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Abstract

Although significant technical advances in surgical and
radiation treatment for brain tumors have emerged in
recent years, their impact on clinical outcome for
patients has been disappointing. A fundamental source
of the management challenge presented by glioma
patients is the insidious propensity of the malignant
cells to invade into adjacent normal brain. Invasive
tumor cells escape surgical removal and geographically
dodge lethal radiation exposure. Recent improved
understanding of the biochemistry and molecular
determinants of glioma cell invasion provide valuable
insight to the underlying biological features of the
disease, as well as illuminating possible new therapeu-
tic targets. Heightened commitment to migrate and
invade is accompanied by a glioma cell’s reduced
proliferative activity. The microenvironmental manipula-
tions coincident to invasion and migration may also
impact the glioma cell’s response to cytotoxic treat-
ments. These collateral aspects of the glioma cell
invasive phenotype should be further explored and
exploited as novel antiglioma therapies.
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Introduction
“.. .those left behind.” The clinical course of glioma patients
after surgery is determined by residual, invasive tumor cells.

Gliomas are a particularly lethal solid tumor arising from
support cells in the central nervous system. The incidence of
primary malignant brain tumors is approximately 5.8 cases
per 100,000 person-years in the general population, and the
overall survival rate 5 years after diagnosis is approximately
one in four (1). Survival rates deteriorate substantially for
older patients, who are also the group most frequently
diagnosed with primary central nervous system (CNS)
tumors. The most common primary CNS tumor is also the
most malignant, glioblastoma multiforme (GBM), which
claims its victims’ lives most typically within 1 year of
diagnosis. Survival statistics for patients with malignant
CNS tumors have not shown any change for the better over
the past 20 years (Figure 1).

Advances in neurosurgery and neuroradiology have
established the present management practices for brain
tumor patients, but these have reached their practical limits.

After surgical resection of a glioma, the residual pool of
invasive cells gives rise to a recurrent tumor, which in 96% of
the cases arises immediately adjacent to the resection
margin or within 2 cm from the resection cavity (2,3). This
pattern of local treatment failure most likely is due to residual
tumor cells peripheral to the removed highly cellular part of
the lesion. Recurrence near the site of tumor resection may
also be due to changes in the ECM coincident with scar
tissue. In this sense, control of the disease by local treatment
strategies (for example applied into the resection cavity) may
reduce the rate of local failure and may increase the time to
local progression, hopefully translating into prolonged survi-
val time.

Recently interesting local treatment approaches such as
implantation of biodegradable biopolymers containing BCNU
(Gliadel) (Guilford Pharmaceuticals, Inc., Baltimore, MD),
HSV-Tk gene therapy, which uses injection of vector-
producing cells into the walls of a resection cavity, and
convection-enhanced drug delivery have demonstrated
some potential in early clinical trials (4,5). The HSV-Tk study
has been discontinued on the basis of proven ineffectiveness,
but considering the distant spread of the disease, not
infrequently to the contralateral hemisphere, gliomas can
hardly be called a local disease (6,7). It is not surprising that
with local therapies investigators now observe cases of more
distant satellite lesions resembling multifocal disease when
tumors recur. This pattern of recurrence reveals the true
potential of glioma migration and invasion, suggesting that
given time, these tumors will spread throughout the entire
brain.

A relationship exists between the extent of surgical
debulking of GBM and increased patient survival (Figure 2).
This clinical observation suggests two fundamental linked
realities in the natural history of gliomas. One reality is that
the greater the extent of surgical removal of GBM tissue, the
more a patient’s survival is extended. The second, and
simultaneous, reality is that regardless of how extensive the
resection, GBM recurrence is essentially inevitable, high-
lighting the clinical threat posed by invasive glioma cells. The
ultimate total anatomical tumor resection may be considered
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Figure 1. Mortality rates for primary malignant brain tumors in the United
States for the 20-year interval 1973 to 1993. No significant appreciable
improvement in these mortality rates has been made in these two decades,
highlighting the difficulty in therapeutic advances for brain tumor patients.
(Symbols: Diamond, white men; square, white women; triangle, black men;
and circle, black women) (Adapted from Ref. (171); with permission).

to be hemispherectomy, for which no survival advantage
could be demonstrated (8 —11); consequently, it is no longer
performed.

Despite this prowess for invasion, gliomas are systemi-
cally nonmetastatic (12). Development of management
strategies for a nonmetastatic disease such as glioma, has
a high likelihood of ushering in a profound improvement in
clinical outcome for patients. Thus, sober reflection on the
biology of local brain invasion and possible means to exploit
this behavior are crucial in developing new treatments for this
disease. In the future, therapies that target the invasive
mechanisms of glioma cells may be useful adjuncts to other
local strategies to limit further spread of the disease and
possibly render invasive cells more susceptible to other
cytoreductive treatments.

Biology of Invasive Glioma Cells

The molecular genetic aberrations described for glial tumors
are elaborated in several recent reviews and texts (13-16).
Mounting evidence provides strong impetus to conclude that
as specific genetic mutations and/or deletions accumulate,
so descends the tumor cell’s behavior into more malignant
grades (17-19). These molecular genetic studies derive their
information from resected tumor lesions, and these speci-
mens, even at their rim, are typical of a bulky, crowded,
tumor mass.

The degree of heterogeneity between different gliomas of
the same grade and even within an individual glioma sample
from the same patient is remarkable (20,21). Absent from
surveys on the molecular changes in gliomas, however, are
the genotypes of the invasive glioma cells, which, only when
regrown as a solid recurrent tumor, become the subject of
such study (22—-24). Morphologically, however, there is clear
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evidence that the invasive cells giving rise to recurrence are
likely to be the small, anaplastic glioma cells beyond the
peritumoral rim (2).

Glioma invasion is a very dynamic process that impacts
multiple features of the glioma cells. In any one period of
time, such as at the time of biopsy, invasion and proliferation
behaviors of glioma cells will prove to be regionally and
temporally variable. It may not be surprising that single-look
biopsy analysis fails to demonstrate an association between
proliferation and invasion (25). Despite very low proliferating
indices of distantly invasive glioma cells (26), or even an
inability to morphologically identify glioma cells distant from
the rim of obvious tumor, it is, nonetheless, possible to
harvest clonogenic glioma cells from such noncontiguous
sites (27). The clonogenic potential of these most invasive
glioma cells, referred to as “guerrilla cells” by Pilkington (28),
is the ultimate cause for tumor recurrence. How invasive
glioma cells survive in the setting of invasion, evading
immune detection (29), thwarting cytotoxic therapies (30,31),
and deferring commitment to proliferation (32), remains
largely unknown.

Recently, the biology of glial cell invasion, both devel-
opmentally and in diseased states, has advanced, allowing
the assembly of a paradigm of the functional constraints on
migrating glial cells.

Invasion of Normal Astrocytes

Developmentally, glioblasts emerge in the subventricular
zone of the brain as O-2A progenitor cells (type 2 astrocytes)
or as type 1 astrocytes (33). The centripetal spread of radial
glia into the cortex is accompanied by elaboration of
directional matrix fibers composed of laminin, tenascin, and
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Figure 2. Relationship between extent of GBM removed by surgery and
patient survival. Survival curves illustrate outcome for 172 patients receiving
extensive surgical resection (circles), 301 patients receiving partial resection
(triangles), and 130 patients having biopsy procedures (squares) as the sole
treatment for GBM. The greater the extent of tumor removed, the longer
patients survive. GBM is a lethal disease irrespective of how aggressive the
management strategy becomes. (Adapted from Ref. (172); with permission).



24 210

Biology and Oncology of Glioma Berens and Giese

vitronectin, as well as proteoglycans on which the movement
of subsequent progeny glial cells is facilitated (34—38).

The motility of glial cells during development is a
manifestation of contact with the matrix as well as dynamic
cell-to-cell interactions mediated through specific receptors.
The gap junction protein on astrocytes, connexin 43, shows a
pronounced role in glial cell behavior, including communica-
tion pathways (39) and cell proliferation (40,41). Knockout
mice lacking an ability to express connexin 43 develop viable
offspring, but the brains show architectural aberrations
consistent with abnormal astrocyte migration (42). Phos-
phorylation states of connexin proteins may regulate cell to
cell communication (43); oncogene transfection of glial cells
leads to reduced phosphorylation of connexins (44).

The neural cell adhesion molecule, NCAM, which binds to
NCAM on adjacent cells, promotes astrocyte migration (45).
Over the course of development, the level of NCAM on
astrocytes diminishes profoundly (46) with consequences on
both astrocyte motility and the ability to support neurite
outgrowth (47,48).

Soluble factors, like many growth factors, are actually
potent activators of astrocyte migration. Transforming
growth factor (TGF) beta, basis fibroblast growth factor,
epidermal growth factor, and TGF-a each promote astrocyte
migration (49). The earliest glial cells, the radial glia, maintain
their migratory capacity under the influence of soluble factors
elaborated by the embryonic brain (50). Mature astrocytes
adopt radial glia morphology when exposed to these same
factors.

Although the term glia refers to early anatomical descrip-
tion of these cells as a sort of brain “glue,” adult astrocytes
retain their ability to migrate. After trauma, stroke, or other
disease conditions characterized by necrotic brain cells,
astrocytes migrate and proliferate to form scar tissue. When
propagated in cell culture, nontransformed astrocytes
isolated from normal brain adopt successful migratory
behavior and some limited ability to self-renew (51-53). In
the setting of brain tumors, gliotic scarring is not uncommon.
Such cellular remodeling of the brain by normal astrocytes,
when appropriately activated, indicates that invasion is a
normal and regulated behavior of astrocytes (54).

Transplantation studies of brain tissue or brain cell
cultures into developing or adult brain also highlight the
motility propensity of astrocytes. The migration of such
implanted astrocytes is invariably most pronounced in the
white matter tracts (55,56). Young, developmentally imma-
ture brains sustain more extensive infiltration by transplanted
astrocytes (57,58), consistent with a loss of plasticity in the
mature brain. In a complementary manner, if immature glial
cells are induced to differentiate in vitro, their invasive
potential as an intracranial transplant is also diminished (59).

These findings indicate that reduced migratory potential
accompanies astrocyte differentiation and that the fully
mature brain is a structure somewhat resistant to cell
percolation. Hormonal induction of specific integrin matrix
receptors may re-engage the migratory behavior of mature
astrocytes on specific substrates (60) pointing to an ability to
recall developmental programs by fully differentiated cells.

Invasion of Transformed Astrocytes

Migration and invasion as key features of glioma malignancy
From the natural patterns of glioma dissemination, it is
evident that white matter is the preferred route for glioma cell
invasion (61-63). Given the increase in understanding
cellular interactions with the immediate environment, an
emerging paradigm of how cell-substrate interactions influ-
ence much of cell behavior is emerging (64). Histologically,
disseminating glioma cells percolate into normal brain
parenchyma (Figure 3). These invasive cells comprise only
a small fraction of the total tumor mass, yet they have
adapted to, or been selected for, egress from the healthy,
hyperdense cellular tumor edge. Because of their low
abundance, compounded by the inherent cellular and
genetic heterogeneity of glial tumors, these “seeds of
recurrence” may be especially difficult to investigate.
Alternative strategies for gaining access to the molecular
genetics of glioma invasion may be to use selection criteria
for generating subpopulations of cells with the desired
phenotype (65) or to employ laser capture microdissection
of the specified cells from fresh biopsy material (66—68).
Experimental and clinical studies describe various mechan-
istic determinants of glioma invasion.

Cell adhesion receptors Interactions between glioma cells
and their cellular and extracellular matrix environment are
mediated by adhesion molecules, which are a diverse
collection of cell-surface receptors. Expression of adhesion
molecules is organ specific and this might account for the
preferential seeding of tumors in certain organs. Adhesion
molecules are classified according to their functional
behavior, which is derived from the amino acid sequence
and receptor ligand(s); the four major categories of such cell
adhesion molecules are integrins, cadherins, selectins, and
the immunoglobulin superfamily. The reported changes in
these various receptors for glioma invasion are summarized
in Figure 4.

Integrins Integrins are transmembrane glycoproteins that act
as receptors for specific amino acid sequences found in
extracellular matrix (ECM) proteins, or for membrane-bound
counterreceptors on other cells (69). Because of the ubiquity
of ECM throughout tissues, integrins establish both the
texture of solid tissue and mediate much of the motility
behavior of normal and transformed cells. Although the ECM
of the brain remains incompletely catalogued, integrins on
glioma cells argue for a role of cell to ECM interactions in
invasion. About 20% of the total volume of the central
nervous system is composed of extracellular space, which is
largely filled by complex macromolecules constituting the
ECM (70). Molecules in the matrix, which include fibronectin,
collagens, proteoglycans, and so on. influence a number of
cellular functions including adhesion, migration, proliferation
and differentiation. Migration of glioma cells is dependent on
ligands in the matrix (71,72). Laminin and collagen type IV
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Figure 3. Histologic appearance of infiltrating edge from high grade astrocytoma. Two different specimens are evaluated at low power (A and C) and high power (B
and D) microscopy. The first case (A and B) shows diffusive infiltration of tumor cells into the brain parenchyma (B), with evidence of a very gradual gradient of
declining tumor cell density moving left-to-right in the field. The second specimen (C and D) presents with a cellular tumor core and a well-delineated tumor rim (C),
but at higher magnification (D) the centripetal dissemination of tumor cells can be seen. Typical glioma cell morphological heterogeneity is also evident in the higher

magnification images.

have been shown to be permissive substrates for astro-
cytoma migration (73), whereas fibronectin and vitronectin
are less permissive (73,74). When labeled human glioma
cells are seeded onto sections of normal human brain, rapid
adhesion and migration occur following along anatomical
structures containing matrix glycoproteins, predominantly
isoforms of laminin and collagen type IV (75). Other
laboratories suggest that vitronectin may be an ECM of
consequence to neovascularization in GBMs (76).

There have been extensive analyses of interactions
between glioma cells, their ECM and the expression of
integrins (71,77), all of which have been correlated to the
migratory abilities of the cells. Individual cells can vary their
adhesive properties by selective expression of integrins (78).
Cells are also able to modulate the binding properties of
integrins. Normal astrocytes have been shown to express
integrin subunits a2, a3, a6, 51, and $4, whereas subunits
a4, ab, av, 32, and (33 are consistently absent in these cells;
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neoplastic astrocytes show increased expression and/or
neoexpression of these subunits (79). Ohnishi and collea-
gues (80) demonstrated that migration of glioma cells can be
stimulated by fibronectin and the degree of expression of the
o5 integrin subunit correlated well with the strength of glioma
cell adhesion to fibronectin. Studies of primary tumor cells
showed that the intensity of glioma cell adhesion to
fibronectin was negatively correlated with the degree of
tumor invasion (81). Laminin has been shown to be a strong
promoter of glioma cell migration out of multicellular
spheroids (82). Blocking the o331 integrin receptor signifi-
cantly reduces migration on laminin (83). Antibody-blocking
studies with rat C6 glioma cells suggest that migration and
invasion are mediated by 1 integrin laminin receptors (84).
Deryugina and colleagues (85) have shown that only a
subset of integrin receptors that are involved in cell adhesion
is required to mediate migration, and these integrins are
ligand specific. For example, glioma cell migration on
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Figure 4. Schematic diagram of modifications in gene expression (loss or gain) that promote the invasive phenotype of glioma cells. The microenvironment of
astrocytes, oligodendrocytes, and ECM is the backdrop against which opportunistic or tumor-derived reactions lead to glioma cell locomotion. The overview depicts
the various reported determinants of invasion gleaned from reports on the different receptors or proteins and does not intend to infer that the changes are linked,
sequential or concordant. It is likely that glioma cells use common mechanisms of invasion, which include detachment consequences as well as attachment events in
their successful penetration into brain parenchyma. The biochemical determinants of invasion into white matter are not necessarily the same as those needed for

invasion in the perivascular space.

fibronectin was critically dependent on av integrins, whereas
tenascin-mediated cell migration was dependent on 1
integrins.

We have shown that the matrix glycoprotein tenascin is
able to provoke an antimigratory response in glioma cells,
and that this phenotype is mediated by an av-containing
integrin (86). The migratory phenotype of glioma cells may
be directly influenced by manipulating the expression of the
av gene as demonstrated by antibody-blocking studies as
well as antisense strategies (87). Yamamoto and colleagues
(88) showed that inappropriate sialylation of integrin o341
can change focal adhesion as well as adhesion-mediated
signal transduction and block glioma cell invasion in vitro.

By using purified matrix proteins of different adhesiveness
such as laminin, collagen, fibronectin, and vitronectin, it has
been shown that migration rates of glioma cells positively
correlate with adhesiveness to the protein used for migration
experiments (71). Furthermore, the degree of adhesion to a

specific matrix protein (i.e., merosin) correlates to the
migration rate for various cell lines. A direct linear correlation
was demonstrated, suggesting that migration rates on this
substrate are contingent on the degree of substrate adhesion
(89). In a somewhat artificial system with CHO B2 cells which
are deficient in fibronectin receptor (ayp33), transfection with
inducible expression constructs coding for variants of the
fibronectin receptor having different affinities to ligand,
Palacek and colleagues (90,91) demonstrated that max-
imum migration speed is dependent on three determinants:
1) the degree of matrix ligand density, 2) integrin receptor
expression levels, and 3) integrin-ligand binding affinities. In
their study a biphasic migration response curve was
observed when cell detachment force to fibronectin substrate
was plotted against migration speed. Optimal migration
occurred at a cell-substratum detachment force of 2—4x1078
N. At high ligand concentration or very high levels of receptor
expression (resulting in high substrate binding force),
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migration speed decreased. These findings would suggest
two possible mechanisms may explain loss of matrix control
over tumor cell motility. Tumor cells may either loose high
expression of constitutive matrix receptors, or, alternatively,
gain matrix receptor function that may facilitate motility on a
given substrate. However, among 13 glioma cell lines tested,
no instance was observed that demonstrated very high
substrate binding affinity resulting in a decreased migration
rate. Integrin affinity is known to be regulated on matrix
ligand binding by intracellular mechanisms (92) and may be
co-regulated by the signaling cascades of other receptor
pathways such as G protein receptors, including the
thromboxane receptor (93). It is possible that integrin-
transfected CHO cells lack the intracellular mechanisms
normally required for modulation of receptor affinity coordi-
nated by motile cells. Therefore, decreased CHO cell motility
at high substrate detachment forces may be due to an
artificial substrate affinity that does not occur when integrin
receptors are expressed de novo or in the context of a
normal signaling cascade initiated by native integrins.

Novel approaches to arrest local invasion of tumors by
selectively activating antimigratory integrins and potentially
blocking migration-enhancing integrins may have a profound
impact on future therapeutic strategies (94,95) including
inducing apoptosis (96,97).

Cadherins Cadherins are calcium-dependent, homotypic
adhesion receptors. They play an important role in the
determination of tissue organization. Decreased cadherin
expression in epithelial tumors is associated with a more
malignant and highly invasive phenotype (98—100). A similar
biological association was described for glial tumors (101),
although not corroborated in another study (102). Malignant
meningiomas, like other mesenchymal tumors (i.e., sarco-
mas), manifest decreased cadherin expression compared
with their benign counterparts (88).

Selectins Selectins are proteins that bind specifically to
carbohydrates on the cell surface and mediate heterotypic
cell interactions via calcium dependent recognition of
sialyated glycans. While ligands for the currently known
selectins are incompletely identified, it appears that signals
transmitted by selectins can regulate gene expression in
some types of cells (103). Although not appearing to play a
role in brain development or glial cell biology, these receptors
have demonstrated significance in lymphocyte homing and
immune regulation and may be involved in glioma escape
from effective immune reactions (104).

Immunoglobulin superfamily The immunoglobulin super-
family includes a diverse array of cell adhesion receptors
including NCAM (the neural cell adhesion molecule), ICAM-1
(the intercellular adhesion molecule-1), and DCC. NCAM
may modulate subtle changes in the invasion pathways of
glioma cells (105). The expression of ICAM-1 is enhanced in
GBM cells in vitro by cytokines (106). Such receptors
modulate visibility to immune detection and may not
subserve tumor cell locomotion. The tumor suppresser gene
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DCC encodes a protein with significant homology to
members of the immunoglobulin superfamily and is likely to
function as an adhesion receptor (107,108), including
binding to the CNS matrix protein netrin (109). DCC has
been shown to induce differentiation and control cell
proliferation (110). A correlation has been noted between
loss of DCC expression and glioma progression: Malignant
gliomas have reduced expression of DCC, whereas low-
grade astrocytomas are predominantly DCC-positive (111—
113), implying that DCC may play a role in glioma
progression (114,115).

CD44 The transmembrane glycoprotein CD44 is involved in
development of the nervous system (116—119). Because its
ligand, hyaluronic acid, is a glycosaminoglycan abundant in
the CNS, much speculation exists regarding CD44 as a
glioma marker (120). CD44 has been reported to mediate
glioma migration and invasion (121—124). Elimination of the
expression of the intermediate filament specific for astro-
cytes, glial fibrillary acidic protein (GFAP), which may be
construed as a dedifferentiation event (125), is accompanied
by anincrease in CD44 expression (126). A firm link between
CD44 expression and human glioma invasion has not been
demonstrated, but confrontation cultures between glioma
spheroids and normal brain aggregates provoke enhanced
CD44 expression at the interface (127), and suppressed
CD44 expression compromises the invasion of transplanted
human glioma cells in the brains of nude mice (128).
Hyaluronate is also specifically bound by receptor for
hyaluronan-mediated motility (RHAMM) (129), which mod-
ulates many behaviors of glioma cells including locomotion
(130,131). RHAMM has recently demonstrated links to
kinase signal transduction (132) and to modification of the
cellular response to growth factors (133).

BEHAB After the discovery of a brain enriched hyaluronan
binding protein, BEHAB (134), and the demonstration of its
expression during development of the CNS (135), its role as
ECM substrate for cell adhesion (136), and its heightened
expression in glioma biopsy specimens (137), consideration
was focused on its role in glioma biology. Proteolytic
cleavage of BEHAB activates glioma cell migration and
invasion in vitro (138,139), suggesting a role for this receptor
in glioma pathobiology.

SPARC Very recently, by using subtractive hybridization
techniques to identify genes inordinately expressed in
varying grades of glioma specimens, Rempel identified a
cell-matrix protein, SPARC, as a candidate mediator of
glioma invasion (140). Interestingly, this protein shows
heightened localization in the invasive regions of glioma
specimens. Because the protein is also expressed by
reactive astrocytes, this may be an indication for a funda-
mental role in cell locomotion in the brain.

Gap junction communication An early event reported in
transformation is the loss of gap junctional communication,
mediated by reduced expression levels or decreased
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assembly of connexin proteins (141). These receptors are
not responsible for stable cell-cell contacts, but rather
mediate cell-to-cell communication through diffusible, small
molecular weight, cytosolic molecules. As such, their role in
cell locomotion is likely to be indirect. For glioma cells, the
levels of connexin expression correlate with proliferation
(142). Connexin transfection into glioma cells retards
proliferation (143) and can even revert the transformed
phenotype (144). The motility rate of glioma cells is inversely
correlated with levels of connexin expression (16).

Proteolytic Remodeling of the Extracellular Matrix

Locomotion of cells necessitates the availability of a
space through which to travel. Enzymatic remodeling of the
ECM is crucial for sustaining a cell’s trajectory. A growing
inventory of secreted proteolytic enzymes is being identified
as produced by glioma cells (145-148), which may serve to
solubilize the ECM, creating a conduit for invasion. A specific
metalloprotease produced by glioma cells has been isolated
that modifies CNS myelin, transforming an otherwise
nonpermissive substrate into one that facilitates migration
(149). This protease promotes the adhesion and migration of
neurons (150), astrocyte precursor cells (151), and glioma
cells (152). The establishment of specific secreted proteo-
lytic enzymes from glioma cells and the presence of
appropriate substrates as ECM barriers or motility anchors,
however, has not been achieved.

Receptor Biology and the Glioma Cell Phenotype

In addition to their influence in various aspects of cellular
structure and function, cell adhesion receptors regulate cell
growth and differentiation by initiating intracellular biochem-
ical signaling cascades via signal transduction pathways.
Integrins are capable of transmitting biochemical signals
from the ECM to the cell interior (153-155). Integrin-
mediated signals overlap considerably with those induced
by cytokine and growth factor receptors, most notably the
pathway for receptor tyrosine kinase signal transduction
(156). Cadherin-initiated signaling events have also been
shown to impinge on the receptor tyrosine kinase pathway,
as well as the G-protein pathway (157).

There is a relative paucity of information on the role of
selectins and the immunoglobulin superfamily as signal
transducers, when compared with the numerous studies with
integrins and cadherins. However, it is clear that novel
aspects of signal transduction involving cell adhesion
molecules will most likely impinge on known signaling
pathways. The morbidity and mortality associated with
cancer as a disease are primarily consequences of the
spread of cancer cells. Modulation of adhesion molecule
expression in gliomas may afford the possibility of altering
cell-cell interactions as well as cell-ECM interactions, which
may be avenues of manipulating local invasion in these
neoplasms.

Collectively, invasive glioma cells demonstrate loss of
adhesion factors that anchor cells in the tissue while also
gaining biochemical machinery conducive to the migratory

behavior (Figure 4). It is likely that these biochemical
changes are coordinated and responsive to microenviron-
mental factors. To the extent glioma cells modify and
respond to conditions in their immediate environment, the
invasion process can be considered to be opportunistic.

Going and Growing

The dichotomy between differentiation and proliferation of
both normal and tumor cells is well accepted. Astrocytoma
cells follow this mutually exclusive behavior in that induced
differentiation leads to suppressed growth (158). Treatment
of glioma cells with phorbol ester (an agent typically
associated with differentiation induction) leads to sup-
pressed growth but increased migration and enhanced
invasion (159). Antifolate chemotherapeutic agents also
suppress growth, but migration suppression became evident
only after an order of magnitude higher drug concentration
(160), consistent with a disparate response by the cells to
growth and migration effects from the same treatment.
Remarkably, specific receptor—mediated responses to TGF-
(1 by human glioma cells demonstrate growth inhibition and
migration stimulation (131). Extracellular matrix proteins that
activate glioma cell motility behavior suppress proliferation
(23,32,161,162). Results of studies using tumor cyst fluids
demonstrate that autocrine factors generated in the tumor
bed lead to proliferative and migratory responses with
markedly dissimilar response profiles (163); subsequent
work identified scatter factor as a potent component of such
fluids (164). Interleukin-10, however, had identical dose-
optima for both growth and migration stimulation (165).

When human glioma cells are evaluated for their
proliferative activity while under differing migration condi-
tions, it becomes evident that environmental determinants of
migration influence growth. Figure 5 demonstrates the
proliferative labeling index with anti-myb-1 antibodies to
reveal the interplay between migration and proliferation.
When human glioma cells deposit as a confluent monolayer
on a nonspecific substrate for adhesion but nonpermissive
for motility, the cells adopt a uniformly active proliferative
commitment (Figure 5A). In contrast, when these same cells
are seeded onto laminin, which profoundly accelerates cell
migration, the cells most engaged to migrate are only very
infrequently found to be in cell cycle (Figure 5B). Tumor cells
harvested from the vital core of a GBM will rapidly grow to
large colonies in soft agar, whereas cells plated from regions
of invaded brain will develop colonies of smaller size and
reduced number of cells. When tested for migration in vitro,
cells from invaded brain show higher motility rates compared
with cells from the solid tumor, suggesting that invasive
glioma cells are more highly migratory but show inherently
decreased proliferative capacity (unpublished observations).
Such an observation parallels the clinical presentation of
gliomas in that the invasive, solitary cells do not manifest any
proliferative activity until they generate a recurrent, satellite
lesion.

A growing body of evidence from studies using treatments
ranging from growth factors, cytotoxic chemotherapeutic
agents, and ECM proteins, begin to drive a recognition of the
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Figure 5. Proliferation index of stationary (A) and migratory (B) human glioma cells assessed by immunocytochemistry for MIB-1. Cells were deposited as confluent
discs of cells (74) onto substrates of tissue culture —treated glass or laminin that were blocked with bovine serum albumin, then the population of cells was monitored
for lateral dissemination from the initial site. Cells were fixed after 48 hours of culture, probed with anti—MIB-1 antibodies (DAKO, Carpinteria, CA), treated with
biotinylated anti-mouse secondary antibodies (Pierce, Rockford, IL), then incubated with strepavidin-HRP (Amersham Pharmacia Biotech, Piscataway, NJ).
Reaction with DAB produces a brown insoluble product where the primary antibody bound MIB-1. Cells on glass (A) manifest minimal migration evidenced by the
small intercellular space and the tightness of the perimeter cells to one another. The population of nonmotile cells is uniformly labeled by anti—MIB-1, indicating that
the population of cells is largely in cell cycle. Cells on laminin (B) were in a sustained migration mode evidenced by the increased intercellular spaces and the
dispersion of the perimeter cells away from the initial site of seeding. These motile cells, especially those at the periphery, show greatly diminished proliferation

commitment.

remarkable ability of glioma cells to shift between cell division
or cell locomotion and the mutually exclusive basis of these
options in any one time frame (166).

Oncology of Invasive Glioma Cells

Invasive glioma cells escape surgical removal and focused
radiation treatment. Because of their commitment to locomo-
tion instead of reproduction, these cells are not readily
identified with radiological imaging techniques. As the
repertoire of migration and invasion biochemistry becomes
understood, various means by which to control this patho-
logic entity may present themselves. However, it must be
recognized that at the time of clinical presentation, invasive
glioma cells have already disseminated into the brain
parenchyma, and development of anti-invasive treatments
will likely prove to be too little, too late in making an impact on
patient survival. Heightened commitment to migration by
glioma cells is accompanied by a diminution of proliferation.
One significant implication of the dichotomy between “go and
grow” is that therapies designed to arrest or retard glioma
cell invasion are likely to accelerate proliferation (Figure 6).
We propose that this would be an unwelcomed and
unfavorable outcome to anti-invasive therapies.

Two alternative approaches present themselves for a new
oncology of invasive glioma cells. The first would be to
attempt to exploit collateral changes in cell behavior
coincident to manipulation of cell migration, and the second
would be to specifically focus on the invasive glioma cells as
a therapeutic target.

For the first strategy, it is recognized that biochemical,
pharmacological, and biophysical alterations in the cells’
microenvironment alter the executed genetic program of the
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cells. For interventions that directly interfere with migration,
or that exploit down-stream signaling mediators of the
invasive phenotype, it may be feasible to show an
accompanying change in the cells’ responsiveness to toxic
therapies. Herein, anti-invasive treatments may not be an
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Figure 6. Oncology of invasive glioma cells. A dichotomy exists between
proliferation commitment and the migratory phenotype of normal and malignant
glial cells. Arrested migration leads to more proliferation, whereas suppressed
proliferation shifts glioma cells to a more migratory phenotype. Highly migratory
glioma cells also show a relative resistance to cytotoxic insult (chemotherapy or
radiation therapy), whereas nonmigratory glioma cells in the proliferative pool
are more responsive to these treatments. Recognition of the role migration has
on both proliferation and response to therapy, and identification of means by
which to manipulate motility behavior to exploit therapeutic gain, should provide
new opportunities for brain tumor treatments.
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effective direct intervention, but rather may shift the invading
cells into a more responsive mode to other therapies.
Coordinated invasion-arrest in the setting of radiation,
chemotherapy, or certain gene therapies would serve to
gain therapeutic advantage.

Secondly, in the context of the inverse link between
proliferative and motile behaviors of glioma cells, we posit
consideration of therapies that promote glioma cell migration
and invasion (so called taxis therapies). Various ECM
proteins have been demonstrated to activate glioma cell
motility (71,167). It is recognized that ECM proteins engage
specific receptors on the cell surface and that such receptor
occupancy triggers specific signal transduction reactions
within the cell. It is not inconceivable that such a signaling
cascade would include in its repertoire the controlled
prolongation of various phases of cell cycle or even
proliferation arrest. In addition to such insoluble matrix
molecules that engage the motility machinery of the cell,
soluble factors function as motility activation agents
(23,168 -170). The roster of such compounds includes
epidermal growth factor, platelet derived growth factor,
scatter factor or hepatic growth factor, and insulin like growth
factor. Although many of these are typically considered to be
agents that stimulate cell proliferation, at appropriate
concentrations or in conjunction with appropriate ECM
ligands, these compounds provoke motility responses in
cells.

Certain combinations of both soluble and insoluble agents
that engage the migratory response of glioma cells could be
harnessed for use as taxis therapy. In this approach,
following initial surgical resection of a primary glioma, the
resection cavity would be installed with a bioengineered
cannula whose luminal surface was modified to present to
wandering glioma cells an anchored substrate that activates
glioma cell motility. The farther cells moved up the cannula,
the higher the ligand density would become to activate
migration. Concurrently, a solution containing chemotactic
concentrations of a specific factor or a cocktail of factors that
attract the glioma cells would be pumped into the resection
cavity through the cannula. As glioma cells chemotactically
reinvade the primary tumor bed, they would encounter the
cannula, inducing their egress. These strategies which
activate glioma cell motility also suppress proliferation,
providing a therapeutic benefit.
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