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Abstract

Many properties of HSV-1 are especially suitable for
using this virus as a vector to treat diseases affecting
the central nervous system (CNS), such as Parkinson’s
disease or malignant gliomas. These advantageous
properties include natural neurotropism, high transduc-
tion efficiency, large transgene capacity, and the ability
of entering a latent state in neurons. Selective oncolysis
in combination with modulation of the immune re-
sponse mediated by replication-conditional HSV-1
vectors appears to be a highly promising approach in
the battle against malignant glioma. Helper virus-free
HSV/AAV hybrid amplicon vectors have great promise in
mediating long-term gene expression in the PNS and
CNS for the treatment of various neurodegenerative
disorders or chronic pain. Current research focuses on
the design of HSV-1-derived vectors which are targeted
to certain cell types and support transcriptionally
regulatable transgene expression. Here, we review the
recent developments on HSV-1-based vector systems
and their applications in experimental and clinical gene
therapy protocols.
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Recombinant HSV-1 Vectors

Recombinant herpes viruses were first constructed for the
purpose of vaccination against HSV-1 and HSV-2 and to
study the functions of individual virus genes. Only later were
they considered suitable gene transfer vehicles, especially
for use in the central nervous system (CNS). A protocol for
site-specific modification of the virus genome was first
reported by Post and Roizman [1] and is reviewed in detail
elsewhere [2,3]. In principle, two types of recombinant HSV -
1 vectors can be distinguished depending on the target tissue
and purpose of gene delivery: i) for therapeutic gene transfer/
replacement in neurons, mutation/deletion of some essential
genes can serve to prevent the expression of toxic virus
proteins and initiation of the lytic viral replication cycle
(replication-defective HSV-1 mutants); ii) for therapeutic
treatment of tumors (virus therapy), where toxicity is the main
purpose, one or more genes are deleted which are essential
for virus replication in nondividing cells of the surrounding
tissue, but can be complemented by proliferating tumor cells

(replication-conditional HSV-1 mutants). Both types of
vectors can incorporate single or multiple therapeutic genes
accounting for at least 30 kb of the 152-kb genome. In
principle, recombinant HSV-1 mutants are generated by
homologous recombination. The frequency of recombination
is proportional to the length of the homologous flanking
sequences and usually less than 5%.

Gene Transfer into Neurons

The wild-type (wt) HSV -1 genome can persist in neurons
during latency in a nuclear life -long episomal location without
disturbance of host-cell metabolism and without eliciting an
immune response. This suggests that if viral neuropathogen-
esis and reactivation could be avoided by manipulation of the
viral genome, it should be possible to express transgenes
from a silent virus genome in a nerve cell-specific manner.
However, several obstacles have to be overcome: i)
replication-defective mutants of HSV-1 can cause cyto-
pathic effects in primary cultures of neural cells and
inflammatory responses in neural tissue in vivo; ii) most viral
and nonviral promoters are silenced after injection into the
brain; and iii) the activity of the LAT (latency associated
transcript) promoter is weak in CNS neurons [4]. Therefore,
the main focus in the development of new HSV-1-based
vectors has been directed at achieving nontoxic, long-term
gene expression in neurons.

Two main approaches have been taken to reduce toxicity:
i) the engineering of mutants in which virus gene expression
is blocked in an early stage; and ii) the use of mutants which
lack the neurovirulence gene v34.5. As the initiation of the
viral replicative machinery depends on the concerted action
of at least five viral proteins (VP) or infected cell proteins
(ICP), including VP16, ICP 0, 4, 22, and 27, single or double
deletion mutants involving various combinations (ICP 0
alone, ICP4 alone, ICP4+22, ICP4+27, ICP4+47) were
initially created. Although expression of viral early and late
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genes is dramatically reduced in these mutant backgrounds,
they still cause some toxicity and alteration of cell morphol-
ogy and chromatin structure [5—-9], most likely due to
expression of remaining immediate-early (/E) genes.
Supporting this hypothesis, mutations affecting the activation
function of VP16 did reduce the toxicity of an ICP4~ mutant
significantly [10], probably due to the overall reduction in IE
gene expression in the absence of VP16 transactivation.
Substantially reduced vector cytotoxicity was also reported
for replication-defective HSV-1 mutants that contain dele-
tions in multiple genes [4,11—14]. These multiple deletions
included the IE genes encoding ICP4, ICP22, ICP27, and
ICP47 [11,12,14] and prevented early and late viral gene
expression, but major histocompatibility complex (MHC)
class | antigen expression remained intact in the absence of
ICP47. Viral mutants deleted simultaneously for the IE genes
encoding ICP4, ICP22, and ICP27 showed substantially
reduced cytotoxicity when compared to viruses deleted for
ICP4 alone or ICP4 in combination with either ICP22, ICP27
or ICP47 [14]. Infection of cultured neurons with these triple
|IE deletion mutants substantially improved cell survival and
supported transgene expression for over 21 days [11,12].
However, infection of Vero and human embryonic lung cells
leads to inhibition of host cell DNA synthesis and pronounced
and distinct alterations of nuclear morphology, most likely
due to the accumulation of ICPO [14,15]. The elimination of
ICPO together with VP16 and ICP4 [16,17], or together with
ICP4 and ICP27 [15], or together with all other /E genes [18],
greatly reduced cytotoxicity, but also reduced the level of
transgene expression. Therefore, transgenes inserted into
the genome of these mutants may be expressed at reduced
levels, depending on the promoter used to regulate them.
Nevertheless, these types of vectors have been successfully
used to express bcl-2 and to reduce 6-hydroxydopamine -
induced apoptosis of neurons in the substantia nigra in
experimental animal models [19].

The v34.5 deletion mutants, where both copies of the
v34.5 gene are deleted, were first generated for the
assessment of its phenotype [20], tested in animal models
[21], and later adapted for virus-mediated therapy of brain
tumors [22,23]. In proliferating cells, these mutants can
replicate as efficiently as wt virus, whereas in most neurons,
they are replication-defective, but still able to establish
latency [24]. Delivery of a constitutively active form of a heat
shock factor using this type of vector protected neurons from
thermal and ischemic stress [25] as well as from apoptosis
[26]. However, a mutant, where the lacZ reporter gene driven
by the LAT promoter was inserted into a nonessential gene,
UL43, of recombinant HSV-1 1716 (ICP34.5 double-
deletion) failed to mediate transgene expression for more
than 2 weeks after injection into the peripheral nervous
system (PNS) and CNS [24]. The same vector did not
transduce enteric neurons efficiently and, in addition,
exhibited some toxicity [27].

The choice of the promoter driving the gene of interest is
important to achieve long-term (several weeks to months)
gene expression in neurons. In principle, three different
types of promoters can be used: i) the HSV -1 LAT promoter;
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ii) other viral promoters; or iii) cellular promoters. The LAT
promoter is of special interest, as it mediates specific gene
expression and is active in latency in certain neurons [28,29].
Recombinants of HSV -1 that contained /lacZ reporter genes
placed under transcriptional control of the LAT promoter at
both LAT loci, mediated synthesis of (3-galactosidase in
sensory neurons for 2 months [30], and in neurons located in
facial and hypoglossal nerve nuclei and in the upper cervical
spinal cord for up to 10 months [31]. Control of (-
glucuronidase expression from the TATA box-containing
latency promoter, LAP1, led to production of the enzyme for
up to 4 months after inoculation of the vector into the
trigeminal ganglia or brainstem of MPS VIl mice [32].
Although the alternate LAT promoter, LAP2, is primarily
responsible for LAT expression during lytic infection, LAP2
has also been shown to be transcriptionally active during
latency [33]. LacZ mRNA could be detected in hippocampal
neurons for up to 4 weeks after inoculation of recombinant
HSV-1 vectors that express this reporter gene from LAP2
[7]. LAP2 was also capable of supporting long-term (4
weeks) expression of the gene for nerve growth factor, -
NGF, in latently infected neurons in vivo, providing protection
of dorsal root ganglion neurons from peroxide toxicity [34].
HSV-1 recombinants that express the transgene from
constitutive viral promoters, such as the retrovirus LTR or
cytomegalovirus |IE promoter, or even from neuron-specific
promoters, support in general only short-term (several days)
expression in the CNS [5—7,34 — 37]. Heterologous promo-
ters introduced into the virus genome are prone to come
under the influence of the transcriptional machinery of the
virus, which can result in unspecific expression, at least in
the CNS [7]. Moreover, the tightly condensed nucleosomal
configuration of the HSV-1 genome in latency may restrict
access of transcriptional activators. Two studies, however,
demonstrated that the MoLMV LTR promoter can support
lacZ gene expression in primary sensory neurons for up to 18
months [38,39].

Virus/Gene Therapy of Gliomas

HSV-1-based therapy of brain tumors relies on the
selective killing of tumor cells by the virus replication per se
and/or the virus-mediated expression of anti-tumor acting
genes. Anti-tumor acting genes can encode: i) prodrug-
activating enzymes (e.g., thymidine kinase [40], Escherichia
coli cytosine deaminase [41,42], E. coli guanine phosphor-
ibosyl transferase [43,44], cytochrome P450 [45-47],
deoxycytidine kinase [48]); ii) cell-cycle regulating proteins
(e.g., p53) [49]; iii) factors which inhibit angiogenesis; or iv)
immunomodulating cytokines (reviewed in Ref. [50]).

For virus therapy of brain tumors, different single- or
multiple-mutated replication-conditional HSV-1 vectors
have been created, which have reduced neuronal toxicity
and replicate selectively in dividing, and not in quiescent,
cells. The deletions/mutations include the tk gene (e.g.,
HSV-1 RH105 [51]; dIsptk [52,53]; KOS-SB [54,55]; G92A
[56,57]), the ribonucleotide reductase (RR) gene (e.g.,
HSV-1 hrR3 [58-62]), the v34.5 gene (e.g., HSV-1
R3616 [20,22,23]; 1716 [63—-65]) or the ~34.5 gene



PA 404

Part ll: HSV-1 Vector Systems Jacobs et al.

together with either the RR gene or the gene encoding
uracyl N-glycosylase (HSV-1 G207 [66]; MGH-1 [67];
3616UB [68]).

First generation HSV-1 mutants, such as the dIsptk
vector, exhibited a substantial therapeutic effect in terms of
killing glioma cells in culture and in vivo, but their application
was limited for two reasons: first, the recombinant virus lacks
a functional tk gene and, therefore, potential d/sptk-induced
encephalitis cannot be controlled by ganciclovir (GCV);
second, in some studies, intracranial inoculation caused
fatal encephalitis at high vector doses [22,52,54]. Elimination
of the neurovirulence gene, v34.5, substantially reduced the
risk of developing focal encephalitis, and still retained the
therapeutic effect in primary glioma, medulloblastoma, and
metastatic brain tumor models [22,23,69—72]. The LD50 in
mice increased by a factor of ~108 compared to wt HSV -1
[20,64]. Attempts to recover virus from brains of infected
animals were either unsuccessful or yielded very small
amounts of infectious particles [20,21]. Histopathological
studies of immunocompetent mice which were injected into
the left cerebral hemisphere with 1x10° PFU of 1716, a
~34.5 double-deletion mutant derived from HSV-1 strain
syn17, exhibited a low grade meningoencephalitis with a
limited inflammatory response at early times after inoculation
[783]; virus gene expression was confined to the site of
inoculation. By 28 days after inoculation, the CNS appeared
histopathologically normal and virus-encoded antigens and
virus-induced immune responses were no longer detect-
able. These findings demonstrate that infection of the CNS
by +34.5 null mutants results in a finite, self-limiting
response and highlights the potential usefulness of these
vectors for clinical protocols [73,74]. In a similar study [75],
the recombinant HSV-1 R3616, a v34.5 double-deletion
mutant derived from HSV-1 strain F, has been shown to
infect neurons, astrocytes, oligodendrocytes, and ependy-
mal cells and, hence, did not discriminate at the level of
infection among CNS cell types. The transduced cells have
been cleared entirely from the nervous system by day 7 after
infection [75]. This study supported the view that the
neuroattenuation of v34.5 deletion mutants is based on a
gross reduction in the ability of the virus to replicate and
spread cell-to-cell and not on a restricted host range in the
CNS. However, other data suggest that this type of vector
needs further attenuation before it can be used in clinical
applications for the following reasons: i) the vector can
replicate in and destroy the ependyma, leading to a
persistent loss of the ependymal lining in mice [76]; ii) after
inoculation into the CNS of rats or mice, the vector is able to
spread to distant sites where it induces inflammatory
reactions [77,78]; iii) the vector causes cytopathic effects in
the immunocompromised host [79]. Moreover, HSV-1
strain-related differences of toxicity and the possibility of a
second site suppressor mutation occurring in HSV-1
mutants, where a single gene is deleted or mutated, possibly
affecting neurovirulence or other activities of the vector
should be kept in mind when preparing an HSV -1 mutant for
clinical use. Of note, the capacity of v34.5 double-deletion
mutants to kill human cells derived from glioblastoma

multiforme, anaplastic astrocytoma, anaplastic glioma, glio-
sarcoma, and normal human astrocytes in culture varies
[69]. Moreover, cultured astrocytes were two to three orders
of magnitude less susceptible to killing than were malignant
glia [69], indicating a cell-type dependent therapeutic effect.
Insertion of different immunomodulating interleukin genes
into the v34.5 locus induced significant alterations of the host
immune response and demonstrated its important role as
part of the therapeutic effect of these vectors [80]. An
enhanced anti-tumor effect of recombinant HSV-1 R3616
was also achieved by ionizing radiation, which caused a two-
to five-fold enhanced replication in irradiated tumor cells,
resulting in a significantly greater reduction in volume, or total
regression, of tumors than either radiation or infection alone
[81].

Other first-generation vectors, such as recombinant
HSV-1 hrR3, bear a lacZ-insertional mutation within the
large subunit of the gene encoding RR [61], thereby
restricting replication of the vector to proliferating cells,
e.g., tumor cells, which express complementary RR
activity (Figure 1). This vector has been used for the
selective destruction of tumor cells in different experi-
mental tumor models in the brain and other organs
[58,60,62,82—-84]. For example, in in vivo studies,
animals harboring human U-87MG gliomas were ran-
domly divided and treated intraneoplastically with either
5x10° PFU of recombinant HSV-1 hrR3 or medium
alone. The virus-treated animals showed significant
inhibition of tumor growth [62]. The vector retains an
intact HSV-1 tk gene, which can be used as “marker
gene” to monitor vector replication and spread using
non-invasive in vivo imaging methods [85] as well as to
sensitize transduced cells to GCV. Administration of GCV
to tumor-bearing animals treated with hrR3 reduced the
vector-mediated inflammatory response in a dissemi-
nated brain tumor model [83] and served to increase the
therapeutic capacity of the vector in animals bearing
intracranial and intrathecal rat 9L gliosarcomas [60,83]. A
similar observation was made with a variant of hrR3,
rRp450, carrying a cytochrome P450 (CYP2B1) inser-
tional mutation at the RR gene locus [86]. This mutant
replicated selectively in dividing rat and human tumor
cells which express high levels of mammalian RR, and
addition of cyclophosphamide potentiated oncolytic effects
against subcutaneous (s.c.) tumor xenografts established
in athymic mice without compromising replication of the
vector. In a similar experimental tumor model, injection of
this vector with application of both cyclophosphamide and
GCV resulted in enhanced tumor regression after pro-
drug activation [87]. In view of a potential clinical
application of these vectors, it should be noted that
pre-existing HSV-1 immunity decreases, but does not
abolish HSV-1 vector-mediated gene transfer to experi-
mental brain tumors [88]. Moreover, in two different
latency models in rats, intracerebral injection of hrR3 did
not reactivate latent wt HSV-1 in either the corneal or
the cerebral model. This indicates that intracranial
injection of partially defective recombinants of HSV-1
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Figure 1. Time - course of cytopathic effect and lacZ gene expression mediated by replication - conditional HSV - 1 mutant hrR3 [61] after infection of cultured rat 9L
gliosarcoma cells. MOI = 1.5 PFU/cell. (A) 19 hours postinfection (p.i.); (B) 28 hours p.i.; (C) 42 hours p.i.; (D) 50 hours p.i. Replication and spread of the recombinant
leads to progressive cytopathic effects and, eventually, to death of all cells in the culture (D).

may bear little or no risk of reactivating latent wt virus
present in sensory ganglia or brain [89], although it must
be kept in mind that rats are, in general, less infectable
with HSV-1 than humans.

Second generation HSV -1 vectors, such as triple mutants
carrying deletions at both v34.5 gene loci and a transgene
insertion that inactivates the ribonucleotide reductase gene
(G207, MGH-1, and rRp450), were found to be especially
suitable for treating human malignant brain tumors for
several reasons [66,67,90]: i) high replication-competence
in glioblastoma cells (and other dividing cells); ii) neuroatte-
nuation; iii) temperature sensitivity; iv) GCV hypersensitivity
[91]; and v) the presence of a detectable histochemical
marker (lacZ) or therapeutic gene coding for a pro-drug
activating enzyme. In nude mice harboring s.c. or intracer-
ebral U-87MG gliomas, intraneoplastic inoculation with
G207 caused decreased tumor growth and/or prolonged
survival [66]. Similar therapeutic effects were observed in
human F5 malignant meningioma [90], human malignant
breast cancer [92], mouse CT26 colorectal carcinoma, and
M3 melanoma [93], but not in rat 9L gliosarcoma cell lines
[67], demonstrating again a cell-dependent therapeutic
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effect. Most importantly, such therapeutic vectors produce
vi) a strong and highly tumor antigen - specific cytotoxic T-
lymphocyte (CTL) response which seems to play a major role
in the therapeutic effect of this vector in immune competent
recipients [93]. The mutants are avirulent on intracerebral
infection of both mice and highly HSV -sensitive nonhuman
primates. They are therefore considered interesting candi-
date vectors for the clinical evaluation in the treatment of
glioblastomas [94]. The presence of two mutations reduces
the possibility of recombinational events in situ, thereby
reducing the risk of generating virulent progeny during virus
therapy [68].

HSV-1-Based Amplicon Vectors

Historical Background

The serial passage of HSV-1 at high multiplicities of
infection results in the production of both wt and defective
HSV-1 viruses [95]. The genomes of these naturally
occurring defective viruses consist of multiple reiterations
of specific HSV - 1 sequences (repeat units), including a DNA
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cleavage/packaging signal (pac) and an origin of DNA
replication (ori), arranged as head-to-tail concatemers
comprising ~152 kb of DNA, the size of the wt HSV-1
genome [95—97]. Based on these observations, Spaete and
Frenkel [99] developed bacterial plasmids that contained
single repeat units with oriand pac and demonstrated that, in
mammalian cells in the presence of HSV -1 helper functions,
the plasmids were replicated and packaged into virus
particles. The genomes of these particles were composed
of amplified head-to-tail-linked concatemers of the seed
plasmid, which was therefore termed “amplicon” (Figure 2A)
[98,99].

The HSV -1 amplicon has several properties that make it a
promising candidate gene transfer vehicle: i) The two HSV -1
sequence elements, oriand pac, that are sufficient to support
replication and packaging into virions are smaller than 1 kb
and do not encode any virus proteins. Consequently, the
amplicon has the potential to accommodate large fragments
of foreign DNA (theoretically up to 152 kb), including multiple
and large transgenes or large cell type - specific promoters; ii)
Depending on the size of the seed amplicon, several copies
of the transgene can be packaged into a single vector
particle, thereby increasing the transgene dose per infected
cell; iii) HSV-1 can infect most mammalian cell types,
including the nondividing cells of the nervous system; iv) The
HSV-1 virion is quite nontoxic.

As a major disadvantage, however, replication and
packaging of amplicons into HSV-1 particles depends on
helper functions which have conventionally been provided by
replication - conditional helper viruses (Figure 3A). Initially, a
temperature - sensitive (ts) mutant, HSV-1 tsK [100], was
employed as a helper virus to package amplicons into HSV -
1 particles [101]. HSV -1 tsK carries a missense mutation in
the essential /E3 gene which encodes a ts form of ICP4,
allowing virus replication to proceed at 31°C, but not at 37°C.
To prepare vector stocks, cells cultured at 31°C were
transfected with the seed amplicon and then infected with

A B

transgene AAV
cassette

the tsK helper virus, yielding vector stocks that contained
both packaged amplicon vector and helper virus. Although
replication of this helper virus is inhibited in target cells that
are cultured at the restrictive temperature (37°C), HSV -1 tsK
can still express many genes that are toxic and not
compatible with cell survival. Moreover, reversion of ts
ICP4 to wt phenotype occurs at a relatively high rate.
Consequently, further developments were aimed at: i)
reducing the frequency of reversion to wt HSV - 1; ii) reducing
the toxicity of the helper virus; and iii) increasing the
proportion of vector particles relative to helper virus.

To reduce the frequency of reversion to wt phenotype,
HSV-1 tsK was replaced by a mutant of HSV-1 that
contained a deletion in the essential /E3 gene (HSV-1
D30EBA [102], with packaging performed in /E3-comple-
menting, M64 cells [103,104]). The reversion frequency was
further reduced by replacing M64 cells with RR1 cells [8],
which contain a smaller fragment of the HSV-1 genome
carrying the /E3 gene than do M64 cells, thereby reducing
the chance of homologous recombination and potential
generation of replication competent virus. Mutants of HSV -
1 that carry deletions in /E genes are useful helper viruses
because virus replication in nonpermissive cells is blocked at
a very early stage; however, of the five HSV -1 /E genes, only
IE3 (ICP4) and IE2 (ICP27) are essential for HSV-1
replication. Lim et al. developed a packaging system with
an /E2 deletion mutant helper virus (HSV-1 5d/1.2; [105])
using IE2-expressing 2-2 cells [106], which produced vector
stocks with relatively high amplicon titers (10° to 107
transducing units, t.u., per milliliter), an acceptable vector
to helper virus ratio (up to 1), and low levels (<1077) of
revertants with wt HSV - 1 phenotype [107]. As a modification
of the deletion-mutant packaging system, the so-called
“piggyback” amplicon encodes a gene that complements a
deletion-mutant helper virus, allowing packaging to be
performed in any cell line that supports HSV-1 replication
[108-110]. Moreover, replication and packaging of amplicon

transgene
cassette EBV

transgene
cassette

orip ()
HSV-1 HSV-1 HSV-1
orng HSV-1 amplicon orig HSV/AAV AAV  orig

amp” HSV-1 amp”
pac

colE1

hybrid vector

hybrid vector

HSV-1 amp’ HSV-1

pac

colE1 colE1

Figure 2. Amplicon structures. (A) The standard HSV - 1 amplicon is composed of three types of genetic elements: i) sequences from bacteria, including an origin of
DNA replication (colE1) and an antibiotic resistance gene (amp"), which allow propagation of plasmid DNA in E. coli; ij) sequences from HSV - 1, in particular an origin
of DNA replication (oris) and a DNA cleavage/packaging signal (pac), which support replication of amplicon DNA and subsequent packaging into HSV - 1 particles in
mammalian cells in the presence of helper functions; and iii) a transgene cassette with one or more gene(s) of interest. (B) In addition to the standard amplicon
elements, HSV/AAV hybrid amplicons contain the adeno - associated virus (AAV) rep gene and a transgene cassette that is flanked by AAV inverted terminal repeats
(ITR). (C) HSV/EBV hybrid amplicons contain the EBV EBNA1 gene and the EBV latent origin of DNA replication oriP in addition to the standard amplicon elements.
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Figure 3. Packaging systems for HSV -1 amplicon vectors. (A) Helper virus - dependent packaging system using a replication - defective mutant of HSV - 1
containing a deletion in an essential gene (Ae). Cells which complement the deleted virus gene (e), under transcriptional control of a VP16 responsive promoter, are
transfected with amplicon DNA and then superinfected with the deletion - mutant helper virus. The resulting vector stocks contain both packaged amplicon vector and
helper virus. (B) Cosmid - based, helper virus - free packaging system. Cells that are permissive for HSV - 1 replication are cotransfected with amplicon DNA and DNA
from cosmid set C6Aa48Aa. While helper HSV - 1 genomes reconstituted from the cosmid clones are not packageable in the absence of pac signals, they still can
provide all the trans - acting functions required for the replication and packaging of the co - transfected amplicon DNA. (C) F - plasmid - based helper virus - free
packaging system. Permissive cells are co - transfected with amplicon DNA and fHSVApac plasmid DNA. The fHSVApac helper DNA is not packageable in the
absence of pac signals, but it can still provide all the trans - acting functions required for the replication and packaging of co - transfected amplicon DNA.

and helper virus mutually depend on each other, thereby
eliminating helper viruses propagating independently and
increasing the ratio of amplicon to helper virus.

Although the development of improved helper virus-
dependent packaging systems has continuously increased
the safety of the amplicon system, many problems asso-
ciated with the helper virus still remained. These include: i)
acute cytopathic effects and pronounced immune responses
induced by gene expression from the helper virus; ii)
reversion of the helper virus to wt HSV-1 phenotype; iii)
potential interactions with endogenous viruses, such as
reactivation and recombination; and iv) unreliability of
transgene expression. Many of these problems have been
eliminated by the recent development of helper virus-free
packaging systems.

Helper virus-free packaging systems use replication-
competent, packaging-defective genomes of HSV-1 to
provide the functions necessary for replication and packa-
ging of co-transfected amplicon DNA. The packaging of the
HSV-1 helper DNA itself is prevented by deletion of pac
signals, which are essential for entry of viral DNA into
capsids, cleavage of the HSV-1 DNA, and closing of the
capsid before virion production. In the initial helper virus-
free packaging system, the helper functions were provided
by a set of five overlapping cosmids that cover the HSV -1
genome [111], with pac signals deleted (cosmid set
C6Aa48Aa; Figure 3B) [112]. On transfection into cells,
the cosmids can form a complete, replication-competent
HSV-1 genome, through homologous recombination be-
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tween the individual clones, and provide all helper functions
necessary for the replication and packaging of co-trans-
fected amplicon DNA. However, the packaging of the
reconstituted HSV-1 genome is blocked by virtue of
absence of the pac signals. The resulting vector stocks
have amplicon titers of up to 10° to 107 t.u./ml of cell culture
medium, contain levels of helper virus less than 1 of 107
amplicon vectors, and can efficiently transduce many
different cell types, including postmitotic neurons (Figure
4), while causing minimal to no cytopathic effects at
MOIs<50 [112—-116]. To simplify this packaging system,
the HSV-1 genome, deleted for the pac signals, has recently
been cloned as a single-copy, F-plasmid-based bacterial
artificial chromosome in E. coli (fHSVApac), which reduces
the numbers of clones representing the HSV-1 genome
from five (cosmid set C6Aa48Aa) to one (fHSV Apac; Figure
3C) [117-119].

Amplicons and Hybrid Vectors

The recent development of improved packaging systems
has greatly reduced the toxicity, but had little effect on
extending the stability of amplicon-mediated transgene
expression. A more fundamental improvement of long-term
gene expression has been achieved by new vector designs,
which included the use of cell type-specific promoters and
the combination of components of the HSV -1 amplicon with
genetic elements from other virus vectors.

Viral immediate - early promoters, such as the HSV-1 |E4/
5 (induced by VP16) or CMV /E1 promoters that are typically
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Figure 4. Helper virus-free amplicon mediated laZ (A) or gfp (B,C)
expression in cultured rat cortical cells. Axons and dendrites (W) and cell
bodies (<7) are clearly delineated by expression of the reporter genes. The use
of gfp as marker gene facilitates the assessment of the kinetics of transgene
expression in living cells over time.

used in amplicon vectors, support strong, but transient
expression of the amplicon-delivered transgene in most
target cells [112,114,120,121]. Neuron-specific promoters
with large 5’ regulatory sequences, such as the 2.7-kb
preproenkephalin (PPE) promoter and regulatory sequence,
and the 9-kb tyrosine hydroxylase (TH) promoter and
regulatory sequence, have been demonstrated to mediate
long-term, cell type - specific gene expression from amplicon
vectors in nondividing cells [122,123]. As one of the greatest
attractions, the HSV -1 amplicon has a very large transgene
capacity (theoretically up to ~152 kb) and can easily

accommodate large cell type-specific promoters, including
their large 5’ regulatory sequences and intron elements. In
practice, however, amplicons with inserts of >20 kb have not
yet been described. Conventional amplicon vectors use
plasmid backbones which allow medium to high copy-
number plasmid propagation and are, therefore, not suitable
to explore the full transgene capacity of HSV-1. The
development of a single-copy, F-plasmid-based amplicon
(famplicon) may increase the genetic stability and allow the
packaging of very large inserts (unpublished material).

The large transgene capacity of the amplicon provides
also the ability to introduce genetic elements from other
viruses to achieve specific properties, including genetic
stability and long-term gene expression. Optimally, such
hybrid vectors combine the advantageous components of
their parent virus vector systems without including the
disadvantages. AAV vectors are nontoxic, have a broad
host range, and can either persist in an episomal form or
integrate site-specifically or randomly into the host cell
genome, and support stable, long-term gene expression
[124 —129]. However, the transgene capacity of AAV vectors
is less than 5 kb, which reduces their usefulness for many
applications in gene therapy. HSV-1 amplicon vectors are
also nontoxic in the absence of helper virus, also have a
broad host range and, in addition, have a very large
transgene capacity. As the major drawback, however,
transgene expression from amplicon vectors is in general
transient in dividing cells as vector DNA is lost during mitosis.
The combination of the advantageous elements from these
two virus vector systems resulted in the HSV/AAV hybrid
vector [116]. In addition to the standard amplicon elements,
HSV/AAV hybrid amplicons contain those elements from
AAV that allow for stable maintenance of the transgene, in
particular the rep gene and the ITR, which flank the
transgene cassette (Figure 2B). Because hybrid amplicons
are packaged into HSV-1 virions, the advantages of the
amplicon system, including the availability of a helper virus-
free packaging system and the large transgene capacity, are
conserved. After delivery into the host cell genome, the
hybrid vector has the potential to act like an AAV vector with
rep-mediated amplification of the transgene cassette and
genomic integration. The functionalities of the HSV-1 and
AAV elements in the context of the hybrid vector have been
demonstrated: the vector can i) be packaged into HSV-1
particles, ii) efficiently transduce many different cell types,
and iii) support both amplification of the ITR-flanked
transgene cassette and long-term gene expression in
dividing and nondividing cells [114,116,130]. Moreover,
20% to 30% of 293 cells initially transduced with a hybrid
vector, bearing a transgene cassette consisting of the genes
for green fluorescent protein and neomycin resistance,
formed stable, green fluorescent, neomycin resistant colo-
nies. In comparison, only ~4% of the cells transduced with a
standard amplicon formed such colonies under these
conditions (D.R.J., unpublished material).

Epstein-Barr virus (EBV)-based vectors, are bacterial
plasmids that contain the EBV EBNA 1 gene and the EBV
latent origin of DNA replication (oriP) which support episomal
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replication of the vector and segregation to daughter cells,
and up to 180 kb of foreign DNA [131—-135]. As a major
disadvantage of this vector system, the host range of EBV is
limited to human epithelial, muscle, and some hematopoietic
cells, as well as B and T lymphocytes. By inserting the EBNA
1 gene and oriP into an HSV-1 amplicon vector, Wang and
Vos have developed a hybrid vector that replicates episo-
mally and supports long-term transgene expression in a
broad range of host cells (Figure 2C) [136,137]. Taking
advantage of the broad host range and retention properties
of HSV/EBV hybrid amplicons, a new triple hybrid vector
(HER) has been constructed, which contains additional
retrovirus genes gag-pol and env (GPE), to efficiently
convert human and dog primary glioma cells to retrovirus
vector producer cells after single step transduction [138].
This system serves an intriguing approach to circumvent
disadvantages of retroviral vectors, such as low transduction
efficiency, vector instability and producer cell line immuno-
genicity, in gene therapy of brain tumors.

HSV -1 Amplicon Vector-Mediated Gene Transfer into Cells
of the Nervous System

The large transgene capacity, which allows the use of cell
type - specific promoters and/or the expression of multiple
transgenes, as well as the natural tropism for the CNS, make
the HSV -1 amplicon an ideal vector for CNS-directed gene
transfer (Figure 4). Amplicon vectors have been employed to
study neuronal physiology, such as the effect of expression
of GAP43 or the low affinity nerve growth factor (NGF)
receptor on morphology and growth of neurons [139,140]. In
hippocampal slice cultures, amplicons have been used to
mediate both kainate receptor-induced toxicity [141] and
glucose transporter-induced protection of neurons [142].
Amplicon-mediated expression of brain-derived neuro-
trophic factor induced the growth of neuritic processes in
cultures prepared from spiral ganglia of the murine ear [143],
and promoted neuronal survival in dissociated avian co-
chlear cultures [144]. Amplicons have also been used to
deliver various therapeutic genes in models of CNS disease
in vivo. For example, expression of glucose transporter
protected neurons in an induced seizure model and stroke
[142,145,146], expression of bcl-2 rescued neurons after
focal ischemia [147,148], and production of tyrosine hydro-
xylase-induced behavioral changes in parkinsonian rats
[149].

An interesting approach by Brooks et al. employed
amplicon vectors to generate mouse somatic mosaics
[150]. Transgenic mice were developed that carried a NGF
gene containing an inactivating insertional element, flanked
by loxP sites, between promoter and transcript. The delivery
of amplicon-encoded cre recombinase activated the ex-
pression of NGF in these animals at specific sites. The ability
to induce conditional transgene expression in a spatial and
temporal fashion will have broad applications for the
generation of transgenic animals, especially with genes that
encode toxic products or for which germline deletion is lethal.

Another property of HSV-1 relevant for CNS-directed
gene transfer, is the ability of the virus particles to travel
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retrogradely along axons. The localization and spread of
HSV-1 within the CNS has been investigated by using
recombinants of HSV-1 or HSV-1 amplicon vectors that
express the E. coli lacZ reporter gene [5,36,151,152]. After
single injections into certain brain areas, transduced neurons
and glia were detected at the injection site, but also at distant
brain areas in neurons that make afferent connections with
the cells at the primary site. For example, following striatal
injection, amplicon vector-transduced cells have been
demonstrated in both substantia nigra pars compacta and
locus coeruleus [122,130].

Traditionally, the stability of transgene expression, as well
as the toxicity and immunogenicity of the helper virus were
the limiting factors for amplicon-mediated gene transfer to
cells of the CNS in vivo[112,152 — 156]. However, the recent
advancements discussed above have largely addressed
these problems. Vector-associated toxicity and immune
responses have been greatly reduced by eliminating the
helper virus, and the stability of gene expression has been
increased fundamentally by using hybrid vectors and/or
neuron - specific promoters.

HSV-1 Amplicon Vectors for Gene Therapy of Gliomas
We evaluated the efficiency of HSV-1 amplicon and
HSV/AAV hybrid amplicon vectors expressing the tk gene
to transduce and sensitize rat and human glioma cells to
GCV in culture and in vivo [157]. The vectors were able to
efficiently sensitize cultured cells to GCV in a vector dose-,
GCV dose-, cell density- and time-dependent manner.
However, transduction of s.c. rat 9L gliosarcoma tumor cell
grafts in nude mice with 1x10° t.u. of vector particles did
not result in consistent tumor regression, although the
transduction rate was high around injection sites (1% to
10%) as assessed by immunohistochemistry (Figure 5).
The efficiency of these vectors in vivo may be increased by
developing methods that improve the distribution of vector
particles throughout the tumor [158,159]. Similarly, replica-
tion-defective HSV -1 vectors that co-express tk and TNF-
« also had little therapeutic effect in an intracerebral U-87

Figure 5. Immunohistochemical analysis of a rat 9L gliosarcoma grown s.c. in
a nude mouse 2 days after direct injection of 1x 10° t.u. of HSV/AAV hybrid
amplicon vectors that express tk. The immunohistochemical staining for
thymidine kinase (brown cells) reveals a transduction rate of approximately
1% to 10% around the injection site (7).
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MG tumor model, also apparently due to low transduction
efficiency (<1%) [160]. By contrast, expression of tk from
an amplicon vector that was packaged by using a v34.5
deletion mutant of HSV-1 (R3616) as the helper virus
resulted in significant growth inhibition of s.c. tumors in
a syngeneic, immune-competent mouse tumor model
(Gl261) [161]. In this case, the therapeutic effect was
thought to be mediated by the combination of tk-mediated
GCV sensitivity and the cytotoxicity of the helper virus,
which is able to replicate in and spread within the tumor.
However, no therapeutic effect was observed in human
glioma cells (U87MG) grown in athymic mice, suggesting
that the major factor responsible for tumor killing in the
immune-competent animals may have been the immune
response against the helper virus, possibly mediating
enhanced immune recognition of tumor antigens. An
intriguing approach would therefore be the boosting of
tumor-specific immune responses by both cytotoxic,
replication-conditional HSV-1 vectors and amplicon vec-
tors encoding IL-12 [93,162].

Targeted and Regulated HSV-1 Vectors

Tissue- or cell-specific and regulatable targeting of vectors
is critical to the overall success of gene therapy approaches.
For HSV-1-derived vectors, this may be achieved by: i)
modification of glycoprotein-mediated cell binding and entry;
ii) gene complementation; iii) use of tissue-specific and/or
regulatable promoters; and iv) improving the efficiency of
physical vector transfer (reviewed in Ref. [163]).

The initial phase of virus attachment mediated by charge
interaction between glycoproteins gB/gC and heparan
sulfate moieties of the target cell membrane might be
alterable by deletion or modification of essential glycopro-
teins. However, construction of targeted HSV-1 vectors is
complicated by the highly complex process of infection. In
addition, most of the glycoproteins have multiple functions
and, therefore, some domains must be preserved while
limiting the number that can be replaced by a new functional
element. Laquerre et al. have constructed a recombinant
HSV-1 vector for targeted binding to a non—-HSV-1 cell
surface receptor for erythropoietin by deletion of gC and the
heparan sulfate binding domain of gB, and inclusion of
chimeric proteins composed of mutated forms of gC and the
erythropoietin hormone [164]. Moreover, an HSV-1 ampli-
con vector has been constructed expressing HSV-1 gC
modified with His-tag replacing the heparan binding domain
to achieve targeting vector toxicity to tumor cells [165].
These experiments demonstrate that targeted HSV-1
binding to a non—HSV-1 cell surface receptor is possible,
in principle [164]. A similar approach has been very
successful in targeting adenoviral vectors [166] either by
direct genetic alterations of the HI loop of the adenoviral fiber
knob [167,168] or by use of bifunctional antibody conjugates
to adenoviral fiber and either epidermal growth factor
receptor [169], folate receptor [170], or fibroblast growth
factor receptor [171]. This approach can greatly increase the
specificity and efficiency of gene transduction into appro-
priate cell types.

Replication-conditional HSV - 1 vectors carrying mutations
in genes that are neccessary for nucleic acid metabolism in
nondividing cells, such as tk or RR, can be used to target
proliferating tumor cells with complementary TK or RR activity
[61]. A similar strategy has been employed to design an
adenoviralvectorfortheselectivekillingofp53 - deficienthuman
tumor cells [172]. Apparently, the replication specificity of this
vectordoesnotresideentirelyinthep53status[173].

Transcriptional targeting can be achieved by the use of
tissue - specific promoters. For example, incorporation of the
glial fibrillary acidic protein (GFAP) promoter into HSV-1
recombinant 1716 yielded transgene (lacZ) expression
predominantly in astrocytes both in culture and in vivo
[174,175]. To target lytic virulence to gliomas, the recombi-
nant HSV-1 Myb34.5 was engineered by deleting the RR
gene and the two endogenous copies of the 734.5 gene and
by re-introducing one copy of 734.5 under control of the
E2F -responsive, cellular B-myb promoter [176]. Whereas
neurovirulence of recombinant HSV-1 Myb34.5 (PFU/
LDso=2.7x10") was similar to that of recombinant HSV -1
R3616 (PFU/LDso>1x107) after direct intracerebral inocula-
tion into BALB/c mice, Myb34.5’s oncolytic efficacy against a
variety of human glioma cells in culture and in vivo was
enhanced compared to that of R3616, and was similar to that
of wild-type F strain and of HSV -1 mutants that possess a
wild type v34.5 gene [176]. These results indicate that
transcriptional regulation of v34.5 by cell cycle-regulated
promoters may be used to target HSV-1 virulence toward
tumors, while maintaining the desirable neuroattenuated
phenotype of a 734.5 mutant. Selective destruction of
hepatocellular carcinoma cells by a replication-conditional
HSV-1 vector was achieved by inserting an albumin
enhancer/promoter-ICP4 transgene into the tk locus of
HSV -1 mutant d120, which contains deletions in both copies
of the ICP4 gene [56]. The hepatocyte - specific expression of
the essential /E3 gene (ICP4) supported tissue - specific viral
replication and cytolysis in dividing hepatoma cells, but not in
the surrounding nondividing hepatocytes. In comparison,
strategies for tumor-selective expression of therapeutic
genes by adenoviral vectors make use of: i) an E2F-
responsive promoter [177,178], presuming that tumor cells
with mutations affecting the p16/cyclinD1/pRB/E2F pathway
would have elevated levels of E2F; ii) a hypoxia-responsive
promoter; or iii) a radiation inducible promoter. The different
promoters direct selective transgene expression to cells with
elevated E2F levels [179], hypoxemic cells [180], or to cells
which have been radiosensitized [181]. All approaches result
in increased control of tumor growth with limited damage to
normal tissue [179,181].

Both constitutive (Gal4/VP16) and regulatable (RU486)
transcriptional enhancers have been inserted into replica-
tion-conditional HSV-1 vectors. The Gal4/VP16 fusion
protein consists of a DNA binding domain of the yeast
transcriptional activator (Gal4) and the activation domain of
the HSV-1 ftransactivator VP16 [182], which strongly
activates promoters targeted by a Gal4-binding site [183].
Reporter gene expression was induced up to 35-fold in
different models with the activator and the response
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promoter present either in the same or in different replica-
tion-conditional HSV-1 recombinant viruses [184,185].
Modification of this transactivation system produced a
drug-inducible system, which uses a truncated form of the
hormone binding domain (HBD) of the progesterone receptor
fused to the Gal4/V P16 transactivator to form a HBD - Gal4/
VP16 fusion protein. Binding of the specific activator RU486
to the modified HBD [186,187] alters the conformation of the
fusion protein, which is necessary to allow binding to the
Gal4 promoter elements with subsequent activation of
transcription. Reporter gene expression was induced 30-
to 150-fold by RU486, when the activator and the responsive
promoter were placed on the same replication-conditional
vector [188]. HSV-1 amplicon vectors containing tetracy-
cline-regulatable promoter elements [189—-192] have also
been constructed [193,194]. These vectors express reporter
genes from a combined minimal CMV promoter and a
heptameric tetracycline operator. This promoter element is
activated by a tetracycline - responsive hybrid protein which
is also encoded by the vector. Maximal repression of reporter
gene expression by tetracycline in hippocampal cultures was
about 50-fold and withdrawal of tetracycline de-repressed
gene expression, reaching maximal levels within 10 to 12
hours [193]. In adult rat hippocampus, reporter gene
expression was repressed by tetracycline 9- to 60-fold
[193]. In another report [194], after injection of amplicon
vector stocks into the mouse hippocampus and administra-
tion of tetracycline, transgene expression could be repressed
by a factor of 10 only. Moreover, the repression factor was
reduced with increasing numbers of helper viruses present in
the vector stock [194], and tetracycline-regulatable con-
structs in other amplicon vectors have proven leaky in the
“off” state due to transcriptional override by HSV -1 elements
and proteins [195].

The route of vector administration is crucial for the
efficient killing of tumor cells in gene therapy protocols for
malignant brain tumors. The delivery of viral vectors to the
brain for treatment of intracerebral tumors is most commonly
accomplished by stereotaxic inoculation directly into the
tumor mass. However, diffusion of the vector is limited, which
reduces the efficacy of viral therapy of large or disseminated
tumors [157]. This obstacle can be overcome by intra-
carotid delivery of vector and concurrent, selective blood-
tumor barrier disruption by bradykinin or RMP-27, as
described previously [196—-200]. The feasibility of this
approach in the clinical application, however, needs to be
demonstrated in the future. Other studies suggest that
access of virus to tumors can be mediated through the
cerebrospinal fluid [83,84] or through migratory neural
progenitor cells [201,202].

Conclusions

HSV -1 structure and function has been studied extensively
by others, which has facilitated the design and engineering of
HSV -1 -derived vectors as gene transfer vehicles for various
treatment strategies in experimental gene therapy models.
The natural neurotropism of HSV-1, as well as its large
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transgene capacity and high transduction efficiency, make
HSV-1-derived vectors suitable for applications in the
nervous system. Combined selective oncolysis and modula-
tion of the immune response mediated by replication-
conditional, multiple - mutated HSV -1 vectors appears to be
a highly promising approach in the battle against malignant
glioma. Helper virus -free HSV/AAV hybrid amplicon vectors
have great promise in mediating long-term gene expression
in the PNS and CNS for the treatment of neurodegenerative
disorders, injury or chronic pain. The design of HSV-1-
derived vectors, which are targeted to a certain cell
population and support transcriptionally regulatable trans-
gene expression, are the focus of present and future
research. The importance of developing different modes of
mechanical vector delivery, which enable sufficient vector
distribution, cannot be underestimated. Gene therapy is a
multi-variate approach with each variable being equally
important for the overall success in a clinical situation.
Therefore, the design of efficient gene therapy protocols
relies on the concerted research and interaction of basic and
clinical scientists.
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