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Her2�neu (Her2) is a tyrosine kinase belonging to the EGF receptor
(EGFR)�ErbB family and is overexpressed in 20–30% of human
breast cancers. We sought to characterize Her2 signal transduction
pathways further by using MS-based quantitative proteomics.
Stably transfected cell lines overexpressing Her2 or empty vector
were generated, and the effect of an EGFR and Her2 selective
tyrosine kinase inhibitor, PD168393, on these cells was character-
ized. Quantitative measurements were obtained on 462 proteins
by using the SILAC (stable isotope labeling with amino acids in cell
culture) method to monitor three conditions simultaneously. Of
these proteins, 198 showed a significant increase in tyrosine
phosphorylation in Her2-overexpressing cells, and 81 showed a
significant decrease in phosphorylation. Treatment of Her2-over-
expressing cells with PD168393 showed rapid reversibility of the
majority of the Her2-triggered phosphorylation events. Phospho-
proteins that were identified included many known Her2 signaling
molecules as well as known EGFR signaling proteins that had not
been previously linked to Her2, such as Stat1, Dok1, and �-catenin.
Importantly, several previously uncharacterized Her2 signaling
proteins were identified, including Axl tyrosine kinase, the adaptor
protein Fyb, and the calcium-binding protein Pdcd-6�Alg-2. We also
identified a phosphorylation site in Her2, Y877, which is located in
the activation loop of the kinase domain, is distinct from the
known C-terminal tail autophosphorylation sites, and may have
important implications for regulation of Her2 signaling. Network
modeling, which combined phosphoproteomic results with litera-
ture-curated protein–protein interaction data, was used to sug-
gest roles for some of the previously unidentified Her2 signaling
proteins.
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tyrosine kinase inhibitors

Her2�neu (Her2) is a receptor tyrosine kinase belonging to the
EGF receptor (EGFR)�ErbB family (1). Her2 is distinguished

from other members of this family, EGFR, Her3, and Her4, by its
lack of a known ligand. Under normal physiologic conditions, Her2
heterodimerizes with other ErbB family members after that family
member binds its ligand. Overexpression of Her2 results in consti-
tutive, ligand-independent activation of tyrosine kinase signaling
and is found in 20–30% of human breast cancers, where it is
associated with a more aggressive course and poorer prognosis (2).
Targeting Her2 with a monoclonal antibody, trastuzumab, is an
effective therapy for Her2-positive breast cancer, but relapse or
resistance to trastuzumab occurs, and clinical trials of tyrosine
kinase inhibitors (TKIs) and other antibodies are under way to
determine the best treatment for such patients (3). Like EGFR,
Her2 recruits and activates multiple signaling proteins, including
phospholipase C �1 (PLC�1), phosphatidylinositol 3-kinase
(PI3K), Shc-Grb2-SOS, RasGAP, and Stat (signal transducer and
activator of transcription) 5 (1). This recruitment occurs by means
of autophosphorylation sites in the C-terminal tail of the molecule.
Detailed biochemical, proteomic, and modeling studies of the
EGFR signaling pathways have demonstrated a highly complex

signaling network, and Her2 is likely also to use a similarly complex
network to mediate cell proliferation and transformation (4–6).
Further knowledge of the Her2 signaling network could potentially
identify drug targets or approaches to treat trastuzumab resistance.

MS-based quantitative proteomics is a valuable tool for charac-
terizing signaling pathways and generally utilizes stable isotopes to
label cellular proteins. Stable isotopes are incorporated either by
metabolic labeling, as in the SILAC (stable isotope labeling with
amino acids in cell culture) method, or by chemical derivatization
(7). By these methods, 113 tyrosine-phosphorylated proteins in-
volved in EGF and platelet-derived growth factor signaling in
mesenchymal stem cells and 78 EGF-induced phosphorylation
events in a breast cell line have been quantified (4, 5). Here, we
describe a quantitative proteomic analysis of Her2 signaling by
using SILAC. We identified multiple previously unrecognized Her2
signaling proteins and observed activation loop phosphorylation in
the kinase domain of Her2. Proteomic measurements were com-
bined with literature-curated protein–protein interaction (PPI)
data to suggest roles for some of the previously unidentified Her2
signaling proteins.

Results
Her2 Transfectants and PD168393 Dose Response. NIH 3T3 cells were
stably transfected with Her2 cDNA or empty vector construct. 3T3
cells were used because they have low basal levels of ErbB family
members and are a classical model for studying Her2 signaling (8).
The resulting 3T3-Her2 cells had high levels of Her2 expression and
displayed a transformed morphology (Fig. 7, which is published as
supporting information on the PNAS web site), consistent with
prior reports (8). As expected, intense tyrosine phosphorylation of
multiple proteins was seen in 3T3-Her2 cells, indicating constitutive
activation of Her2 signaling (Fig. 1A). PD168393 is a Her2 and
EGFR selective TKI, with a reported IC50 of 5 nM in heregulin-
treated MDA-MB-453 breast cancer cells (9). Treatment of 3T3-
Her2 cells with PD168393 showed rapid and potent inhibition of
Her2-induced tyrosine phosphorylation with half-maximal inhibi-
tion at �100 nM and substantial inhibition at 10 min after drug
addition (Fig. 1 B and C). In contrast, 1 �M gefitinib, an EGFR
selective TKI, showed minimal effect on tyrosine phosphorylation
in 3T3-Her2 cells (Fig. 1B). For subsequent experiments, 100 nM
PD168393 for 60 min was chosen, because this dose was expected
to reduce nonspecific effects by the inhibitor and still allow detec-
tion of peaks for MS quantitation.

MS with SILAC. The SILAC protocol was performed (Fig. 2A) with
normal arginine (light Arg), 13C6-Arg (medium Arg, �6-Da shift),
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and 13C6
15N4-Arg (heavy Arg, �10-Da shift) as the stable isotope

label (6, 10, 11). Cell lysates were combined, and phosphotyrosine-
containing proteins were purified by using anti-phosphotyrosine
antibodies. Phosphoproteins were separated by SDS�PAGE, visu-
alized by silver staining, digested with trypsin, and subjected to
liquid chromatography–tandem MS. Peptide sequence was ob-
tained from the MS�MS spectra, and phosphorylation was quan-
tified from the relative intensities of the light, medium, and heavy
Arg-labeled tryptic peptides in the MS spectra (10). For example,
the Her2 peptide, ITDFGLAR, showed a 24-fold difference in the
intensity of the heavy Arg and light Arg peaks and a 4-fold
difference in the intensity of the heavy Arg and medium Arg peaks
(Fig. 2B Upper). This finding implies that there is a 24-fold increase
in phosphorylated Her2 in 3T3-Her2 cells and 4-fold inhibition of
Her2 phosphorylation by 100 nM PD168393. Because tryptic
digestion is performed after pull-down with anti-phosphotyrosine
antibodies, the ratios of any Arg-labeled peptide can provide
information on the tyrosine phosphorylation level of the protein
(6, 11, 12).

By using SILAC, 462 proteins were identified and quantified. In
total, 4,000 peptide mass spectra were used to identify proteins, and,
of these, 33% contained Arg and provided data for quantification.
On average, proteins were identified by 8.6 peptides and quantified
by 2.9 peptides. Four major patterns of change in protein phos-
phorylation were seen with Her2 transfection and PD168393
treatment (Fig. 2C). Like Her2, the adaptor protein Dok1 showed
increased phosphorylation in 3T3-Her2 cells and inhibition of
phosphorylation by PD168393. Another adaptor protein, Fyn-
binding protein (Fyb), showed increased phosphorylation in 3T3-
Her2 cells but no significant change in phosphorylation with
PD168393. Focal adhesion kinase (FAK) showed a decrease in the
3T3-Her2 cells, and Grb2 showed no significant changes in phos-
phorylation. This decrease in FAK was unexpected but is consistent
with observations that FAK and p130-Cas�BCAR1 are dephos-
phorylated in EGF-treated A431 cells (13). Grb2 is a well known
Her2 interacting protein, and although some studies suggest that it
can be phosphorylated, our results are consistent with the original
report on Grb2, which showed that Grb2 binds to, but is not
phosphorylated by, EGFR (14).

In 3T3-Her2 cells, 198 proteins showed significant (�1.5-fold)
increases in phosphorylation, and 81 proteins showed a significant
(�0.66-fold) decrease (Fig. 3A). As expected, the largest increase
in phosphorylation was seen in Her2 itself (Fig. 3A and Table 1).
The effect of PD168393 on all proteins was also quantified (Fig.
3B). Of those showing increased phosphorylation, 83 proteins were
inhibited �1.5-fold by 100 nM PD168393, and 27 proteins showed
a smaller degree of inhibition (1.3- to 1.5-fold), suggesting that 110
of these 198 proteins are affected by this TKI. Under these
conditions, 79 proteins were not affected by PD168393, including
Fyn and three subunits of PI3K (Table 1). This observation raises
the question of whether different arms of the Her2 signaling
pathway have differential inhibitor sensitivity. Of the 183 proteins
with no significant change with Her2 transfection, only 13 showed
a decrease in phosphorylation by 100 nM PD168393, suggesting
that, under these conditions, few nonspecific effects of the inhibitor
are seen.

Fig. 1. Effect of Her2 and PD168393 on protein tyrosine phosphorylation. (A)
Western blot with anti-phosphotyrosine antibody on lysates from 3T3-Her2 or
empty vector cells. (B) 3T3-Her2 cells treated for 1 h with PD168393, gefitinib,
or DMSO vehicle were blotted as in A. (C) 3T3-Her2 cells treated with 0.5 �M
PD168393 for the indicated times were blotted as in A.

Fig. 2. Schematic for SILAC and representative MS spectra. (A) Schematic for SILAC. (B) The MS and MS�MS spectra of a tryptic peptide derived from Her2.
Identified y- and b-ions are indicated. R** represents heavy Arg. (C) MS spectra showing the four major patterns of phosphorylation observed. Peptide sequences
are VGQAQDILR (Dok1), VAGQSSPSGIQSR (Fyb), FFEILSPVYR (FAK), and HDGAFLIR (Grb2).
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Her2 Signaling Proteins. The 198 proteins showing increased phos-
phorylation included several known Her2 signaling proteins and
modulators of signaling, such as PLC�1, regulatory and catalytic
subunits of PI3K (p85�, p85�, and p110�), Src family member Fyn,
RasGAP, and heat shock protein 90 (Table 1). Identification of
known Her2 signaling proteins provides proof of concept for this
approach. Several known EGFR signaling proteins, which had not
been previously implicated in Her2 signaling, were identified,
including Stat1, Dok1, and �-catenin. Importantly, many previously
unrecognized potential Her2 signaling proteins were identified,
including the receptor tyrosine kinase Axl, the adaptor proteins
SKAP55 homologue and Fyb, the small GTPases Rap1A and Rab
18, the calcium-binding protein apoptosis-linked gene 2�pro-
grammed cell death 6 (Pdcd-6�Alg-2), and the axonal guidance
protein semaphorin 7A (Table 1) (15, 16). The 81 phosphoproteins
that decreased in 3T3-Her2 cells include FAK, p130-Cas�BCAR1,
and caveolin 1. All quantified proteins and all Arg-containing
peptides that were identified are listed in Tables 2 and 3, which are
published as supporting information on the PNAS web site.

Confirmation of phosphorylation status for a subset of proteins
was performed by immunoprecipitation and Western blotting.
PLC�1, a known direct target of Her2 (1), was used as a positive
control and showed increased phosphorylation in the 3T3-Her2
cells as compared with empty vector cells (Fig. 4A). PLC�1
phosphorylation was inhibited by PD168393, and total PLC�1
protein levels were unaffected. Stat1 is an SH2 (Src homology 2)
domain-containing transcription factor that is phosphorylated in
response to cytokines and growth factors. EGFR has been shown
to activate STAT 1, 3, 5a, and 5b, whereas Her2 has thus far only

been shown to activate STAT 3 and 5b (17, 18). Analogous to
PLC�1, Stat1 is phosphorylated in 3T3-Her2 cells, and phosphor-
ylation is inhibited by PD168393 (Fig. 4A). The adaptor protein
Dok1 contains a phosphotyrosine-binding domain and binds
EGFR at residues pY1086 and pY1148 (19). �-Catenin is known to
be phosphorylated by EGFR and Src and forms a complex with
cadherins and �-, �-, and �-catenins, regulating cell adhesion (20).
Phosphorylation of both Dok1 and �-catenin in 3T3-Her2 cells and
inhibition by PD168393 was seen (Fig. 4A).

The phosphorylation status of two potential previously uniden-
tified Her2 signaling molecules was also examined by Western
blotting. The receptor tyrosine kinase Axl is expressed in multiple
cell types, including breast epithelial cells, and can transform NIH
3T3 cells by activating PI3K and Src (21, 22). As predicted by MS,
Axl phosphorylation was seen in 3T3-Her2 cells and inhibited by
PD168393. In contrast, based on the MS data, the adaptor protein
Fyb showed a different pattern, exhibiting increased phosphoryla-
tion in 3T3-Her2 cells, which was unaffected by PD168393 (Fig.
2C). Western blotting confirmed that Fyb is hyperphosphorylated
in 3T3-Her2 cells, but we also observed that the protein level of Fyb
was increased in 3T3-Her2 cells (Fig. 4A), possibly reflecting gene

Fig. 3. Quantification of phosphorylation by SILAC. (A) Summary of fold
change with Her2 for all 462 proteins, with several individual proteins high-
lighted. Proteins with a ratio �1.5 (upper red line) are considered as increased
in their tyrosine phosphorylation level, and those with ratios �0.66 (lower red
line) are considered as decreased in their tyrosine phosphorylation level. (B)
Effect of PD168393 on proteins that show increased phosphorylation, no
change, or decreased phosphorylation in 3T3-Her2 cells. The number of
proteins in each category is shown. Areas without numbers have fewer than
five proteins.

Table 1. Effect of Her2 overexpression and PD168393 treatment
on protein phosphorylation: A list of selected proteins

Protein name
Fold change
with Her2

Fold inhibition with
100 nM PD168393

Increased phosphorylation
Known Her2 signaling proteins

Her2�neu 24.5 3.1
HSP90-� 4.1 2.2
HSP90-� 3.0 1.7
PLC�1 2.6 2.0
PI3K p85-� 2.2 0.8
PI3K p85-� 1.9 1.1
PI3K p110-� 1.7 1.0
Fyn 1.7 0.8

Known EGFR signaling proteins
Dok1 4.2 2.0
RIN1 3.8 2.0
STAT1 3.5 1.6
�-Catenin 3.5 2.1
RAP1a 2.8 0.8
RhoGDI-� 2.2 0.7
Cortactin 2.1 1.1
p120-rasGAP 1.7 1.5

Previously unidentified Her2 signaling or effector proteins
Emerin 9.9 5.8
SKAP55 homologue 8.0 2.1
Fyn-binding protein (Fyb) 5.3 1.1
Semaphorin 7A 5.8 0.7
Transmembrane protein 33 4.0 1.6
17-� hydroxysteroid

dehydrogenase 12
3.8 1.9

RAB18 3.2 1.3
AxI receptor tyrosine kinase 2.8 1.4
RIKEN cDNA 2310079N02 2.6 2.2
Moesin 2.5 1.2
PDCD6�ALG-2 2.4 1.4
Calcineurin B homologous

protein 1
1.8 1.4

Poly(A)-binding protein
cytoplasmic 1 (PABPC1)

1.6 0.9

No significant change
GRB2 0.8 1.0

Decreased phosphorylation
Flotillin 1 0.6 0.8
p130-Cas (BCAR1) 0.5 0.8
Caveolin 1 0.5 0.9
FAK (PTK2) 0.5 1.1
Growth arrest specific 1 0.4 1.0
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expression changes associated with constitutive Her2 signaling. Of
the six proteins verified by immunoprecipitation and Western
blotting, five showed increased phosphorylation without changes in
total protein level. In comparing stably transfected cell lines,
changes in protein expression can sometimes occur and may
potentially affect the ratios measured by SILAC. As judged by these
validation experiments, such circumstances are a minority, and the
effect of short-term inhibitor treatment may provide clues as to
when such expression level changes occur.

To assess the relevance of these proteins to Her2 signaling in
other cell lines, we used BT-474 breast cancer cells, which overex-
press endogenous Her2. Phosphorylation of PLC�1 and Stat1 and
inhibition of phosphorylation by PD168393 was seen in BT-474 cells
(Fig. 4B). Thus, induction of Stat1 phosphorylation in response to
Her2 can be demonstrated in a second cell line, suggesting that
phosphoproteins identified by performing SILAC on 3T3-Her2
cells may be applicable to other Her2-overexpressing cell lines.

Identification of Her2 Activation Loop Phosphorylation. We observed
tyrosine phosphorylation in Her2 at position Y877, which is in the
kinase domain and is distinct from the five known C-terminal tail
autophosphorylation sites (Fig. 5A). Her2 Y877 is homologous to
Src Y416, insulin receptor Y1162, and EGFR Y869, also termed
Y845 in an alternate numbering system (Fig. 5B). These conserved
tyrosine residues reside in the activation loop, a region that is
autophosphorylated in many protein kinases and is a regulator of
kinase activity (23, 24). To verify this phosphorylation site by an
independent method, a phosphospecific antibody against this site
was used, and strong phosphorylation of Y877 was detected in
3T3-Her2 and BT-474 cells (Fig. 5C). Y877 phosphorylation was
inhibited by PD168393, implying that this phosphorylation event
depends on Her2 kinase activity.

Network Modeling by Expert Literature Curation. To understand the
role of proteins identified here, in Her2 signaling, we combined the
above MS data with PPI information available in the Human
Protein Reference Database (HPRD). HPRD currently contains
33,710 experimentally reported PPIs extracted from the scientific
literature (25). Proteins identified by MS were overlaid on a
literature-curated EGFR�ErbB pathway obtained from HPRD,
and PPIs linking the previously unidentified and known signaling
proteins were sought. In this manner, two previously unidentified

Her2 signaling proteins were directly connected to the EGFR�
ErbB signaling pathway (Fig. 6A). Pdcd-6�Alg-2 forms a complex
with CIN85�SETA [Casitas B-lineage (Cbl)-interacting protein of
85 kDa�SH3-domain encoding, expressed in tumorigenic astro-
cytes] and AIP1�Alix, and they, in turn, bind Cbl and EGFR (26,
27). AIP1�Alix inhibited EGFR internalization and degradation;
therefore, we hypothesize that Pdcd-6�Alg-2 protects Her2 from
Cbl-mediated degradation. Similarly, poly(A)-binding protein cy-
toplasmic 1 (PABPC1) binds and colocalizes with paxillin, and
disruption of this interaction inhibited cell migration (28). In
3T3-Her2 cells, Pabpc1 showed increased phosphorylation (Table
1), and paxillin showed borderline decreased phosphorylation (fold
change of 0.68; Table 2), suggesting that Her2-induced phosphor-
ylation of Pabpc1 may affect focal adhesions.

Network Modeling by Machine Learning. For broader understanding
of Her2 signaling pathways, we used a form of machine learning
called Bayesian networks, which are probabilistic models depicting
the influence of one variable on another with a graph of nodes and
directed edges (29). In this case, each node represents the phos-
phorylation level of a protein, and each edge represents the causal
influence of an upstream protein on the phosphorylation level of a
downstream protein. Arrows indicate the direction of the edges, and
they should not be interpreted as direct kinase–substrate relation-
ships. The Bayesian network (Fig. 6B) was constructed by using the
phosphorylation levels measured here by SILAC combined with

Fig. 4. Confirmation of protein phosphorylation by immunoprecipitation
and Western blot. 3T3 transfectants (A) or BT-474 cells (B) were treated with
PD168393 for 1 h and then lysed as described in ref. 11.

Fig. 5. Identification of the Y877 phosphorylation site in the Her2 kinase
domain. (A) MS�MS spectra of the peptide LLDIDETE(pY)HADGGKVPIK, which
bears the phosphotyrosine residue at Y877 of Her2. The charge state of the
parent ion is �3, thus yielding both �1 (upper line) and �2 (lower line)
charged daughter ions on fragmentation. The mass difference corresponding
to the phosphotyrosine residue, y11 minus y10 ion, is seen in both �1 and �2
charged fragment series. (B) CLUSTALW 1.82 alignment of the kinase domains of
human Her2, EGFR, Src, and insulin receptor. The phosphopeptide identified
by MS in A is underlined. Black and gray arrows mark the conserved tyrosine
residue and EGFR L858, respectively. The activation loop is indicated by
horizontal arrows. (C) 3T3 transfectants or BT-474 cells were treated as in Fig.
4, and Western blotting was performed with phospho-Y877-specific Her2
antibody or anti-Her2 antibody.
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three published proteomic studies of EGFR signaling (4–6). Inte-
gration of multiple studies was needed, because Bayesian network
modeling requires measurements of each node under multiple
conditions. The 90 proteins measured in at least two data sets (Fig.
8A, which is published as supporting information on the PNAS web
site) were used to initiate network modeling. Bayesian network
edges were restricted to PPIs in HPRD connecting pairs of the 90
proteins, yielding 157 edges connecting 55 proteins; the 35 proteins
not connected to others in the set were dropped from the model.
The search space was sampled by scoring 8 billion possible net-
works, and the common directed edges present in the 500 highest
scoring networks were compiled (Fig. 6B). The inferred network
bears similarity to the known biochemical signaling pathway, and
interesting predictions arising from it include the following: (i) Axl
influences the phosphorylation of the PI3K regulatory subunit
(PIK3R2), which is supported by the literature (22) and (ii)
phosphorylation of ephrin receptor A2 (EphA2) in response to
EGFR or Her2 involves Grb2 or Shc1. EphA2 phosphorylation
may also involve Src, as suggested by a recent proteomic study on
Src (12). The advantage of the Bayesian network modeling per-
formed here is that it combines PPI data with quantitative pro-
teomic data to infer de novo a network that both recapitulates
known portions of the signaling pathway and suggests new rela-
tionships between proteins.

Discussion
Use of quantitative proteomics to study signal transduction permits
a comprehensive strategy to characterize protein networks and
pathways. In this study, we obtained quantitative measurements on
462 proteins in Her2-transfected cells and, by simultaneously
comparing three conditions, measured the effect of a Her2-targeted
TKI. PD168393 is a preclinical compound used in the design of
CI-1033, a TKI that is currently in clinical trials (30); therefore, this
approach can be applied to drugs that are in clinical use or
development to understand their effects on cellular networks. The
identified phosphoproteins included many known Her2 and EGFR
signaling proteins, as well as multiple previously unidentified Her2
signaling proteins, which should significantly advance the under-
standing of Her2. Evidence of Her2 activation loop phosphoryla-
tion at Y877 was obtained by MS and confirmed by phosphospecific

antibody. Finally, two network modeling approaches were used to
infer possible relationships between proteins identified by MS.

The role of the activation loop in regulating kinase activity has
been studied by many groups. Autophosphorylation of the activa-
tion loop in protein kinase A, insulin receptor tyrosine kinase, and
Src yields a 5- to 500-fold increase in kinase activity (23, 24).
Mutations of other residues in the EGFR activation loop, such as
the L858R mutation seen in human lung cancer and the mouse
gain-of-function mutation L861Q, have dramatic effects on kinase
activity, downstream signaling, and small-molecule inhibitor sensi-
tivity (31–33). Although a role for activation loop phosphorylation
in EGFR and Her2 has been controversial (34–37), our demon-
stration of Her2 Y877 phosphorylation warrants renewed interest
in this site.

Although MS studies can identify previously uncharacterized
proteins involved in a signaling pathway, significant issues of
determining the proteins’ function and role remain. Bioinformatics
and computational approaches can streamline this process. We
present two complementary network modeling methods that offer
different insights into the same data set: one relying on expert
literature curation and the other relying on machine learning
through Bayesian networks. The expert literature curation method
suggested roles for previously unidentified proteins within Her2
signaling pathways. In contrast, the Bayesian network approach
generated de novo a probabilistic network representing core aspects
of Her2 and EGFR signaling. The Bayesian approach can integrate
multiple proteomic data sets and should become more powerful,
given the anticipated growth of data resources. Both network
modeling approaches are intended to generate hypotheses, and
experimental validation of their inferences will be needed.

In conclusion, this study extends our knowledge of Her2 signaling
by identifying previously uncharacterized downstream signaling
proteins, demonstrating activation loop phosphorylation in Her2,
and using network modeling to generate hypotheses about the role
of several previously unidentified proteins. Given the importance of
Her2 in breast cancer and other diseases, this study provides
valuable leads for designing future therapies.

Materials and Methods
Cell Lines and Transfection. Her2 cDNA (a gift from Dan Leahy,
Johns Hopkins University School of Medicine) was cloned into

Fig. 6. Network modeling. (A) A focused view of a module of the EGFR�ErbB signaling pathway linking two proteins identified in this study, Pdcd6 and Pabpc1.
Gene symbols used are from HPRD. Yellow and purple boxes represent known and previously unrecognized Her2 signaling proteins identified in this study,
respectively. White boxes represent connecting proteins not identified by MS but known to be involved in EGFR signaling. (B) Bayesian network model showing
a directed graph of influence on protein phosphorylation. Blue hexagons, tan ovals, and white ovals represent ErbB receptor tyrosine kinases, other protein
kinases, and other proteins, respectively. Edges in green, yellow, and red are conserved in �400, �300, and �200 of the 500 highest scoring networks,
respectively. Based on the underlying assumptions of Bayesian networks, loops are not permitted, and red edges represent alternate routes taken by the
simulation on different runs.
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pIRES-neo3 (BD Biosciences Clontech). NIH 3T3 cells (American
Type Culture Collection) were transfected with Lipofectamine
2000 (Invitrogen), and G418-resistant clones were selected.
PD168393 (Calbiochem) or gefitinib (Qventas, Branford, CT) was
dissolved in DMSO, and cells were treated as indicated. 3T3 and
BT-474 cells (American Type Culture Collection) were incubated
in serum-free media for 4 h and overnight, respectively, before all
experiments.

MS. SILAC, phosphotyrosine immunoaffinity purification, and
tryptic digests were performed as described in ref. 11. Equal
numbers of cells (3.3 � 108) were used for each labeling state.
Tryptic peptides were separated by a reverse-phase nano-liquid
chromatography system (1100 Series HPLC system; Agilent Tech-
nologies, Palo Alto, CA) connected to an electrospray ion source
and a Q-STAR Pulsar mass spectrometer (Applied Biosystems�
MDS Sciex, Foster City, CA). The resulting peak list files were
analyzed by MASCOT (Matrix Science, Boston) by using the National
Center for Biotechnology Information RefSeq database, and pep-
tides were quantified by using MSQUANT open source software (10).

Antibodies, Immunoprecipitation, and Western Blotting. Antibodies
were purchased as follows: Her2 and Dok1 (Santa Cruz Biotech-
nology); phosphotyrosine (4G10) and Fyb�ADAP (Upstate Bio-
technology, Lake Placid, NY); �-catenin (Abcam, Inc., Cambridge,
MA); and phospho-PLC�1 (Y783), PLC�1, phospho-STAT1
(Y701), STAT1, Axl, and phospho-Her2 Y877 (Cell Signaling
Technology, Beverly, MA). All data shown are representative of at
least two experiments.

Network Modeling. EGFR�ErbB pathway and PPI files were down-
loaded from the HPRD web site. Proteins showing increased

phosphorylation in 3T3-Her2 cells were searched against the PPI
file, using customized Perl scripts, to find PPIs linking previously
unidentified Her2 signaling proteins to a component of the EGFR�
ErbB pathway. Visualization of a focused portion of the network
was done by using GENMAPP (38).

Bayesian network modeling was conducted as follows. The four
proteomic studies were joined by converting their protein database
accession numbers to human gene symbols, and their phosphory-
lation measurements were represented as discrete states (increased,
no change, or decreased). A total of seven steady-state sets of
observation were obtained from these four studies, and a Bayesian
network structure learning algorithm, BANJO 1.0.5 (39), was run. The
network edge list was constrained to the HPRD data set of PPIs,
and EGFR and ERBB2 (Her2) were defined as the causal start of
the network. BANJO was run 500 times, with each run searching 16
million networks and returning the highest scoring network. These
high-scoring networks were compared, and the common edges were
compiled. Further details on network modeling are provided in
Supporting Methods and Tables 4–7, which are published as sup-
porting information on the PNAS web site.
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