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A b s t r a c t Objective: To identify key features contributing to trainees’ development of
expertise in microscopic pathology diagnosis, a complex visual task, and to provide new insights to
help create computer-based training systems in pathology.

Design: Standard methods of information-processing and cognitive science were used to study
diagnostic processes (search, perception, reasoning) of 28 novices, intermediates, and experts.
Participants examined cases in breast pathology; each case had a previously established gold stan-
dard diagnosis. Videotapes correlated the actual visual data examined by participants with their
verbal “think-aloud” protocols. 

Measurements: Investigators measured accuracy, difficulty, certainty, protocol process frequencies,
error frequencies, and times to key diagnostic events for each case and subject. Analyses of variance,
chi-square tests and post-hoc comparisons were performed with subject as the unit of analysis.

Results: Level of expertise corresponded with differences in search, perception, and reasoning com-
ponents of the tasks. Several discrete steps occur on the path to competence, including development
of adequate search strategies, rapid and accurate recognition of anatomic location, acquisition of
visual data interpretation skills, and transitory reliance on explicit feature identification.

Conclusion: Results provide the basis for an empirical cognitive model of competence for the com-
plex tasks of microscopic pathology diagnosis. Results will inform the development of computer-
based pedagogy tools in this domain
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Microscopic pathology, a subdiscipline of pathology,
focuses on diagnosis of disease by histologic exami-
nation. Patients’ tissues and cells obtained during
biopsies, aspirates, and operations are permanently
affixed to glass slides, stained, and examined. The
assignment of a pathologic diagnosis is critical for any
patient with cancer and for many other diseases.
Pathologic diagnostic classification is reported to the
referring physician and determines therapy and prog-
nosis. Although models of the diagnostic process in
microscopic pathology have been advanced,1,2 few, if
any, have achieved empirical validation. No previous
studies have identified key features required to estab-
lish human expertise in this domain. 

Pathology residencies typically require 5 years of
training, approximately half of which is devoted to
acquiring skills in diagnostic surgical pathology. To
develop expertise, trainees require long residencies
(and often additional subspecialty fellowships) to
expose them to a sufficiently large number of cases,
including a wide variety of rare and unusual patterns. 

This study used information-processing and cogni-
tive science methodologies to compare the visual
diagnostic processes of novice, intermediate, and
expert pathologists. Two goals were sought: (1) to
understand basic cognitive processes underlying
visual diagnostic expertise and (2) to gain insights
useful for developing an intelligent Pathology tutor-
ing system.3

Computer-based educational applications in micro-
scopic pathology diagnosis can supplement tradi-
tional training by exposing trainees to large numbers
of rare patterns in a short time. Intelligent tutoring
systems (ITS) have an advantage over standard com-
puter-assisted instruction (CAI) because they provide
a simulated, realistic task environment in which indi-
vidualized coaching and feedback can occur.
Previous ITS work indicates that successful systems
closely couple content with empirical research to (1)
define the tutoring task, (2) characterize the scaffold
of steps to expertise for tutoring, (3) determine the
cognitive rules forming the basis of expertise in that
domain, and (4) identify important errors and mis-
conceptions made by students. Following previous
work in similar domains,4–6 we designed our study to
analyze the development of expertise.

Background

Substantial previous work has identified some of the
cognitive mechanisms underlying development of

diagnostic expertise. Early work attempted to define
medical diagnostic expertise in terms of general heuris-
tics useful across many domains. Widely generalizable
heuristics proved difficult to find, other than frequent
reliance on the hypothetico-deductive method.

Elstein concluded that problem-solving was character-
ized by content specificity.7 Subsequently, a variety of
theories have attempted to characterize differences
between novice and expert clinicians. Schmidt et al.
described clinical expertise in terms of the develop-
ment of exemplars of disease, termed “illness scripts.”8

Patel and colleagues observed differences in the
“direction” of reasoning.9,10 Both novices and experts
who made erroneous diagnoses employed “top-
down” or “backward” approaches, reasoning from
hypotheses to evidence, whereas experts who issued
accurate diagnoses typically reasoned in a bottom-up
or “forward” manner from evidence to hypotheses.
Other investigators have focused on the evoking of an
initial problem representation (in the form of a differ-
ential diagnosis and associated tasks) as a method for
creating structure in an ill-structured domain.11

The authors found no prior observational studies of
the development of expertise in microscopic diagno-
sis. However, previous studies in radiology and der-
matology—domains with prominent visual compo-
nents—have explored diagnostic expertise, employ-
ing a variety of methods, such as “think-aloud” pro-
tocols, eye-tracking, and theoretical frameworks
including information-processing, classical decision-
making, and signal detection theory.12–16 Studying the
interpretation of complex chest x-rays, Lesgold et al.
used information-processing methods to describe dif-
ferences among novice, intermediate, and expert radi-
ologists.12 Experts reported more findings, verbalized
more causes and effects, and showed more and longer
reasoning chains than novices. Experts typically built
mental representations of patient anatomy, evoked a
pertinent schema quickly, and exhibited flexibility in
tuning of these schemata. The authors raise the inter-
esting suggestion that the balance of recognition and
inference in diagnosis seems to vary with experience.
They further suggest that purely perceptual learning
occurs earlier in the course of learning than learning
of the cognitive processes associated with inference.
Consequently, the “emerging cognitive capability will
have to contend with a stronger perceptual ability
already in place” (p 337).

To inform the development of RadTutor (an intelli-
gent tutor for mammography interpretation4,5),
Azevedo and Lajoie used similar methods to study
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expertise in mammogram interpretation. Studying
ten radiology residents and ten attending radiolo-
gists, they found no significant differences in accura-
cy, total time on task, number of radiologic findings,
number of observations, number of diagnoses, fre-
quency of operators, or frequency of errors between
residents and attending radiologists. 

In a series of studies describing expertise in dermatol-
ogy, Norman et al. used stimuli consisting of color
kodachrome slides of  skin lesions.17–19 They devel-
oped two different models of expertise for visual
diagnostic tasks: (1) “Independent Cues” interpreta-
tion, in which “Learners gain expertise mainly by
acquiring knowledge about the specific features that
are best able to differentiate among diseases” (p
1064),17 and (2) “Instance-based Categorization,”18 in
which expertise derives from rapid pattern recogni-
tion mechanisms that help experts match the case at
hand to previously encountered examples. The
authors measured response time and accuracy for
typical and atypical cases. The “Independent Cues”
hypothesis predicts that (1) errors would be more
likely in atypical cases and (2) this principle should
interact with expertise (i.e., experts should be rela-
tively more accurate on typical slides). Their findings
confirmed the first prediction but not the second,
leading them to conclude that the results are at odds
with a rule-based model of expertise and support the
competing case-based hypothesis. The authors argue
that “errors are not predictable on the basis of stable
characteristics of the features of the lesion” (p. 1067).17

A significant body of work relates to perception and
search in the field of radiology. Beginning with the
pioneering work of Kundel in the 1960s,13 visual
search and feature recognition have been studied
using eye-tracking experiments. Subjects’ prior
knowledge was determined, and experimenters var-
ied relevant task-related aspects. Analysis was done
using a framework of signal detection theory. Kundel
et al. showed that development of expertise in read-
ing mammograms is associated with faster search
times, greater efficiency, and improved discriminato-
ry abilities.14 In later work they suggested that basic
perceptual-cognitive units “feed the interpretive
decision-making process.”15 In contrast to Patel et al.,
they hypothesized that a “top-down” or “back-
wards” reasoning strategy predominates as expertise
evolves.16 Furthermore, they theorized that expertise
in radiology search and perception depends on a
four-stage serial process composed of (1) a global
impression, (2) a discovery search stage, (3) a reflec-
tive search stage, and (4) post-search recall.15

Microscopic pathology is unusual because diagnosti-
cians must search images too large to be seen entire-
ly at one time. Microscopic examination involves
moving around slides from area to area, examining
different regions under varying magnification. This
activity significantly slows the process of visual clas-
sification. The image is encoded and understood in
many small pieces through a process of serial search.
The authors’ research methods exploited unique
aspects of diagnostic microscopy to produce a rich
corpus of videotape data for analysis of cognitive
processes and errors. 

Development of expertise can be delineated along
dimensions including cognitive, sociocultural, and
organizational axes. The authors chose information-
processing as a theoretical framework, and therefore
focused on finely granular cognitive analysis of tasks.
Nevertheless, more general theoretical frameworks
regarding acquisition of skills are directly relevant to
this work. Dreyfus and Dreyfus20 describe develop-
ment of skilled human performance in five sequential
stages: novice, advanced beginner, competent, profi-
cient, and expert. Their stages reflect transitions in
three general aspects of performance:

1. Switching from reliance on abstractions and rules
to use of past experience (instances).

2. Evolution in situational perception. Experts per-
ceive situations less as a set of equally weighted
parts, and more as a whole in which parts vary in
importance and relevance.

3. Changed perspective from detached observer to
involved performer.

Use of this model has produced significant insights
into the development of clinical competence in nurs-
ing21 and raises intriguing questions regarding edu-
cational implications.

Research Questions Regarding Microscopic
Diagnostic Pathology

1. How does diagnostic accuracy differ among three
levels of expertise for a standardized case set? Does
the assessment of case difficulty or diagnostic cer-
tainty parallel accuracy across all levels?

2. What are the cognitive processes underlying task
performance, and how do these processes differ as
expertise develops?
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3. What errors occur in the performance of this task,
and what is the distribution of errors across levels of
expertise?

4. What is the relative proportion of time spent in the
different phases of this diagnostic task as a function
of level of expertise?

Methods

Research Design

We performed a process-tracing, expert-novice study
with level of expertise as the independent variable.
Dependent variables included diagnostic accuracy;
certainty and difficulty ratings; protocol process and
error measures; and latencies. The study employed a
case set of eight breast pathology slides (one per case)
with pre-established gold standard diagnoses. Each
of the 28 participants was randomly assigned to see
four of eight possible cases, yielding a total of 112
subject-cases. The cases were distributed so that the
number of cases for each case-level combination was
roughly equivalent. Four of 112 protocols were not
collected because of technical failure, resulting in a
corpus of 108 protocols for study.

Case Materials

Cases were selected from the files of a single univer-
sity hospital. Each case consisted of a single glass
microscopic slide of tissue stained with hematoxylin
and eosin and a 1–2 sentence case history. A second
pathologist reviewed all cases and made an inde-
pendent diagnosis in addition to that of the original

pathologist. The study accepted only cases in which
the two diagnoses agreed. The case set was designed
to span multiple continua including diagnostic diffi-
culty, size of lesion relative to size of tissue, typicali-
ty, and incidence of disease. “Controversial” or “bor-
derline” cases were excluded as follows: (1) cases
representing disorders for which no generally accept-
ed consensus exists in the field regarding the criteria
for diagnosis or no agreement regarding existence of
the disorder as a separately classifiable entity and, (2)
“borderline lesions” in which the histologic features
of the specific case lie at the boundary between two
possible diagnoses. Diagnoses included in the case
set are shown in Table 1, along with a brief descrip-
tion of each case.

Participants 

The study included 10 novices (third-year medical
students who had recently completed the required
second-year course material in pathology), 10 inter-
mediates (second- and third-year residents in pathol-
ogy, who had completed at least one year of surgical
pathology), and 8 experts (board-certified patholo-
gists, many with special expertise in breast pathology,
with an average of 26.5 years of training and practice
experience). All subjects were volunteers, recruited by
a combination of e-mail, regular mail, and poster
solicitations. Medical students and residents received
a small honorarium for their participation. All med-
ical students were from a single medical school
(University of Pittsburgh). Pathology residents were
from multiple residency training programs across the
country; however, the majority of participants were
from the University of Pittsburgh. Expert pathologists
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Table 1 ■

Case Materials
Case Gold Standard Diagnosis Description

1 Infiltrating ductal carcinoma Focal lesion of poorly differentiated cancer adjacent to biopsy site and scar.

2 Ductal carcinoma in situ (DCIS) Widespread solid and cribriform in-situ carcinoma present throughout
majority of sample.

3 Infiltrating lobular carcinoma Widespread classical type infiltrating lobular carcinoma. Scant adjacent
normal tissue.

4 Lobular carcinoma in situ (LCIS) Small focus of LCIS with retrograde extension in otherwise normal breast.

5 Fibroadenomas, sclerosing adenosis and Multiple focal lesions, including sclerosing adenosis—a benign lesion that
intraductal papilloma shares some visual features with cancer.

6 Paget’s disease Nipple with focal area of intra-epidermal Paget’s disease. No underlying
carcinoma.

7 Adenomyoepithelioma Small circumscribed lesion with uniform features.

8 Atypical papilloma Large lesion with numerous atypical features



were from multiple hospitals within the University of
Pittsburgh Medical Center system. The study design
and use of human subjects were approved by the
University Institutional Review Board.

Task

Participants first examined each slide without benefit
of clinical history, talking out loud until they reached
a diagnostic conclusion. Then they were given the
brief clinical history and permitted to return to the
slide to revise their opinion before issuing a final
diagnosis. This procedure is similar to one previous-
ly used in cognitive studies of radiologists.12 At the
conclusion of each case, subjects rated the certainty of
their diagnosis, and difficulty of the case, on a visual
analog scale.

Data Collection

We collected think-aloud protocols as participants
examined the case materials. Think-aloud protocols22

are a standard technique of cognitive science, in
which participants are asked to verbalize all of their
thoughts without filtering them. With minimal
coaching, most participants can reveal cognitive
processes associated with task performance.
Concurrently, and synchronized with the subjects’
verbalizations, we videotaped the entire microscopic
pathology session using a camera mounted on the
subject’s microscope. The video captured the visual
data available to the participant and the magnifica-
tion. A permanent audiovisual record of the diagnos-
tic process was created and stored as digital video
files on CD-ROM. Think-aloud protocols were also
transcribed verbatim and segmented into individual
protocol statements.

Coding Schemes

Investigators developed two independent coding
schemes: one for the coding of cognitive processes
and one for the coding of errors. Both coding
schemes were derived from an initial analysis of
24/108 individual cases from 16 different subjects
across all cases and levels of expertise. The theoreti-
cal background for coding cognitive processes has
been previously described.23 Briefly, operators are
viewed as “information processes” that produce new
states of knowledge by acting on existing states of
knowledge. Individual protocol statements (seg-
ments) are encoded as (1) an operator or action that
defines the process and (2) a list of arguments com-
posed of descriptors and their values that encode the

content or knowledge. The complete list of descrip-
tors is defined with the action, but the selection of
descriptors and the values that they take vary with
each segment coding.

For process coding, an initial coding scheme was
adapted from Hassebrock and Prietula24 but modified
during the iterative coding scheme development
process. The development of the coding scheme was
incremental and iterative: each of the 24 protocols was
exhaustively coded, while building the set of opera-
tors and a description of the criteria required for cod-
ing that operator. The template of process codes was
constructed in the Protocol Analyst’s Workbench
(PAW)—a Macintosh software package for protocol
analysis.25 PAW assists human coders by facilitating
development of a consistent coding vocabulary and
by providing domain-neutral methods for data entry
and common protocol analysis tasks. Eleven precur-
sor versions of the coding scheme preceded the final
coding scheme. The final scheme consisted of 48 oper-
ators covering five general categories: (1) data exami-
nation, (2) data exploration and explanation, (3) data
interpretation, (4) control processes, and (5) opera-
tional processes. Data examination included actions
involving the selection and examination of visual and
historical data; for example, Identify-normal-structure,
Identify-histopathologic-cue, and Compare-findings-from-
multiple-locations. Data exploration and explanation
included higher-order abstractions, such as Evaluate-
certainty-finding, Evaluate-salience, and Associate-loca-
tion. Data interpretation included hypothesis genera-
tion and testing (e.g., Statement-of-hypothesis and
Confirm-hypothesis-with-present-finding) as well as
more basic actions that supported interpretation
(Recall-evidence-hypothesis-relationship) and the evalua-
tion of the output of data interpretation actions
(Evaluate-certainty-hypothesis). Control processes
included operators for more global evaluation of the
progress or quality of one’s own reasoning (meta-rea-
soning) and for diagnostic planning subsequent to the
current task. Operational processes included verbal-
izations of motor and attentional processes related to
the use of the microscope. Table 2 depicts a small frag-
ment of protocol and the codes for actions and
descriptors that were assigned to each segment. The
complete set of operator codes and coding criteria are
available on request from the first author.

Error coding involved a similar incremental, iterative
approach through combined video and protocol
analysis. All events that could be considered “diag-
nostic errors” were categorized. Error codes covered
the case level (e.g., never finding the diagnostic area)
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and the level of individual protocol statements (e.g.,
assigning an incorrect significance to a particular
finding). Table 3 shows the complete set of error
codes and example errors for each category.

Protocol Coding 

The first author coded each segment of the 108 pro-
tocols and videotapes using the process and error
coding schemes and the Protocol Analyst’s Work-
bench (PAW). Text files were exported to Excel, SPSS,
and Statview for subsequent analysis. 

Measurements

Coding Diagnostic Accuracy. Diagnostic accuracy
was coded (as correct or incorrect) before and after the
clinical history was reviewed for both the specific
diagnosis and the general diagnostic category. Each
case had a gold-standard specific diagnosis and a gen-
eral diagnostic category. For specific diagnoses, syn-
onymous names were accepted; for general diagnos-
tic classifications, true “parent” categories as well as
“close misses” (alternative specific diagnoses deemed
suboptimal) were accepted. For example, for a case in
which the gold standard diagnosis was “infiltrating
ductal carcinoma,” a diagnosis of “invasive ductal
carcinoma” was considered a correct specific diagno-
sis, whereas a diagnosis of “cancer” was considered
correct for category but not for specific diagnosis. 

Measures of Certainty and Difficulty. Ratings on
visual analog scales were converted to an integer

value between 0 and 10 for each case (using the near-
est tenth of the scale as the value).

Process and Error Measures. Frequencies of all
processes and all errors were determined for each
case. Additional measures included operator
sequences (the number of times a particular operator
preceded or followed another operator), the number
of unique diagnostic hypotheses, and whether the
participant ever considered the gold-standard diag-
nosis during the course of the examination. 

We performed both intra-rater and inter-rater relia-
bility studies using a randomly selected set of 12 pro-
tocols (11%). For intra-rater reliability, the first author
(RSC) recoded the same protocols after a 3-month
wash-out period. For inter-rater reliabilities, we
taught the coding scheme to a board-eligible pathol-
ogist (JS) who had no previous knowledge of this
study and no prior experience with protocol analysis.
The reliability coder was trained over three 2-hour
sessions, during which he coded 15 protocols of
increasing size and difficulty, discussing all dis-
crepant codes with the primary coder (RSC). After
training was complete, he coded 12 randomly select-
ed protocols entirely on his own without any interac-
tion, assistance, or feedback. We determined agree-
ment by calculating the percentage of individual oper-
ator codes in which both coders assigned the same
code. The intra-rater reliability was 89%, and the
inter-rater reliability was 79% for the individual
codes (not for the larger aggregated indices). Thus,
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Table 2 ■

Fragment of Protocol Showing Process and Content Coding
Content codes (Arguments)

_________________________________________________
Line Protocol segment Process codes (Operators) Descriptor Value

137 “I have to figure out areas of Set-goal-identify Finding areas of obvious necrosis
obvious necrosis”

138 “No hemorrhage.” Note-absent-finding Absent-Finding hemorrhage

139 “I still think it is malignant.” Statement-of-hypothesis Hypothesis # 4
Hypothesis Category benign/malignant

Hypothesis malignant

140 “I still think it is breast.” Identify-anatomic-location Location breast

141 “I think...” Not-coded Reason incomplete thought

142 “Could it be a lymph node that is Statement-of-hypothesis Hypothesis # 5
replaced by something?” Hypothesis Category general

Hypothesis replaced lymph node

143 “Except for the fat, I don’t see Confirm-with-present-finding Hypothesis # 5
anything else.” Hypothesis category General

Hypothesis Replaced lymph node
Present-finding Fat



the reliabilities are lower bounds for the indices pre-
sented in this work. 

Measuring Latencies. Using combined videotape-
protocol analysis, we timed the following intervals
for each case: (1) total time on task, (2) time to final
identification of the anatomic location, (3) time to the
first statement of a hypothesis, and (4) time to first
statement of hypothesis ultimately accepted. For a
subset of cases that contained a focal lesion, we also
identified (5) the time of lesion identification. The cri-
teria for identification of this event was that (1) the
lesion was in the field of view and simultaneously (2)
the participant made any statement identifying the
area as different, such as “Aha,” “That’s something
important,” or “Oh, that’s cancer there.”

Analysis

Statistical analysis was performed using SPSS and SAS
software. After determining that cases did not differ
statistically with respect to dependent variables, we
aggregated continuous dependent measures across
cases to generate a mean for each participant and for
each measure. One-way analyses of variance (ANOVA)
included level of expertise as the factor and subject as
the unit of analysis for protocol counts, times to partic-
ular protocol events, analog scale ratings, and continu-
ous error measures. Tukey-HSD post-hoc tests deter-

mined whether differences were significant for pair-
wise comparisons. Chi-square tests were performed on
accuracy measures and categorical error measures. For
all tests, statistical significance was set at 0.05.

Results

Diagnostic Accuracy

Without additional clinical history, experts’ mean
diagnostic performance was highest at 78%; interme-
diates performed at 40% accuracy; and, novices at
only 2.5% mean diagnostic accuracy (Table 4). Other
measures of accuracy closely paralleled these find-
ings. The addition of clinical history did not signifi-
cantly improve specific or categoric accuracy among
intermediates or experts. Categoric accuracy among
novices did significantly increase with the addition of
history, when compared with experts (�2 = 12.5, n =
112, df = 2, p = 0.0004) and novices (�2 = 4.46, n = 112,
df = 2, p = 0.03). Post-hoc analyses showed significant
differences between all pairs for all four measures of
accuracy. Only novices had frequent difficulty in cor-
rectly identifying the anatomic location in the case. 

Ratings of Certainty and Difficulty

Experts expressed the highest degree of certainty in
their diagnoses and offered the lowest ratings of case
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Table 3 ■

Errors
Errors Description Novice Intermediate Expert Statistics

Number of Number of Number of
Case Errors coded as present or absent cases/ cases/ cases/ Chi- P Pairwise P
Level in each case Total (%) Total (%) Total (%) Square Value Comparison Value

1 Lesion never brought under objective 8/30 (26.7 %) 1/28 (3.6 %) 0/23 (0 %) 13.25 0.0021 N, I 0.0059
N, E 0.0006
E, I 0.3189

2 Lesion traversed without recognition 7/30 (23.3 %) 0/28 (0 %) 0/23 (0 %) 8.11 0.0209 N, I 0.0056
N, E 0.0058
E, I —

3 Error in identifying anatomic location 14/40 (35.0 %) 2/38 (5.3 %) 0/32 (0 %) 22.76 <0.0001 N, I 0.0008
N, E <0.0001
E, I 0.1612

Pairwise
Segment Errors counted for Mean/ Mean/ Mean/ F P Comparison P

Level each case case SD case SD case SD Value Value (Tukey HSD) Value

4 Incorrectly names normal 0.35 0.74 0.11 0.31 0 0 5.28 0.012 N, I 0.068
structure N, E 0.013

E, I 0.656

5 Incorrectly names histopathologic 0.93 1.4 0.76 1.08 .003 .18 7.05 0.004 N, I 0.669
cue N, E 0.024

E, I 0.004

6 Error in assigning significance, 0.48 0.82 0.32 0.57 .003 .18 3.17 0.059 N, I 0.552
declarative knowledge failures N, E 0.048

E, I 0.298



difficulty (Table 5). Novices were least certain and
thought cases were the hardest. Intermediates rated
their certainty as lower in cases in which their diag-
noses were inaccurate compared with cases where
their diagnoses were accurate (t = –2.45, p = 0.019).
Difficulty rating scores did not differ significantly
between cases with accurate and inaccurate diag-
noses (t = 0.45, p = 0.65). 

Process Measures

Analysis of process code (operator) counts showed
significant differences among groups. To summarize
the results, we divide the findings by parent process:
(1) data examination, (2) data exploration and expla-
nation, (3) data interpretation, (4) control processes,
and (5) operational processes. Wherever possible, we
give examples of differences for individual operators.
A complete analysis of all individual operator counts
is beyond the scope of this publication and will be the
subject of a subsequent communication.

1. Data examination. We divided data examination
operators into three groups: (1) primarily involving
visual identification, (2) primarily involving compar-
isons between or among visual features or areas of
the slide, and (3) involving data examination related
to the additional clinical history itself. Examples of
data examination operators include Identify-normal-
structure, Identify-histopathologic-cue, and Compare-
findings-from-multiple-locations.

■ Visual identification. Statements related to visual
identification, taken together, constituted about
35% of all protocol statements (Table 6). Experts
verbalized visual identifications less frequently
than intermediates, and there was a trend toward
fewer identification verbalizations when com-
pared with the novice group. Furthermore, signif-
icantly different kinds of visual features were
identified as a function of participants’ levels of
expertise. Whereas novices verbalized identifica-
tion of normal structures most often, intermediates
verbalized histopathologic cues most often. 

■ Visual comparison. Visual comparison statements
constituted approximately 5% of protocol state-
ments, and were most frequent in intermediate
protocols (see Table 6). 

■ Examination of history. Statements related to the
clinical history accounted for about 4% of all pro-
tocol statements and did not vary with subjects’
expertise (see Table 6). 

2. Data exploration and explanation. Approximate-
ly 7% of all protocol statements related to data explo-
ration and explanation. Example operators include
Evaluate-certainty-finding, Evaluate-salience, and
Associate-location. These statements were most fre-
quent among intermediates (see Table 6). Numerous
differences were observed for individual operators.
Novices and intermediates discussed the certainty of
a finding more often than experts. 
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Table 4 ■

Accuracy
Measure Novice Intermediate Expert Chi-Square P Value

Accuracy before clinical history

Correct specific diagnoses/ Total (%) 1 / 40 (2.5 %) 16 / 40 (40%) 25 / 32 (78.1%) 26.32 <0.0001

Correct categoric diagnoses/ Total (%) 9 / 40 (22.5%) 21 / 40 (52.5%) 31 / 32 (96.9%) 23.32 <0.0001

Number diagnoses changed by history/ Total (%) 20 / 40 (50%) 9 / 40 (22.5 %) 2 / 32 (6.3 %) 13.33 0.0013

Accuracy after clinical history

Correct specific diagnoses/ Total (%) 4 / 40 (10 %) 18 / 40 (45 %) 26 / 32 (81.3 %) 40.39 <0.0001

Correct categoric diagnoses/ Total (%) 14 / 40 (35 %) 23 / 40 (57.5 %) 31 / 32 ( 96.9 %) 17.93 0.0001

Table 5 ■

Difficulty and Certainty Ratings
Novice Intermediate Expert

_________________ _________________ __________________
Measure Mean SD Mean SD Mean SD F Value P Value

Difficulty Score 5.8 1.1 4.7 2.1 1.9 1.8 50.08 <0.001

Certainty Score 4.2 1.3 6.7 1.2 9.5 0.5 11.95 <0.001



3. Data interpretation. Data interpretation accounted
for approximately 20% of all statements. Example
operators include Statement-of-hypothesis, confirm-
hypothesis-with-present-finding, Evaluate-certainty-
hypothesis, and Recall-evidence-hypothesis-relationship.
Statements involving data interpretation were most
frequent among intermediates (see Table 6). 

4. Control processes. Statements related to control
processes accounted for less than 2% of total state-
ments and did not vary among groups (Table 6). 

5. Operational processes. Operational statements
related to the use of the microscope, such as a change
of magnification, position, or attention to a particular
area, and accounted for approximately 6.5% of the

total. Intermediates had the highest frequency of
these statements (see Table 6). 

We analyzed goal-setting statements across all general
categories; they accounted for fewer than 5% of state-
ments. Goal setting statements explicitly (1) limit the
diagnoses under consideration, (2) rule out a hypoth-
esis, or (3) identify a particular finding that has not
yet been found (see Table 6). Novices expressed
fewer such statements, but this difference did not
reach statistical significance.

Intermediates and experts considered significantly
more unique hypotheses than novices (see Table 6). In
cases involving an incorrect diagnosis, novices con-
sidered the correct diagnosis in less than 15% of the
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Table 6 ■

Protocol Measures
Novice Intermediate Expert ANOVA

_____________ _____________ ____________ _________________________________________
Pairwise

Comparison
Measure Mean SD Mean SD Mean SD F Value P Value (Tukey HSD) P Value 

Protocol lines 63.6 16.5 78.0 27.9 44.6 14.2 5.7 0.009 N, I 0.285
N, E 0.154
E, I 0.006

Data examination

Identification 14.1 5.4 20.5 8.2 8.0 2.8 9.4 0.001 N, I 0.065
N, E 0.110
E, I 0.001

Comparison 2.2 1.2 3.3 1.5 0.93 0.66 8.7 0.001 N, I 0.132
N, E 0.077
E, I 0.001

History 1.4 0.5 1.7 0.7 1.2 0.8 1.7 0.210 N, I 0.511
N, E 0.741
E, I 0.191

Data exploration and explanation 2.6 1.6 4.5 2.4 2.0 1.6 4.4 0.023 N, I 0.081
N, E 0.794
E, I 0.027

Data interpretation 4.9 1.6 11.4 4.1 8.4 3.6 9.8 0.001 N, I 0.000
N, E 0.084
E, I 0.153

Control Processes 0.4 0.5 0.9 1.3 0.4 0.4 0.8 0.454 N, I 0.500
N, E 1.000
E, I 0.557

Operational processes 2.6 2.1 4.4 1.8 1.5 1.6 5.4 0.011 N, I 0.119
N, E 0.408
E, I 0.009

Goal-setting 0.4 0.4 1.7 1.3 1.8 2.0 3.3 0.052 N, I 0.094
N, E 0.083
E, I 0.981

Unique hypotheses 2.2 0.6 4.0 0.9 3.3 1.2 11.3 <0.001 N, I <0.001
N, E 0.031
E, I 0.210



cases, whereas experts and intermediates making
errors considered the correct diagnosis approximate-
ly 45% of the time.

Latencies

Aggregated event latencies, depicted as timelines,
appear in Figure 1. Ratios indicate the number of
events detected per valid case. Events related to
hypothesis formation occur early in experts, but later
among intermediates and novices. Experts rapidly
and uniformly identified the anatomic location and
made early explicit statements about it. Novices often
failed to identify any anatomic location. Experts
detected focal lesions more rapidly than novices
(Tukey HSD, p = 0.002 ), but experts and intermedi-
ates did not significantly differ in the time to lesion
detection (Tukey HSD, p = 0.164). 

Statement of a first hypothesis often marks a change
in the protocol focus from exploring the slide to test-
ing of possible diagnoses. Compared with novices,

experts (Tukey HSD, p = <0.001) and intermediates
(Tukey HSD, P=.001 ) made this change more rapid-
ly. Experts verbalized the diagnosis that they will
ultimately accept earlier compared with both inter-
mediates (Tukey HSD, p = 0.002), and novices (Tukey
HSD, p = <0.001). Close proximity between first
hypothesis (H1) and final hypothesis (FH) among
experts indicates that the first diagnosis was often
accepted as final. Intermediates interjected more
intermediate hypotheses between first and final
hypotheses, taking longer to come to closure.
Nevertheless, experts and intermediates spent more
time between first statement of final hypothesis (FH)
and the end of the case (END) than novices—typical-
ly, in testing their hypotheses, searching for confirm-
ing evidence, and ruling out alternatives. 

Error Measures 

We quantified six specific types of errors for each case
(see Table 3): three errors at the case level (categori-
cal) and three at the protocol segment level (continu-
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F i g u r e  1 .  Task timeline depicting latencies and event counts.



ous). Case-level errors included (1) failure to view the
diagnostic area (search error), (2) traversal of diag-
nostic area without apparent recognition (gross per-
ceptual error), and (3) failure to identify the anatom-
ic location (an aggregate of (a) no attempt to identify
the anatomic location, (b) location attempted but not
completed, and (c) anatomic location misidentified).
Segment-level errors included (4) participant incor-
rectly identified a normal structure, (5) participant
incorrectly identified an abnormal histopathologic
feature, and (6) participant incorrectly interpreted
data (an aggregate of (a) wrong significance assigned
to a feature and (b) incorrect recall of evidence-
hypothesis relationships). 

In all cases, error types 1–3 were significantly more
frequent among novices (see Table 3)—and rare to
nonexistent among intermediates and experts. Error
types 4–6 decreased in frequency as level of expert-
ise increased (see Table 3). Novices had greater diffi-
culty in identifying normal structures; higher error
rates in identifying histopathologic cues; and higher
error rates for data interpretation. We examined par-
ticipants’ accuracy in the subset of cases in which
focal lesions were correctly detected. On these cases,
intermediates’ diagnostic accuracy was 36% and
experts’ accuracy was 90% (�2 = 14.27, n = 54, df = 1,
p = <0.001). Although intermediates found the diag-
nostic area as quickly and as often as experts, they
did not interpret these lesions as accurately once
they found them. 

Discussion

Significance

This study offers a first view of the features impor-
tant to skilled performance in diagnostic microscopic
pathology. Significant differences along the continu-
um of expertise occurred on all aspects of task per-
formance—search, detection, feature identification,
and data interpretation. Early in the development of
expertise, the use of the microscope requires con-
scious attention and effort. Intermediates appear to
apply explicit strategies in searching the slide, such
as examining the entire slide at low power first, and
selecting particular areas to revisit at higher power.
Such explicit and conscious strategies were verbal-
ized. Experts verbalized less often the operational
aspects of changing power, position, and attention
because they were more “automatic.” Like Dreyfus’
experts,20 experienced pathologists behave as
involved participants, using the microscope as direct
extensions of their perceptual processes.

That intermediate participants accurately find lesions
but do not classify them accurately suggests that diag-
nostic reasoning is not fully coupled to the search and
detection process. The physical searching, perception,
and attention required to find a lesion involve differ-
ent skills than those needed to classify it. The impor-
tant perceptual skill during the first process is recog-
nition of “something that does not belong” and mer-
its further investigation. Lesgold contended that per-
ceptual learning occurs earlier than cognitive process-
es associated with inference.12 Intermediates are in a
unique position of recognizing important visual infor-
mation, without having fully developed the ability to
process it to diagnostic closure.

That intermediates are better at visual feature identi-
fication than novices suggests that increasing expo-
sure to stimuli helps participants to recognize their
symbolic meanings. Other work in nonvisual
domains also found that intermediates verbalize more
findings compared to both novices and experts.26

Novices may not have the vocabulary or perceptual
abilities to reduce complex visual cues in this fashion.
Intermediates tend to identify and interpret individ-
ual features compared with experts, who arrive at the
diagnosis sooner using a higher level, implicit “pat-
tern-matching” approach. These findings are consis-
tent with previous studies that identified compilation
of elaborated to abridged networks as part of gaining
expertise.8,27 In addition, the Dreyfus model of expert-
ise20 recognizes evolution from perception of a set of
“parts” to recognition of the “whole.” “Pattern-
matching” in visual diagnosis may reflect the compo-
sition or compilation23,28 of processes that convert
longer sequences of feature-identification and evi-
dence-hypothesis matching into shorter sequences of
nonverbalizable, higher-level “pattern-matching.”
Norman et al. asserted that accurate visual diagnosis
of skin lesions is associated with increased speed, sug-
gesting that rapid instance-based classification is cen-
tral to skilled performance.17 The authors suggest that
pattern-detection is accurate, but strategies in which
feature identification are prominent (Independent
Cues Hypothesis) reflect failure of the first-line pat-
tern recognition process. 

An alternative, developmental perspective is that
explicit feature identification necessarily precedes
development of accurate, rapid, and implicit “pat-
tern-matching” abilities. Pathologists’ speed and
accuracy gradually increase as features are learned
and integrated into an increasing knowledge base.
Feature identification and evidence-hypothesis
matching represent a critical intermediate step during
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skill acquisition. Such a developmental sequence has
important educational implications for this domain.

The question of reasoning “forward” versus “back-
ward” has been debated with respect to diagnostic
reasoning over time. Patel and colleagues concluded
that novices’ predominantly backward reasoning
transitions to predominantly forward reasoning in
experts.9,10 Other data suggest that mixed strategies
are common.4,5 Analysis of verbal protocols at the
level of individual protocol statements in this domain
could address a number of interesting questions.
How uniformly are “backward” and “forward”
strategies applied? When do diagnosticians switch
between them? What factors alter the balance
between the two strategies? How does the structure
and volume of knowledge affect the moment-to-
moment struggle between competing approaches?
Studying diagnostic microscopic pathology provides
a critical advantage because the process of serial
search (observing nonadjacent features one by one at
different magnifications) slows the diagnostic
process in a manner that facilitates observation.
Additional studies in this field could produce a more
finely granular model of skilled performance using
think-aloud methods.

The interaction of forward and backward reasoning
can be framed as part of a future global inquiry into
diagnostic reasoning. How do various levels of
search, perception, and reasoning interact? How does
abstract declarative knowledge shape perceptual and
search processes? How do search and perception
influence development of strategies that also bear on
the problem? How does an unconstrained search for
cues become a goal-directed effort to find distin-
guishing features, and why? How do these processes
change as knowledge structures are expanded and
perceptual abilities are refined? What role do these
strategies play in the generation of errors? And how
can we exploit understanding of these processes to
develop better methods for training diagnosticians? 

Limitations of the Present Study

Several limitations potentially apply to this study. The
time-intensive nature of information-processing meth-
ods limits the number of participants and tasks that
can be included, reducing ability to generalize to other
populations or subdomains. Second, participants were
aware that they were being studied. The “Hawthorne
effect” tendency for performance to improve when
subjects know that they are being studied may have
altered performance on our diagnostic tasks.29 If all

levels of subjects experience the Hawthorne effect
equivalently, relative comparisons may still remain
valid. Finally, the think-aloud methods impose their
own set of potential limitations. It has been shown that
subjects instructed to minimize effects of “mediated
processes” such as filtering and self-explanation dur-
ing think-aloud protocols do not behave significantly
differently than when they do not verbalize during the
same tasks.22 However, verbalizations of processes are
associated with increases in task time. Although rela-
tive comparisons hopefully remain valid, absolute
latencies may not be accurate.

Implications for Future Microscopic Pathology
Education Systems

One important motivation in performing this study
was to use our findings to develop effective educa-
tional systems in microscopic diagnostic pathology.
Study results indicate that physical search and detec-
tion are extremely important and poorly developed
among novices. Traditional computer-assisted
instruction using static images omits training in tasks
related to search and detection. Study results suggest
that explicit feature identification may be a critical
intermediate strategy prior to reaching expert-level
rapid “compiled” visual categorization. Systems
should incorporate direct feedback on visual feature
identification, separate from subsequent inferences. 

Systems should use information about the student’s
ability to identify important visual features in select-
ing cases for presentation. Finally, different behaviors
observed during hypothesis-testing point out that
novices’ lack of structured knowledge limits their
ability to utilize the perceptual relationships they
learn. A key advance in educational systems might
couple training in visual aspects with presentation of
appropriate concepts and relationships from patholo-
gy knowledge bases. 

Conclusion

The authors’ study of expertise in microscopic
pathology offers early understanding of a highly
complex visual diagnostic task. Results suggest that
different cognitive skills contribute to expertise, pro-
viding a number of sources for diagnostic errors.
Enumeration of differences in these skills and related
errors along the continuum of expertise elucidates
how these skills develop and provides an empirical
foundation for computer-based pedagogy in micro-
scopic diagnostic pathology.
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