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Abstract

Multidrug resistance (MDR) presents a major obstacle

for the successful chemotherapy of cancer. Its emer-

gence during chemotherapy is attributed to a selective

process, which gives a growth advantage to MDR cells

within the genetically unstable neoplastic cell popula-

tion. The pleiotropic nature of clinical MDR poses a

great difficulty for the development of treatment

strategies that aim at blocking MDR at the tumor cell

level. Targeting treatment to the nonmalignant vascular

network—the lifeline of the tumor—is a promising

alternative for the treatment of drug-resistant tumors.

The present study demonstrates that MDR in cancer can

be successfully circumvented by photodynamic ther-

apy (PDT) using an antivascular treatment protocol.

We show that, although P-glycoprotein-expressing

human HT29/MDR colon carcinoma cells in culture are

resistant to PDT with Pd-bacteriopheophorbide (TOO-

KAD), the same treatment induces tumor necrosis with

equal efficacy (88% vs 82%) in HT29/MDR-derived

xenografts and their wild type counterparts, respec-

tively. These results are ascribed to the rapid antivas-

cular effects of the treatment, supporting the

hypothesis that MDR tumors can be successfully

eradicated by indirect approaches that bypass their

inherent drug resistance. We suggest that with pro-

gress in ongoing clinical trials, TOOKAD–PDT may

offer a novel option for local treatment of MDR tumors.
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Introduction

Resistance to chemotherapy with structurally and function-

ally unrelated drugs is attributed to a selection process that

originates from the genetic instability of cancer cell popula-

tions—the primary target of treatment—along with the

selection pressure applied by chemotherapeutic agents

[1]. Clinical studies have shown that multidrug resistance

(MDR) is often associated with poor patient prognosis,

underscoring the urgency for overcoming this problem [2].

The ultimate objective of MDR research is to improve

treatment outcome by developing strategies that prevent

the emergence or circumvent existing MDR [3]. However,

the classic approaches that inhibit drug efflux mediated by

various adenosine triphosphate (ATP)–dependent MDR

transporters, such as P-glycoprotein (Pgp) and others [4], were

so far unsuccessful. The main complications in these strategies

are: 1) pharmacokinetic interactions between the MDR inhibitor

and the anticancer drug; 2) inhibition of the same transport

systems in healthy tissues, causing multiple adverse effects

[3]; and 3) failure to overcome MDR by focusing on a specific

pathway due to the multifactorial nature of clinical resistance

[2]. This situation strengthens the necessity of developing new

strategies that do not target the malignant cells directly, but

rather aim at destroying nonmalignant tumor components that

are crucial for tumor survival and development. A key system

for such an indirect targeting is tumor vasculature, which is

critical for maintaining tumor growth and development. In

addition, endothelial cells are genetically stable and unlikely

to develop MDR [5]. Antiangiogenic [1,6] and antivascular [5]

cancer therapies are examples for strategies that target the

blood vessels, and thus may provide a bypass for MDR.

Several antiangiogenic agents, mostly inhibitors of vascular

endothelial growth factor (VEGF), are now under extensive

investigation as anticancer agents [7]. There is also a clinical

report about the treatment of refractory multiple myeloma

patients with thalidomide, in which response to treatment is

attributed to an antiangiogenic mechanism [8]. The exact

mechanism of anticancer activity of thalidomide is still unclear

and may be contributed, for example, by immunomodulation. In

contrast to antiangiogenic therapy that prevents neovasculari-

zation, antivascular chemotherapy [9] or photodynamic therapy

(PDT) performed with high sensitizer concentration in the

circulation [10,11] targets existing tumor blood vessels, leading

to their occlusion with subsequent hypoxia, necrosis, and

consequent tumor destruction [5].

PDT is a binary treatment modality consisting of systemic

administration of a nontoxic substance—the photosensitizer

(drug)—and local illumination of the target tumor at a wave-

length that matches the sensitizer absorption maximum. Upon

photosensitization, the molecule is excited and, by energy

transfer to oxygen or by free radical-forming mechanisms,

generates cytotoxic singlet oxygen and/or other highly reactive

oxygen species (ROS) within the tumor. Such ROS react
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rapidly with vital cellular components (such as membranes,

cytoskeleton, and DNA), causing cellular damage and death

[12]. One of the advantages of PDT is the ability to selectively

deliver local treatment, thus avoiding injury of healthy tis-

sues, which is the greatest problem of conventional chemo-

therapies and radiotherapies.

We have synthesized a novel family of photosensitizers,

derived from the photosynthetic pigment bacteriochlorophyll

[13,14], notably Pd-bacteriopheophorbide (TOOKAD) [14],

presently found in clinical trials for prostate cancer therapy

in collaboration with Steba Biotech (Toussus Le-Noble,

France). In comparison with most clinically used photosensi-

tizers, the bacteriochlorophyll-based photosensitizers, in-

cluding TOOKAD, exhibit advantageous photochemical

and pharmacological characteristics, namely: 1) high extinc-

tion coefficient in the near-infrared (IR) (e0f105 at 763 nm),

enabling treatment of bulky tumors to a depth of 2 cm

[10,13,15]; and 2) rapid clearance from the circulation

(T0.5=0.6 minute) and skin (no phototoxicity at times >1 hour

after treatment; Koudinova et al., 2002, unpublished), which

minimizes skin phototoxicity. In addition, the PDT treatment

protocol where the sensitizer and the light are simultaneously

administered was shown in our laboratory to be an antivas-

cular modality that selectively induces tumor blood vessel

occlusion and stasis within minutes of illumination [16,17].

This protocol leads to the development of local ischemia,

culminating with necrosis (24–48 hours) and ultimate tumor

eradication (weeks) [10,11,15,18].

In the present study, we demonstrate that although hu-

man HT29/MDR colon carcinoma cells are resistant to

TOOKAD–PDT in culture, the same treatment has equal

efficacy when applied to the respective MDR xenografts and

their wild type (WT) counterparts. This proof of concept

suggests that by targeting the tumor vasculature, cancer

therapies such as TOOKAD–PDT can overcome MDR and

provide effective treatment for these malignancies.

Materials and Methods

Cultured Cells

Human isogenic HT29/WT and MDR cells were

obtained from Prof. I. Z. Cabantchik (Hebrew University

of Jerusalem) and cultured at 37jC in a humidified atmo-

sphere containing 8% CO2. The MDR cells were main-

tained in the presence of 300 ng/ml colchicine [19], which

was washed from the cultured MDR cells 24 hours before

the experiments.

Animals

Male CD1 nude mice (28–32 g) were housed in The Weiz-

mann Institute animal facility and all experimental proce-

dures were conducted according to institute guidelines (1996).

Tumor Model

Human WT and MDR HT29 cell monolayers were scraped

in saline, washed, resuspended in saline, and injected sub-

cutaneously (4–6 � 106 cells/0.07 ml per mouse) into the

back of the mice. Tumors reached a treatment size (6–8 mm)

within 2 (WT) and 4–5 (MDR) weeks. Mice bearing tumors

(z15 mm) were euthanized by anesthetic overdose.

Light Sources

Light source 1 A-home built 250-W halogen lamp focused

through a 4-cm water filter fitted with a cutoff filter (k<650 nm)

was used for in vitro studies.

Light source 2: A 763-nm diode laser (1 W; CERAMOPTEC,

Bonn, Germany) was used for in vivo studies.

Photosensitizer

In vitro studies TOOKAD, synthesized in our laboratory

[14], was dissolved in ethanol immediately before use and

further diluted to the final concentration in culture medium

containing 1% ethanol.

In vivo studies TOOKAD (2.5 mg/ml) was administered in

5% Cremophor El–based formulation (NEGMA-LERADS,

Toussus-Le-Noble, France).

PDT Protocol

In vitro studies Cells (4–6 � 104 per well) were plated in

96-well plates and cultured for 24 hours. The cells were then

preincubated in the dark (4 hours) with the indicated TOO-

KAD concentrations, washed with fresh medium, and illumi-

nated from below at a dose of 12 J/cm2. After illumination, the

cells were placed in the culture incubator and cell survival was

determined after 24 hours using the neutral red viability

assay.

In vivo studies Mice, anesthesized by intraperitoneal in-

jection of 40 ml of a mixture of ketamine (Rhone Merieux,

Lyon, France) and xylazine 2% (Vitamed, Hedera, Israel)

(85:15 vol:vol), were injected intravenously with 10 mg/kg

TOOKAD, and the tumor was immediately illuminated (field

U=14 mm) at a dose of 90 J/cm2. Tumor response (using

local necrosis on day 8 post-PDT as an endpoint) was

photographically recorded and tumor volume was

assessed [20].

Controls Dark control—cells or mice treated with TOOKAD

but not illuminated. Light control—cells illuminated without

incubation with TOOKAD, or mice intravenously injected with

vehicle and illuminated. Untreated control—no light or drug

(served as 100% cell survival for in vitro studies).

Histology

Tumors were excised from sacrificed animals, fixed in 4%

formaldehyde in phosphate-buffered saline (PBS) at room

temperature (RT; 48 hours), and paraffin-embedded. Sec-

tions were prepared and stained with hematoxylin/eosin

(HNE) using standard protocols.

Immunohistochemistry

Cultured cells Cells were grown on coverslips (48 hours),

washed with PBS, and briefly fixed (5 minutes, 2% para-

formaldehyde at 4jC). Samples were then blocked

(1 hour, 2% BSA, and 20% horse serum in PBS at RT).

Cells were stained for Pgp by overnight incubation with 20

mg/ml monoclonal anti-human Pgp antibodies (4E3; Dako,
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Carpinteria, CA) at 4jC, followed by treatment with alkaline

phosphatase (AP)–conjugated goat anti-mouse antibodies

(Promega, Madison, WI) using fast red (Sigma, St. Louis,

MO) as a color substrate.

Tumor sections Paraffin-embedded sections were depar-

affinized with xylene and rehydrated by serial 5-minute

incubations in 100%, 95%, and 70% ethanol and water.

Endogenous peroxidases were inactivated by incubation in

3% H2O2 (Merck, Darmstadt, Germany), followed by block-

ing with 1% bovine serum albumin (BSA; Sigma) and 2%

goat serum in PBS. Sections were incubated overnight

(4jC) with 20 mg/ml 4E3 Pgp, or with polyclonal anti-HNE

antibodies (1:500; Calbiochem, San Diego, CA). Sections

were then treated (1 hour at RT) with goat anti-mouse or

goat anti-rabbit peroxidase-conjugated antibodies (Jack-

son, ME) using 3-amino-9-ethylcarbazole (AEC; Sigma)

as color substrate.

Cells and sections were counterstained with 0.1% hema-

toxylin (Sigma). In the negative control, the primary anti-

bodies were omitted. All intermediate washes were

performed with PBS.

Light microscopy was performed using a microscope

(Nikon Optiphot 2; Nikon, Tokyo, Japan) equipped with a

digital camera (DVC Company, Austin, TX).

Preparation of Cell and Tissue Extracts

Cell lysates Cells were washed twice with cold PBS,

scraped in RIPA [20 mM Tris–HCl, 137 mM NaCl, 10%

glycerol, 0.1% sodium dodecyl sulfate (SDS), 0.5% deoxy-

cholate, 1% Triton X-100, 2 mM EDTA, pH 8.0, 1 mM PMSF,

20 mM leupeptin], sonicated for 10 seconds, centrifuged at

2 � 104g (15 minutes), and stored at �20jC until use. All

steps were carried out on ice.

Tumor extracts Tumors were homogenized in RIPA.

Homogenates were kept at 4jC (15 minutes) and centrifuged

at 2 � 104g (10 minutes). The supernatant was collected

and stored at �20jC until use.

Figure 1. Resistance of human HT29/MDR cells to TOOKAD-PDT. (A) Cells

were preincubated in the dark with TOOKAD, washed, and illuminated.

Closed circles, WT/dark; open circles, WT/PDT; closed squares, MDR/dark;

open squares, MDR/PDT. The graphs represent the mean±SE of four

independent experiments performed in triplicates. Cell survival is presented

as a percentage of untreated control. *No significant difference between

values (MDR/dark and MDR/PDT) by Fisher’s LSD test. (B and C)

Immunostaining for Pgp of cultured HT29 MDR and WT cells, respectively.

(B, inset) Immunoblot of the respective cell lysates with anti-Pgp antibodies.

Bands representing a-tubulin (55 kDa) and Pgp (170 kDa) are shown. (D)

TOOKAD-PDT of HT29/MDR cells in the absence (closed squares, dark/

VP�; open squares, PDT/VP�) or presence (closed triangles, dark/VP+;

open triangles, PDT/VP+) of 50 �M VP. Cells were preincubated with VP for

30 minutes prior to the standard PDT protocol. The curves represent the

mean±SE of three independent experiments performed in triplicates. Cell

survival is presented as percent of untreated control.

Figure 2. Response of HT29 MDR and WT xenografts to TOOKAD-PDT. (A and B) Pgp immunostaining of MDR and WT xenografts. (B, inset) Immunoblot of

respective tumor homogenates with anti –Pgp antibodies. Tubulin (55 kDa) and Pgp (170 kDa). (C and D) Tumors before and (E and F) 8 days after PDT. (G and

H) Tumor growth curves starting from day of treatment (day 0). Diamonds, PDT; squares, light control; triangles, dark control; circles, untreated control. The

number of mice per group was as follows: PDT (WT and MDR, n= 17 each), dark control (WT and MDR, n =6 each), untreated (WT and MDR, n= 4 each), and light

control (WT, n= 8 and MDR, n =5). Bars represent mean ± SE.
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Sodium dodecyl sulfate polyacrylamide gel electrophoresis

(SDS-PAGE) and Immunoblot Analysis

Proteins (30–100 mg protein per lane) were separated on

7.5% SDS-PAGE and blotted onto nitrocellulose mem-

branes. Membranes were blocked with 10% milk and 1%

goat serum in PBS. Pgp was identified using monoclonal

anti-human Pgp antibodies (C219, 1:500; Alexis Biochem,

Montreal, Canada) and peroxidase-conjugated or AP-

conjugated goat anti-mouse IgG as secondary antibod-

ies. Bands were visualized using ECL (Santa Cruz Bio-

technology, Santa Cruz, CA) or incubation with fast red,

respectively. a-Tubulin was detected with monoclonal

anti-a-tubulin antibodies (Sigma).

Results

Cultured HT29/MDR Cells Are Resistant to TOOKAD–PDT

To demonstrate that the MDR phenotype renders HT29/

MDR cells resistant to the direct effects of TOOKAD–PDT,

we subjected cultured HT29/WT and MDR cells to

TOOKAD–PDT in vitro. The WT cells responded to PDT

in a TOOKAD concentra t ion-dependent manner

(LD50 =0.3 mM), whereas no response was seen in the

absence of light (dark control) (Figure 1A). In contrast, the

MDR cells did not respond to PDT under the same experi-

mental conditions (LD50 >> 5 mM) (the apparent decrease in

cell survival in the MDR/PDT group was statistically insignif-

icant (P = .5) by two-way analysis of variance (ANOVA).

The Pgp drug transporter is overexpressed in MDR cells

[21]. To verify the presence of this marker in the HT29/MDR

variants, we subjected cells to immunostaining, and cell

lysates to SDS-PAGE and immunoblotting using monoclonal

anti–Pgp antibodies. As expected, Pgp staining was ob-

served in the MDR (Figure 1B, inset) but not in WT cells

(Figure 1C). It was thus presumed that if the resistance to

TOOKAD–PDT is indeed Pgp-dependent, then preincuba-

tion of the MDR cells with verapamil (VP), a known inhibitor

of Pgp [22], should sensitize them to the cytotoxic treatment.

Indeed, we found that VP-pretreated HT29/MDR cells

responded to TOOKAD–PDT (Figure 1D), specifically con-

firming the role of the Pgp efflux pump in the resistance of

these cultured MDR cells to TOOKAD–PDT.

MDR HT29 Xenografts Are Sensitive to PDT with TOOKAD

It was hypothesized that although MDR cells are resis-

tant to PDT in vitro, they should be susceptible to TOO-

KAD–PDT-mediated ablation of blood vessels in vivo. To

test this idea, we subcutaneously implanted MDR or WT

HT29 cells in mice and examined the effect of TOOKAD–

PDT on the tumors in vivo. To verify the maintenance of the

MDR phenotype in the xenografts, we examined Pgp

expression by immunohistochemical analysis of tumor sec-

tions (Figure 2, A and B) and by immunoblotting of tumor

homogenates using anti-Pgp antibodies (Figure 2B, inset).

Only tumors derived from MDR cells showed positive

staining for Pgp, whereas the WT tumors were negative,

illustrating that the MDR phenotype was indeed maintained

in vivo. Tumors that reached treatment size (Figure 2, C

and D) were subjected to TOOKAD–PDT and the response

to treatment was monitored by clinical and histopathological

means. Both variants responded positively, as judged by

necrosis on day 8 post-PDT (Figure 2, E and F). Further

follow-up of tumor size showed growth inhibition of both WT

and MDR tumors by PDT (Figure 2, G and H). In contrast,

tumors in the control groups continued to grow (Figure 2, G

and H) Furthermore, the observed efficacy of treatment on

the MDR (88.2%) and WT (82.4%) tumors was almost

identical (Table 1). When also considering animals with

incomplete response (necrosis covering only part of the

tumor), these results amount to (16/17, 94.1%) and (17/17,

Table 1. The Response of Human HT29 WT and MDR Xenografts to PDT

with TOOKAD.

Tumor Type Number of Animals Response (Necrosis on Day 8)

Complete Partial

MDR 17 15 (88.2%) 1 (5.9%)

WT 17 14 (82.3%) 3 (17.6%)

Figure 3. Histological sections of MDR and WT xenografts. (A and B) HNE staining before and (C and D) 24 hours after PDT. (E and F) HNE immunostaining

before and (G and H) 24 hours after PDT. Bars = 50 �m.
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100%) respectively. Histopathological examination of both

xenograft variants in comparison with untreated controls

showed degenerative changes in the entire neoplastic

population with clear-cut necrosis, including pyknosis and

karyolysis in about 30–40% of the cells, 24 hours post-

PDT [Figure 3, A and B (before PDT); Figure 3, C and D

(24 hours after PDT)]. There were edema and mixed

inflammatory infiltration in the surrounding tissues. Blood

vessels were dilated and scattered necrotic debris was

visible in the vicinity and within the walls of some dermal

and subcutaneous vessels, away from the tumor together

with extensive hemorrhage observed in both tumor types.

One of the common features of PDT-induced damage

is local lipid peroxidation (LPO), which can be assessed

immunohistochemically using 4-hydroxy-2-nonenal (HNE)

as marker [10]. Analysis of PDT-induced LPO indicates

that the degree of photodamage was similar in both tumor

variants (Figure 3, E–H). Thus, both clinically and histo-

pathologically, MDR and WT tumors responded similarly to

PDT. The response of the MDR tumor variant to TOO-

KAD–PDT is therefore consistent with the antivascular

activity of this treatment, which targets the nonmalignant

host blood vessels—the only common denominator of the

two tumor variants.

Discussion

In this study, we hypothesized that the inherent resistance

of HT29/MDR cells to PDT with TOOKAD can be effectively

circumvented when the respective xenografts are treated

with antivascular treatment protocol. To prove this point in a

controlled manner, we first demonstrated that in culture,

HT29/MDR cells exhibit resistance to TOOKAD–PDT,

whereas the respective WT cells are fully responsive

(Figure 1A). We secondly grafted the same cells to CD1

nude mice and demonstrated that TOOKAD–PDT induces

necrosis in xenografts derived from resistant HT29/MDR

and isogenic WT counterparts with equal efficacy (Figure 2

and Table 1). Pgp expression was positively correlated with

the MDR phenotype of the cultured MDR cells (Figure 1B)

and with resistance to TOOKAD–PDT (Figure 1A), which

was abolished by the inhibition of TOOKAD efflux by VP

(Figure 1D). However, Pgp expression in vivo (Figure 2, E

and B, inset) did not correlate with the tumor phenotype,

where the MDR tumors responded well to TOOKAD–PDT

(Figure 2, E and G; Figure 3, C and G). This finding is

consistent with the notion that the PDT protocol used here

does not target the tumor cells, but rather the host-derived

vasculature, which is identical in both tumors. PDT with

TOOKAD, like its predecessor bacteriochlorophyll serine

[11], was shown to eradicate solid tumors by vascular

destruction and blood stasis [16,17].

Furthermore, we previously showed that the antitumor

activity of TOOKAD–PDT is secondary to the photodynamic

induction of local hypoxia and necrosis [10] and is likely to be

independent of the tumor type. In contrast to TOOKAD, most

other photosensitizers used in experimental and clinical

cancer therapies were designed to selectively accumulate

in and destroy the malignant cells and tumors upon illumina-

tion [23]. It is, therefore, not surprising that under culture

conditions, PDT with sensitizers, such as Photofrin or copper

benzochlorin iminium salt (CuBI), is generally [24,25],

although not always [26], ineffective against MDR cells but

effective against their parental WT variants, as is the case

with TOOKAD. Although other sensitizers (Foscan, hyper-

icine) were shown to exert vascular effects in animal models,

the ability of this effect by itself to induce complete tumor

eradication was not conclusive [27,28]. Verteporfin, however,

is an agent designed as a specific antivascular modality and

was introduced for treatment of age-related macular degen-

eration [29]. However, PDT with hydrophilic sensitizers such

as monocationic porphyrin (MCP) and 5-aminolaevulinic acid

(5-ALA) was found to be cytotoxic for both Pgp-expressing

MDR and their parental WT variants in culture [30,31]. The

sensitivity of MDR cells to these agents is thought to be

because they are not recognized by Pgp. In agreement with

these findings, the charged aluminum disulfonated phthalo-

cyanine (AlS2Pc) was found to be effective against MDR and

WT murine tumors [32], yet no specific mechanism was

indicated. It appears that the response to PDT with classic

sensitizers may vary with tumor type, the nature of the

sensitizer, and the specific MDR mechanism involved, limit-

ing their use in the treatment of MDR tumors. In contrast,

antivascular PDT with TOOKAD is predicted to be indepen-

dent of tumor type and MDR mechanism. To the best of

our knowledge, however, no controlled in vivo studies with

clinically relevant photosensitizers reported successful treat-

ment of MDR tumors. One can anticipate that the above-

mentioned PDT agents bearing antivascular activity will

behave similarly to TOOKAD in the treatment of MDR tumors

depending on: 1) whether their sole antivascular action is

sufficient to cause tumor eradication, as is the case for

TOOKAD; and 2) if the respective MDR cells in culture are

resistant to their photodynamic activity. The emergence of

drug resistance in tumor therapy is a likely consequence of

selection pressure promoted by chemotherapeutic drugs on

the neoplastic component of the tumor, typically character-

ized by high mutation rates and genetic instability. In an

attempt to develop strategies that circumvent this therapeutic

risk, it was logical to approach the tumor indirectly by target-

ing its blood supply. Tumor-associated endothelial cells are

nonmalignant and, as such, are less likely to develop resis-

tance [1]. Their selective targeting by TOOKAD–PDT was,

therefore, expected to succeed in cases where conventional

cancer therapies failed.

Thus, results presented here support the hypothesis that

by targeting the tumor vasculature, TOOKAD–PDT circum-

vents drug resistance of malignant tumor cells, permitting

effective treatment of MDR tumors. Moreover, we presume

that the brief, single, 10-minute PDT protocol itself is not

likely to induce drug resistance.

In summary, this study suggests a new, promising strat-

egy for effective treatment of drug-resistant tumors, based

on targeting of the tumor blood vessels by TOOKAD–PDT.

We hope that with progress in ongoing clinical trials, TOO-

KAD–PDT will also improve the treatment outcome for
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patients with MDR tumors and enable cancer treatment

where conventional chemotherapy fails.
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