 5V AAT TTT GAC CCC TTA TGG

GC 3V, product size: 333 bp; oligo 5 (serpin B3) forward: 5V

CAG ATG TTC TGG TAA ACT GAT TGC 3V, reverse: 5V AAA

GAA ATG TGT GTT TCT AGG TTG C 3V, product size: 330

bp; oligo 8 (serpin B2) forward: 5V TGCTCT TCT GAA CAA

CTT CTG C 3V, reverse: 5V ATA GAA GGG CAT GGA GGG

AT 3V, product size: 339 bp; chromosome X—oligo 12 (mage

A12) forward: 5V GGT GGA AGT GGT CCG CAT CG 3V,

reverse: 5V GCC CTC CAC TGA TCT TTA GCA A 3V, product

size: 392 bp; oligo 13 (SYBL1) forward: 5V GCA ATC CAT

GTG ACT CAA G 3V, reverse: 5V GCA ATG AAT GGT TCA

ATC TG 3V, product size: 161 bp; oligo 14 (mage A3) forward:

5VTGA GTC TGA GCA CGA GTT GC 3V, reverse: 5VTTA AAA

GGA ACA TTT GAA CAA CTC C 3V, product size: 224 bp.

PCR reactions were performed with HotStarTaq DNA

Polymerase Kit (Qiagen, Valencia, CA) according to the

manufacturer’s instruction. An amount of 1 Al of RT product

was amplified by using 1.25 U of polymerase in a final

volume of 50 Al containing 1.5 mM MgCl2, 0.2 mM dNTP,

and 0.3 AM of each primer. The polymerase was activated

by incubation at 95jC for 15 minutes, and the reactions

were cycled 30 to 40 times at 95jC for 30 seconds, 56jC

for 30 seconds (chromosome 18) or 57jC for 30 seconds

(chromosome X), and 72 for 40 seconds, followed by a final

extension at 72jC for 7 minutes. PCR products at cycle 30,

35, or 40 were analyzed by electrophoresis through 2%

agarose gels containing ethidium bromide.

Results and Discussion

To define precise chromosomal positions of the genes over-

expressed in human prostate, breast, ovarian, and colon

cancers, we retrieved the radiation hybrid (RH) mapping data

of the individual genes using the LocusLink database (http://

www.ncbi.nlm.nih.gov). Our initial analysis was focused

on 165 genes overexpressed in vitro in two highly metas-

tatic human prostate carcinoma cell lines PC3MLN4 and

LNCaPLN3 compared to normal human prostate epithelial

cells (see Table 1S, Supplement for a complete gene list).

Genome-wide visualization of the chromosomal positions of

the 165 genes of PC3LN4/LNCaPLN3 consensus set

appears to indicate a clustering pattern of chromosomal

distribution of the UniGene and Gene Bank hits correspond-

ing to these genes (Figure 2a). To test this assumption, we

calculated a clustering effect within an experimental gene

set compared to a random gene set selected from the list of

genes subjected to a gene expression analysis. Interest-

ingly, we found that, in contrast to a random gene set, a

significant fraction (f40%) of the upregulated human pros-

tate cancer–associated genes appears to reside in small

continuous chromosomal regions comprising dense tran-

scriptional islands of at least three coregulated genes and

exceeding the expected random density of gene distribution

by at least 10-fold and often >100-fold (Figures 2, b–d and

Tables 1S and 9S, Supplement). We propose to call these

discrete continuous transcriptional islands of coregulated

genes the transcriptomeres. We performed clustering effect

analysis for genes upregulated in human tumors from

patients with breast [5], ovarian [6], colon [7], and prostate

[8] cancers and found that genes with increased transcript

abundance levels exhibited a similar clustering pattern of

chromosomal distribution (Figures 1S–3S, and Tables 2S–

4S, Supplement). Remarkably, when we compared the

results of an independent analysis of the chromosomal

distribution of the cancer-associated genes identified by

the global gene expression monitoring of the human pros-

tate cancer cell lines as well as clinical samples of breast

[5], ovarian [6], colon [7], and prostate [8] tumors, we found

that there are several shared chromosomal regions that

appear to be commonly targeted for transcriptional activa-

tion in different types of human cancer (Table 2). It should

be pointed out, however, that a majority of the cancer-

associated transcriptomeres appear to be nonoverlapping

and, thus, cancer type –specific (Figures 1S– 3S and

Tables 1S–4S, Supplement).

Next we attempted to determine whether a gene expres-

sion profile characteristic of a physiological but highly rele-

vant to cancer process such as cell cycle would exhibit a

similar discrete nonrandom pattern of chromosomal distribu-

tion. Using the LocusLink database, we retrieved the RH

mapping data of the 378 genes comprising the human cell

cycle transcriptome [19]. We found that coordinate transcrip-

tional regulation of gene expression during human cell cycle

seems to occur in a nonrandom fashion from discrete con-

tinuous chromosomal regions, suggesting an epigenetic

regulatory nature of this phenomenon (Figures 4S and 5S

and Table 5S, Supplement). Furthermore, several of the

common MARTAs appear to be closely related to the human

cell cycle – associated transcriptomeres (Table 2 and

Figure 3, a and c; Tables 1S–5S, Supplement).

Lastly, we thought to analyze whether a transcriptional

response to the activation of certain signaling pathways, such

as double-stranded (ds) RNA-triggered signaling [20] or p53-

dependent transcription [21], would exhibit a nonrandom

pattern of chromosomal distribution. dsRNA is thought to be

the primary viral gene product that causes induction of type I

interferon synthesis and interferon production by virus-

infected cells. Activation of the interferon-inducible gene

cluster was consistently found in the clinical cancer samples

[5–7]. We analyzed the RH mapping data for genes activated

in the type I interferon locus-deficient GRE cells in response

to the dsRNA treatment [20]. We found that dsRNA-induced

genes are distributed along human chromosomes in a non-

random fashion with the multiple clusters of transcriptionally

activated genes positioned at chromosomes 1, 2, 3, 4, 6, 7,

10, 12, 13, 14, 17, 19, and 20 (Figures 6S and Table 6S,

Supplement). Interestingly, one of the dsRNA response

clusters on chromosome 17 appears to be closely related to

the breast cancer–associated and cell cycle–associated
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transcriptomeres on chromosome 17 (Figure 3, a and b),

suggesting a potential overlap of corresponding transcription

activation pathways. Consistent with this hypothesis, several

others cancer type–specific transcriptomeres have overlap-

ping chromosomal positions with the dsRNA response clus-

ters (Figures 1S–6S and Tables 1S–6S, Supplement).

The p53-regulated genes [21] seem to exhibit a cluster-

ing pattern of chromosomal distribution represented by

multiple transcriptional islands at chromosomes 1, 6, 10,

12, 16, 17, 19, and 22 (Figures 7S and Table 7S, Supple-

ment). Two of the common cancer-associated transcripto-

meres (12q13, 52–63 Mbp; 17q21, 38–50 Mbp) appear to

overlap with the corresponding p53-regulated transcriptional

islands. Several others cancer type–specific transcripto-

meres demonstrated similar overlapping positional patterns

with the p53-regulated genes (Tables 1S–8S, Supplement),

suggesting a mechanism of consistent recurrent transcrip-

tional targeting in multiple human cancers of p53-regulated

chromosomal regions.

A recently generated human transcriptome map revealed

an apparent clustering of highly expressed genes in 12

normal and pathological tissue types to specific chromoso-

mal domains called regions of increased gene expression,

RIDGES [4]. As described here, clustering of cancer-asso-

ciated genes to the discrete regions of chromosomes may be

related to the specific RIDGES, implying that selected chro-

mosomal domains of increased gene expression are prefer-

ential targets for transcriptional activation in human cancer

cells (Figure 4).

The stated goal of a systematic analysis of chromosomal

positions of cancer-associated genes was achieved by per-

forming such analysis for the transcripts that were previously

defined as being cancer-associated in published peer-

reviewed papers [5–8] as well as for a set of 165 upregulated

transcripts in xenograft-derived human prostate cancer cell

lines (this study). Our results imply that at least some of the

transcripts defined previously as tumor-associated may in

fact be the bystanders of the enhanced transcriptional read-

outs reflecting the increased proportion of cycling cells in

tumors and/or activation of the p53 response pathway. Our

analysis argues that without follow-up experiments, the dis-

tinction between so-called cancer-associated and prolifera-

tive transcripts is ambiguous at least for some genes

(particularly those that are located in the chromosomal

regions targeted for transcriptional activation during the cell

cycle) and may indeed reflect the relative enrichment of

clinical tumor samples with actively proliferating cells. Alter-

natively, these regions may have been targeted for recurrent

transcriptional activation because they harbor important cell

cycle control and/or survival genes.

We do not intend to imply that the chromosomal regions

are more important than the genes that may be associated

with malignancy. We believe that specific chromosomal

regions were targeted for transcriptional activation precisely

because they harbor the important genes. However, the

transcriptional readout from the particular chromosomal

region is, in our opinion, less reliable and is a more variable

endpoint that could be influenced by many variables such

as transcript stability, assay sensitivity, experimental con-

ditions, sample handlings, etc. Identification of different over-

expressed transcripts derived from the same chromosomal

region in multiple pathological and experimental conditions

may indicate that cells maintain the accessibility of the region

for direct transcriptional regulation, thus implying its potential

significance. Therefore, gene-specific induction can be

easily achieved when growth and/or survival requirements

are in place. Identification of common chromosomal regions

of transcriptional activation would facilitate a detailed and

precise gene-by-gene analysis of these regions by employ-

ing the most sophisticated state-of-the-art approaches such

as high-resolution array-based CGH, Q-PCR–based analy-

sis, promoter methylation survey, and direct sequencing.

Our data do not necessarily imply that the mechanism of

transcriptional activation within identified chromosomal

regions is exclusively epigenetic. In fact, some of these

regions are within the boundaries of well-established can-

cer-associated amplicons (e.g., 17q21 and 17q23 for breast

cancer), suggesting that at least in some cancer cell lines

and/or subset of tumors, activation of the transcription in

these regions could be associated with DNA amplification.

However, during the cell cycle progression of normal cells

and in response to the p53 overexpression, the mechanisms

of transcriptional activation are most likely epigenetic. One of

our main conclusions is that these regions are commonly

targeted for transcriptional activation under a wide range of

pathological and experimental conditions suggesting their

potential relevance. Most likely, transcription activation effect

can be achieved by engaging either epigenetic mechanisms

(normal cells and some cancer cells) or DNA amplification

(cancer cells).

In summary, accumulation of cancer-associated tran-

scripts in the mRNA abundance space seems to occur from

the discrete continuous chromosomal regions comprising a

set of transcriptional islands of coregulated physically adja-

cent genes (the transcriptomeres). Most of the cancer-

associated transcriptomeres appear to exhibit a cancer

type–specific pattern of chromosomal distribution. How-

ever, several of the MARTAs exhibited a recurrent over-

lapping pattern of chromosomal distribution in human

prostate, breast, ovarian, and colon cancers, suggesting a

mechanism of preferential targeting for transcriptional acti-

vation in multiple types of human cancer of the selected

chromosomal regions.
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