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Abstract

The design of effective gene therapy strategies for brain
tumors and other neurological disorders relies on the
understanding of genetic and pathophysiological altera-
tions associated with the disease, on the biological
characteristics of the target tissue, and on the develop-
ment of safe vectors and expression systems to achieve
efficient, targeted and regulated, therapeutic gene ex-
pression. The herpes simplex virus type 1 (HSV-1) virion
is one of the most efficient of all current gene transfer
vehicles with regard to nuclear gene delivery in central
nervous system-derived cells including brain tumors.
HSV-1-related research over the past decades has
provided excellent insight into the structure and function
of this virus, which, in turn, facilitated the design of
innovative vector systems. Here, we review aspects of
HSV-1 structure, replication and pathogenesis, which
are relevant for the engineering of HSV -1 -based vectors.
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Introduction

In recent years, many neurological diseases have been
characterized on a molecular level. The knowledge of the
underlying genetic defect and the understanding of related
pathophysiological alterations are the first steps toward the
development of new treatment strategies based on gene
therapy. This form of therapy can be defined as the
introduction of exogenous DNA sequences into cells of a
target tissue using recombinant DNA and vector technology.
The design of effective gene therapy strategies relies on
interdisciplinary attempts to: i) define the genetic and
pathophysiological alterations associated with the disease;
i) understand the biological characteristics of the target
tissue; and iii) develop safe vector and expression systems
to achieve efficient, targeted and regulated gene expression.
At present, many schemes for gene therapy of both
hereditary and acquired diseases have been envisioned,
but the logistics of bringing them to humans still needs much
basic research [1]. Issues such as efficiency of gene delivery,
vector toxicity, stability of transgene and transduced cell,
choice of promoter, as well as dose, time and route of vector

application must all be worked out individually for different
applications.

In the field of neurology, research in gene therapy and
vector technology concentrates on two basic aims, one of
which is to achieve stable and non-toxic transduction of
neurons and muscle cells for the treatment of neurode-
generative and muscle dystrophic disease, for the altera-
tion of neuronal physiology and conditions with chronic
pain, for the control of dystonic movements and stimulation
of nerve re-growth. The second aim is the selective and
locally toxic transduction of brain tumor cells [2]. For these
purposes, a number of different vector systems have been
developed, including synthetic vectors, such as molecular
conjugates and liposomes, and viral vectors with wide
tropism, such as adenovirus (AdV), adeno-associated
virus (AAV), retrovirus (RV) and herpes simplex virus type
1 (HSV-1). Synthetic vectors have low toxicity/immunogeni-
city but poor delivery efficiency, whereas virus vectors can
exert some cytotoxicity/immunogenicity but are highly effi-
cient vehicles.

The HSV -1 virion is one of the most efficient of all current
gene transfer vehicles with regard to nuclear gene delivery
in central nervous system-derived cells, including neu-
rons, neural progenitor cells and gliomas. Many properties of
HSV -1 are especially suitable for using this virus as a vector
to treat diseases that affect the central nervous system
(CNS), such as Parkinson’s disease or malignant gliomas.
These properties include: i) a high transduction efficiencys; ii)
a large genome (~152 kb) and a large transgene capacity;
iii) the ability of entering a state of latency in neurons; iv) the
ability of some mutants to replicate specifically in dividing
cells after deleting certain genes required for virus replication
in non-dividing cells and, thereby, mediating selective
oncolysis of gliomas (“virus therapy”). HSV-1-related
research over the past decades has provided excellent
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insight into the structure and function of the virus, which, in
turn, facilitated the design of innovative vector systems.
However, to bring HSV-1 vector-mediated, targeted and
regulatable gene transfer into clinical applications, more
technical and logistical issues still need to be addressed.

Here, we review: i) the structure, replication and patho-
genesis of HSV-1; and ii) HSV-1-based vector systems
with their possible applications in experimental and clinical
gene therapy protocols for neurological diseases and brain
tumors (Part II).

Virus Structure

Genome

HSV -1 is a member of the Herpesviridae, a family of DNA
viruses carrying a large, centrally located, linear, double-
stranded DNA genome of ~152 kb, which encodes ~80 virus
genes [3]. Approximately half of these genes are necessary
for virus replication in cell culture. The other half encode
accessory functions, which contribute to the virus life cycle in
specific tissues or cell types (e.g., postmitotic neurons) of
the host (Figure 1) [3—5]. The HSV-1 genome is composed
of unique long (U_) and unique short (Us) segments, which
are both flanked by inverted repeats (R). The repeats of the
L component are designated ab and b’a’; those of the S
segment are a’c’ and ca. The HSV-1 genes fall into three
categories depending on the kinetics of their transcription,
which is tightly regulated in a cascade of three temporal
phases: i) immediate early (IE or «); i) early (E or 3); and iii)
late (L or ~) [6].

Immediate early genes The immediate early (/E) genes,
which encode the infected cell proteins (ICP) 0 (/IE1=a0),
ICP27 (IE2=U_54), ICP4 (IE3=a4), ICP22 (IE4=Us1),
and ICP47 (IE5=Us12), map near the termini of U, and Us
or within the repeats. IE gene products have mostly
regulatory functions and initiate expression of the early viral
genes. The two open reading frames (ORF) P and ORF O
are pre IE genes, map within the repeats, are antisense to
the v34.5 gene, and are expressed under conditions in which
ICP4 is not functional.

Early genes The early ( E) and late (L) genes are distributed
throughout both unique sequences, U, and Us, with only
one exception, v34.5, which is located in the repeats. Most
E gene products are enzymes required for DNA metabolism
and signal the onset of viral DNA replication. Seven E
genes mapping in the L component (open reading frames
U5, 8, 9, 29, 30, 42 and 52) are required for synthesis of
viral DNA starting at the origins of DNA replication (ori_ and
orig). Other early gene products involved in nucleic acid
metabolism include uracil DNA glycosylase (U, 2), alkaline
exonuclease (DNAse; U_12), thymidine kinase (TK; U 23),
ribonucleotide reductase (RR; U 39-40), deoxyuridine
triphosphate nucleotidohydrolase (dUTPase; U 50), and
protein kinase (Us3). A unique characteristic of TK is that it
phosphorylates purine pentosides and a wide variety of

nucleoside analogs that are not phosphorylated by cellular
kinases [7,8]. This substrate specificity of TK is the basis
for: i) the effectiveness of various nucleoside analogs in the
treatment of HSV -1 infection [9]; ii) TK-mediated pro-drug
activation as gene therapy of tumors [10]; and iii) the
potential use of radiolabeled nucleoside analogs as “marker
substrates” for the non-invasive assessment of TK expres-
sion by radionuclide imaging techniques (e.g., positron
emission tomography [11-16]). Ribonucleotide reductase
reduces ribonucleotides to deoxyribonucleotides, thereby
creating a pool of substrates for DNA synthesis [17]. The
uracil DNA glycosylase and the alkaline exonuclease
encoded by HSV-1 are presumably involved in DNA repair
and proofreading [18,19]. The dUTPase hydrolyses dUTP
to dUMP, which prevents incorporation of dUTP into DNA
and provides a pool of dUMP for conversion to dTMP by
thymidylate synthetase.

Late genes The late (L) genes encode mainly structural
components of the virion [20,21]. Eleven virion proteins
(VPs) can be found on the surface of the virion, including
glycoproteins (g) L (U. 1), gM (U_10), gH (U 22), gB
(UL27), 9C (UL44), gK (UL53), 9G (Us4), gJ (Us5), gD
(Usb6), gl (Us7), and gE (Us8) [22]. These proteins are
glycosylated and play important roles in virus attachment to
target cells (gB, gC) [23], cell entry (gB, gD, gG, gH) [24],
egress (gG, gH, gK) [25], cell-to-cell spread (gD, gE, gG,
gH, gl) [26], and, from the host’s point of view, in the
induction of neutralizing antibodies (gD, gG, gH/gL) [27,28].
Moreover, gC and gE/gl mediate immune evasion in vivo: gC
binds complement component C3, thereby inhibiting activa-
tion of the complement cascade [29-34]. Glycoproteins E
and | form a complex to constitute a high affinity Fc receptor
(FcyR) that binds the Fc domain of human anti-HSV IgG by
a process called antibody bipolar bridging and inhibits Fc-
mediated immune functions [35—-41].

Three or more VPs are intrinsic envelope proteins
encoded by U, 20, U 24, and U 34. Seven VPs are found
in the capsid in varying numbers, depending on the stage
of capsid assembly: VP5 (U_19), VP21+VP22a+VP24
(UL26), VP26 (U_35), VP19C+VP23 (U 38), and VP22
[20,42—-44]. Capsid proteins are not only of structural but
also of functional importance during encapsidation of viral
DNA, e.g.,, VP22a functions as a scaffolding protein for
DNA packaging into capsids [45], and VP19C is thought to
be involved in anchoring viral DNA in the capsid [46]. The
major capsid protein, VP5, is the structural subunit of both
the hexons and pentons comprising the capsomers [47].
The two minor capsid proteins, VP19C and VP23, make up
trigonal nodules called triplexes (heterotrimers containing
one copy of VP19C and two copies of VP23) found
between adjacent capsomers [47,48]. The third minor
capsid protein, VP26, is located at the outer tips of the
hexons [49,50].

All other VPs are found in the tegument, the space
between capsid and envelope. The so-called tegument
proteins VP1-2 (U_36), virion host shut off (VHS) protein
(UL41),VP11-12 (U 46),VP13-14 (U 47), VP16 (a-TIF;
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Figure 1. HSV-1 genome structure. The virus genome is a linear, double-stranded DNA of ~ 152 kb which encodes more than 80 genes. The genome is composed of
unique long (U ) and unique short (U s) segments, which are flanked by inverted repeats (R). IR, internal repeat of the long segment; TR,, terminal repeat of the
long segment; IRs, internal repeat of the short segment; TRs, terminal repeat of the short segment. The repeats of the L component are designated ab and b’a’;
those of the S segment are a’c’ and ca. Pac signals are contained in the a sequences located at the junction between the long and short segments and at both
termini. The HSV-1 genome contains two different origins of DNA replication, oris and ori,. Oris is duplicated because it is located within the inverted repeats flanking
U s between the promoters of the IE3 and IE4/5 genes. Ori, is located within U, and is flanked by transcriptional start sites of two E genes, which encode the single-
stranded DNA binding protein, ICP8 (U 29), and the DNA polymerase (U, 30). Approximately half of the genes are essential for virus replication in cell culture. The
other half encode accessory functions, which contribute to the virus life cycle in specific tissues or cell types, e.g., postmitotic neurons. However, it can be assumed
that the genes known to be dispensable for growth in cultured cells may be important for both optimal Iytic replication and replication in vivo, contributing to
pathogenesis, host range, latency, or spread in neurons. Genes underlined mark IE genes or genes which are relevant in certain recombinant HSV-1 mutants (see

Part Il).

U_48), and the product of the Us771 gene play important
roles in: i) the transport of viral capsids to the cell nucleus by
aid of microtubules; ii) the release of virion DNA from the
capsid into the nucleus (VP1-2); iii) the nonspecific
degradation of mRNA and shut-off of macromolecular
synthesis (VHS); and iv) the induction of /E genes (VP16)
as the primary step of viral protein synthesis and replication
[51,52]. The activity of VP16 is modulated by other tequment
proteins (VP11-14).

The HSV-1 genome contains two different origins of
DNA replication, ori_ and orig, neither of which is uniquely
required for viral DNA replication [53,54]. Oris is duplicated
because it is located within the inverted repeats flanking Us,
between the promoters of the IE3 and IE4/5 genes (Figure
1, [55]). Ori_ is located within U, and is flanked by
transcriptional start sites of two E genes, which encode
the single-stranded DNA-binding protein, ICP8 (U, 29),
and the DNA polymerase (U_30) [56]. Ori_ enables
bidirectional DNA synthesis, whereas orig initiates unidirec-
tional DNA synthesis. The core component of orig includes
three binding sites for the viral origin binding proteins (OBP
and OBPC) which partially overlap the binding site of a
cellular factor, OF -1 [57—-60]. The sequences between the
orig core and the IE3 and IE4/5 promoters contain
numerous binding sites for transcription factors that play
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critical roles in the expression of /E3 and IE4/5 genes [61—
63]. The interaction of cellular and viral transcription factors
with these auxiliary regions can directly influence the
efficiency of origin-dependent DNA replication, as well as
transcription of genes flanking the origin [60].

The HSV-1 DNA cleavage/packaging signal (pac) is
another essential cis-acting element which is required for the
cleavage of the concatemeric products of HSV-1 genome
replication into unit-length genomes following their packa-
ging into capsids [64]. Pac signals are contained in the a
sequences located at the junction between the long and
short segment and at both termini (Figure 1).

The HSV-1 Virion

The architecture of the HSV-1 particle is depicted in
Figures 2 and 3. The virion (diameter: 120 to 300 nm)
consists of: i) the envelope; ii) the tegument; iii) the capsid;
and iv) a core containing the virus genome. The double-
stranded DNA genome is organized as regularly spaced
(~26 A) concentric layers inside the capsid [65]. The capsid
(diameter: ~100 nm) [44] consists of 162 capsomers (150
hexons and 12 pentons) and is surrounded by the tightly
adhering tegument. The various tegument proteins include
the host shut-off protein, VHS, and the alpha-trans-
inducing factor («a-TIF), VP16. The bulk of the tegument is
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not icosahedrally ordered. However, a small portion appears
as filamentous structures around the pentons, interacting
extensively with the capsid. Their locations and interactions
with cellular transport proteins suggest multiple roles in
guiding DNA transport into the nucleus [65]. The envelope
consists of a lipid membrane, containing glycoprotein spikes
on the surface [22], which vary in number and relative
amounts, and also including several non-glycosylated viral
proteins, lipids, and polyamines.

HSV-1 Life Cycle

Lytic HSV-1 Infection

The steps of the productive HSV-1 infection include: i)
attachment to heparin and related glycosaminoglycans with
subsequent binding to specific cell-surface receptors; ii)
fusion of the virion envelope with the plasma membrane; iii)
transport of the capsid to the nuclear pores with release of
the virion DNA into the nucleus; iv) transcription of /E and E
genes; v) viral DNA synthesis; vi) transcription of L genes;
vii) capsid assembly; viii) DNA packaging; ix) capsid
envelopment; and x) virion egress. The individual steps in
this cascade are tightly regulated [3], as depicted in Figure 4.

As a first step to establish an infection, low-affinity
attachment to the cell surface is mediated by an interaction
between envelope glycoproteins C and B and, mainly, cell-
surface heparan sulfate proteoglycan, but also dermatan
sulfate [23,66—70]. Fusion of the virus envelope with the
cell membrane requires at least four viral glycoproteins,
gD, gB, and the gH/gL complex [24,71-75]. Two specific
cell surface receptors which interact with gD have been
identified and designated herpes virus entry mediator
(Hve) A and HveC. HveA is a member of the tumor
necrosis factor—nerve growth factor receptor superfamily
[76-78], and HveC is the poliovirus receptor-related
protein 1 [79-82]. HveA activates transcription factors
kB, jun N-terminal kinase, and AP-1, indicating its
involvement with signal transduction pathways that activate
the immune response [83]. HveA mediates both entry of
free virus and entry by cell-to-cell spread [77,84-86].
Moreover, it mediates HSV-1-induced cell fusion [87].
After interaction of viral gD with HveA, gB and the gH/gL
complex act individually or in combination to trigger pH-
independent fusion of the viral envelope with the host cell
membrane [88—-92].

The capsid is actively transported along the host cell
microtubular cytoskeleton to the nuclear pores [93], where
tegument proteins facilitate the release of the virus genome
into the nucleus [94] (Figure 4). In the nucleus, the HSV -1
genome is circularized [95], and the virus genes are
transcribed in a tightly regulated cascade with three temporal
phases. One of the tegument proteins, VP16 («-TIF or
Vmwe5 [96]), binds in the presence of cellular transcription
factors to viral DNA at the consensus sequence 5'-
GyATGNTAATGArATTCyTTGnGGG-3'[97,98] and induces
transcription of /E genes [51,96,99] by host RNA polymerase

Il. VP16 does not bind directly to the consensus sequence on
IE promoters, but forms a multiprotein complex with two
cellular proteins: the POU domain protein, Oct-1, and a host
cell factor (HCF; also called C1, VCAF, or CFF) [63,100—
106]. First, VP16 forms a complex with HCF. This associa-
tion promotes interaction of the complex with Oct- 1, which is
bound to the TAATGARAT motif. The TAATGARAT motif in
IE promoters can confer both positive and negative
responses to cellular octamer-binding proteins, and the
latter results in the absence of IE gene expression later in
infection and during latency [107]. It should be noted that IE
promoters also contain consensus sequences for other
transcription factors. Like many other viral proteins, VP16
has more than one function. It acts both as a transactivator,
which augments the basal expression of /E genes, and as an
essential structural protein of the virion. Not only VP16, but
also proteins involved in cell-cycle control, such as cyclin-
dependent kinases (cdk), are important for transcriptional
regulation of /E and E gene expression [108,109].

Immediate early gene products HSV -1 expresses five IE or
«a-genes, IE1, 2, 3, 4, 5 (peak rates: 2 to 4 hours post
infection, p.i. [6]), which encode the infected cell proteins
(ICP) 0, 27, 4, 22, and 47, respectively. Four of these
proteins, ICP 0, 27, 4 and 22, regulate the productive cycle
of the virus infection by initiating transcription of the E
genes (peak rates: 5 to 7 hours, p.i.) [6]. ICP47 blocks the
presentation of antigenic peptides on the infected cell
surface [110-112].

ICP4 and ICP27 are absolutely essential for initiating and
controlling the expression of early and also late genes
through both transcriptional and posttranscriptional mechan-
isms [113-119]. ICP4, in concert with basal transcription
factors, acts both as transactivator at low-affinity sites and
as repressor at high-affinity sites at the transcription
initiation signals of its own promoter and those of several
other genes [114,120—124]. ICP4 has also been shown to
have anti-apoptotic functions [125,126]. ICP27 acts pre-
dominantly at the posttranslational level by regulating the
processing of viral and cellular mRNAs, thereby contributing
to elevated levels of E gene products [127—-132]. It also
contributes to efficient L gene expression by acting as a
transporter for late viral intronless mMRNAs from the nucleus
into the cytoplasm [133—135]. The efficiency of nuclear
import of ICP27 is modulated by different cellular kinases,
such as protein kinase A and C and casein kinase Il [136].

ICP22, which shares the C-terminus with the US1.5gene
product [137], promotes efficient L gene expression and
regulates the stability and splicing pattern of the /IET mRNA
[99,138,139]. It regulates viral gene transcription through
modification (phosphorylation) of cellular RNA polymerase Il
[140]. Furthermore, ICP22 interacts with, and may be
stabilized by cell cycle-dependent proteins, such as p78
and p60 [141,142]. The importance of ICP22 for L gene
expression became apparent from studies showing that
concurrent with the onset of viral DNA synthesis, ICP22 and
ICP4 aggregate in nuclear structures with nascent viral DNA,
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RNA polymerase |l, and other proteins, and that this
aggregation is essential for late gene expression [143].

ICPO is a potent transactivator of viral and cellular
promoters and is required for efficient viral gene expression
and virus replication [144—147]. ICPO affects different
aspects of the host cell metabolism, including cell cycle,
proteolytic machinery, transcription and translation [148—
151]. ICPO i) stabilizes cell cycle regulatory proteins (e.g.,
cyclin D3) to maintain protein synthesis for virus replication
[148]; ii) interferes with biochemical mechanisms relevant to
both centromeres and ND10 nuclear structures [152,153];
iii) causes active degradation of the catalytic subunit of
DNA-dependent protein kinase (DNA-PKcs) [154,155];
and iv) binds to a ubiquitin-specific protease, named
HAUSP, which contributes to the role of ICPO in activation
of gene expression and stimulation of virus replication
[156—-158].

ICP47 binds to the peptide transporter, TAP. This
interaction prevents the translocation of peptides into the
endoplasmic reticulum (ER) and results in the downregula-
tion of HLA classl/peptide complexes on the surface of
infected cells [110—112]. Thus, by expressing ICP47 early in
infection, HSV-1 evades detection by CD8+ cytotoxic T
lymphocytes (CTL) [159] and prevents CTL-induced apop-
tosis as mechanisms of immune evasion [160] . In general,
viruses have evolved mechanisms to block apoptosis in
situations in which endogenously or exogenously induced
apoptosis threatens the capacity of the cell to produce the
required number and quality of infectious virus progeny
[161,162].

Early gene products The appearance of the 3-polypeptides
such as ICP6 (UL39; large subunit of viral ribonucleotide
reductase, RR), ICP8 (UL29; DNA binding protein), ICP36
(UL 23; thymidine kinase, TK) and DNA polymerase ( UL30)
signals the onset of viral DNA synthesis. At this stage,
cellular chromatin becomes degraded. DNA synthesis starts
as early as 3 hours p.i. and continues for at least 12 hours.
The bulk of the viral DNA is made relatively late in infection
[54]. At least seven viral gene products are essential for viral
DNA synthesis: i) the products of the UL5, UL8, and UL52
genes form a heterotrimeric helicase/primase complex [163];
i) the products of the UL30 and UL42 genes form a
heterodimer with processive DNA polymerase activity
[164]; iii) the product of the UL29 gene is a single - stranded
DNA binding protein [165]; iv) and the product of the UL9
gene is an origin binding protein which possesses limited
helicase activity [166]. Specifically, the UL9 gene product
interacts with DNA polymerase accessory proteins to provide
a means for the ordered assembly of HSV - 1 DNA replication
proteins at origins of DNA replication, thereby forming a
functional “replisome” for the initiation of viral DNA synthesis
[63,167]. DNA replication takes place by a rolling-circle, or
similar, mechanism [53,168,169], yielding long, head-to-tail
linked concatemers of unit-length genomes. Recombination
events play an important role in the generation of replication
intermediates [170]. The newly synthesized DNA is not
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composed merely of linear concatemers, but also contains
Y- and X-shaped branches [171].

Late gene products In parallel, a third round of transcription
results in the production of the ~-proteins which are
important for encapsidation of viral DNA and envelopment.
The concatemeric products of HSV-1 genome replication
are cleaved into unit-length genomes at the DNA cleavage/
packaging signals (pac) after filling the preformed capsids
[172-178]. DNA packaging requires products of the UL6,
UL12, UL15, UL18, UL19, UL25, UL28, UL32, UL33 and
UL36 genes [179—-192]. In cells infected with viral mutants
lacking functional UL6, UL15, UL28, UL32, or UL33 genes,
unit-length genomes are not cleaved from concatemeric
viral DNA [179,182,187,188,191,192]. The UL17 gene,
which is located within the intron of the UL15 gene, has
been demonstrated to encode a tegument protein and was
the first tegument-associated protein shown to be required
for cleavage and packaging of viral DNA [188]. The UL25
gene product is not required for DNA cleavage, but is needed
for stable retention of DNA in capsids [186]. At 6 to 8 hours
p.i., the major capsid protein, VP5, and at least some UL32
gene products, co-localize in the DNA replication compart-
ment [193—-195]. The UL32 gene product has been shown to
guide pre-assembled capsids to the sites of DNA packaging
[185]. At these early times, cleavage and packaging seem to
occur within replication compartments. Later in infection,
VP5 and some tegument proteins accumulate in intranuclear
regions separate from the DNA replication compartments,
the so-called assemblons [196]. During capsid formation,
VP5 and the scaffolding protein, pre-VP22a, condense
[197,198] and interact with preformed VP19C-VP23,
heterotrimers to form procapsids [48,173,176] which mature
to capsids.

Mature capsids bud through the nuclear membrane in
areas where tegument proteins and glycoproteins have
accumulated, thereby acquiring an envelope (Figure 4). The
mode of virus egress is not entirely clear. Several models
have been proposed, most of which suggest that capsids
acquire the envelope at the inner nuclear membrane. Some
models suggest that enveloped virions are transported from
the nuclear membrane via the ER and Golgi apparatus to the
surface without exchanging the envelope [199,200]. How-
ever, other models claim that capsids lose their initial
envelope by fusion with the outer nuclear envelope (de-
envelopment) and acquire a new envelope by budding into
the Golgi apparatus (re-envelopment) [201-203]. The
ability of HSV-1 gD to interact with mannose-6-phosphate
receptors (MPRs) suggests that the intracellular traffic of
gD-containing virions might be influenced by the ability of
MPRs to direct proteins to endosomes. A vectorial transport
of virions to the endosomal network, however, might direct
egress to defined domains of the cell surface or promote re-
envelopment of capsids within an endosomal compartment
[204]. Whatever the mechanism of herpesvirus egress is,
mature virions seem to be transported via the ER, the Golgi
and trans-Golgi apparatus as well as endosomes into the
extracellular space [204,205]. During transit through the
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Figure 2. Structure of the HSV-1 virion. The HSV-1 virion has a diameter of
~120 —300 nm and consists of an envelope, the tegument, the capsid, and a
core containing the virus genome. The capsid has a diameter of ~ 100 nm and
is surrounded by tightly adhering tegument proteins. The envelope consists of
a lipid membrane, containing glycoprotein spikes on the surface, which vary in
number and relative amounts.

Golgi apparatus, envelope glycoproteins are modified by
glycosidases and mannosidases [206]. It should be noted,
that the HSV-1 gE/gl complex not only constitutes a high
affinity Fc receptor responsible for immune evasion, but also
facilitates cell-to-cell spread within the mucosal site of
primary infection and infection of sensory nerve terminals by
interacting with components of cell junctions, such as -
catenin [26,207,208]. By spreading rapidly from cell-to-cell
through a space that is isolated by tight junctions, HSV -1
races against the mounting immune response. This form of
direct cell-to-cell spread is the primary mode of virus
transmission and an important parameter of HSV-1 patho-
genesis.

The entire life cycle of HSV-1 takes ~18 to 20 hours,
during which the infected cell undergoes major structural and
biochemical alterations, ultimately resulting in its destruction.
Recombinant HSV -1, which encodes capsid proteins such
as VP26 (UL35) that are fused with the GFP reporter
protein, allows monitoring of capsid assembly and virion
formation in living cells over time [209]. An interesting, and
potentially important finding is, that expression of HSV-1
glycoprotein gD can prevent re-infection of cells, particularly
if the virus has been produced from these cells [210].

Neurovirulence

Any alteration that impairs virus replication reduces
virulence and, therefore, all essential genes may be
considered “neurovirulence” genes. However, the existence
of a specific neurovirulence locus in the long repeat region of
the HSV-1 genome is well-documented. This region
contains the v34.5 or RL1 gene which encodes a protein of
263-amino acids, designated ICP34.5 [211,212] (Figure 1).
The C-terminal 70-amino acids are highly homologous to
the mammalian growth arrest and DNA damage genes,
GADD34 [213—-215], and encode two functions. One of
these functions enables the replication and spread of the

virus in the CNS (“neurovirulence”), especially the matura-
tion and egress from non-dividing cells [216—-222]. Null-
mutants fail to replicate productively and, hence, do not
destroy neurons or cause encephalitis [218,220]. However,
they are still capable of establishing and reactivating from
latency [223], and retain their wild-type (wt) phenotype
in permissive cells growing in culture [216,217]. The
second function enables the interaction of ICP34.5 with
cellular proteins, such as phosphatase 1a, which serves to
dephosphorylate the «-subunit of eukaryotic translation
initiation factor 2 (elF-2«). This interaction precludes the
premature shut-off of protein synthesis by double - stranded
RNA - activated protein kinase, PKR, and prevents apoptosis
of infected cells, thus allowing continued virus replication
[213-215,224—-228]. Other neurovirulence factors include
glycoproteins, such as gD, which mediates infection of
neural cells, and enzymes involved in DNA metabolism, such
as TK, RR, and dUTPase, since mutants in these enzymes
cannot replicate in cells in Gy which have low levels of the
complementing cellular enzymes.

Latency

The ability of HSV-1 to remain latent in sensory neurons
innervating the primarily infected cells for the lifetime of the
host is a unique property and is thought to mediate the
perpetuation of the virus in the human population. The latent
state is characterized by persistence of the virus genome as
a non-integrated, concatemeric or circular molecule in the
nucleus. During latency, transcription is limited to the
latency - associated transcripts (LATs) and no viral proteins
are synthesized [229-232]. Latently infected neurons are
not rejected by the host immune response and appear to
function normally. These properties make HSV-1 an inter-
esting candidate vector for gene delivery to cells of the
nervous system.

nm

200—

100—

Figure 3. Electronmicrograph of an HSV-1 virion. Envelope (A) and capsid
(1) are clearly delineated (a kind gift from Drs. Elisabeth Schraner and Peter
Wild, University of Ziirich).
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Reactivation

Figure 4. Lytic and latent HSV-1 infection. The lytic HSV-1 life cycle takes ~ 18 hours and the steps include: 1) attachment to heparan sulfate and cell-surface
receptors; 2) fusion of the virion envelope with the plasma membrane; 3) release of the capsid into the cytoplasm and 4) active transport along microtubules to the
nuclear pores with 5) release of the virion DNA into the nucleus; 6) o-TIF mediated induction of transcription of IE genes; 7) transcription of IE and E genes; 8) viral
DNA synthesis; 9) transcription of L genes; 10) capsid assembly; 11) DNA packaging into preformed capsids; 12) capsid envelopment; and 13) virion egress. In
sensory neurons, HSV-1 may enter a state of latency 14), which is characterized by the persistence of the HSV-1 genome as a concatemeric or circular molecule
bound by nucleosomes that does not express viral genes other than the latency associated transcripts. Host cell, viral and external factors play a role in

establishment and reactivation 15) of HSV-1 from latency.

The exact mechanism of HSV -1 latency and reactivation is
not known, and the following description can only serve as a
model, which still has to be elucidated in detail [3]. Virus
replication at the site of the primary HSV-1 infection
supports entry of the virus into the nerve endings. From
there, the virus capsids are transported retrogradely along
microtubules to the sensory ganglia (migration rate ~1 cm/
hour [233]), where latency is established. There is a direct
correlation between the amount of input virus and the
number of neurons that become latently infected [234]. As
mentioned above, the HSV-1 genome is transcriptionally
silent during latency except for the LATs [235—241]. LAT has
been suggested to act in an antisense manner to block ICPO
activity because the two genes overlap and are transcribed in
opposite orientations [240]. However, the exact functions of
the LATs during latency remain elusive. LAT expression is
not required for establishment or maintenance of latency
[242,243], but it serves to increase the number of neurons in
which latency is established [244], and it is involved in the
efficiency of reactivation [243,245-249].
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The LAT region consists of several genetic elements
[250]. Two promoter elements responsible for expression of
LATs have been identified, LAP1 and LAP2 [251-255]. The
LAP1 promoter, which includes a TATA-box, and USF,
CRE, AP1, and POU binding domains, is primarily respon-
sible for LAT expression during latency [256]. The combined
deletion of USF, CRE, and TATA-box completely abolishes
LAT transcription in the brain, identifying these elements as
essential for the neuronal specificity of LAP1 during latency.
In cell culture, LAP2 is primarily active following viral DNA
synthesis and, hence, responsible for LAT expression during
lytic infection [257]. The LAP2 promoter is located between
LAP1 and the LAT intron and does not contain a TATA-box,
but has homology to mammalian housekeeping gene
promoters [254,255,257].

Both host cell- and viral factors seem to play a role in the
establishment and maintenance of latency in that: i) neurons
destined to harbor latent virus may not express Oct1 [258]; ii)
ICPO seems to play a role in establishment of latency [259]
and reactivation [259,260]; iii) a NGF/FGF -inducible cellular
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factor may be responsible for the initiation of viral gene
expression during reactivation when no ICPO is present
[261]; iv) deletion of the v34.5 gene markedly impairs the
ability of the virus to establish latency [262]; v) mutations that
result in reduced efficiency of virus replication have a
negative effect on both the establishment of latency and
the ability to reactivate [144,146,263,264]; and vi) the
number of HSV-1 genome copies within individual, latently
infected neurons is regulated by viral genetic factors [265].

The earliest molecular events in neurons that trigger
reactivation of HSV-1 remain unclear, but may include
altered expression of cellular factors such as the induction of
transcriptional activators and downregulation of repressors.
However, a temporal link between virus reactivation and
induction of cellular /IE genes encoding c- fos, c- jun, c- myc,
Oct-1, TIS7, IFN, and IRF-1 has not yet been established
[266—268]. The probability of virus reactivation increases
with the number of latently infected neurons in the ganglia
[269]. Well-known reactivation factors, such as physical and
emotional stress, peripheral tissue and axonal damage,
fever, UV light, hormonal imbalance, malignancy or immune
suppression, may reactivate virus replication, followed by
concurrent axonal transport of the virus progeny, usually to
the site of the primary infection. Repeated reactivation
events do not appear to kill the neuron, and thus, the extent
of virus replication must be limited.

HSV-1 Pathogenesis

HSV-1 is transmitted from infected humans to susceptible
individuals during close personal contact [270,271]. HSV -1
replicates initially in surface epithelial or mucosal cells, with
subsequent spreading to cells of the nervous system via
infection of nerve terminals that innervate the site of
primary infection. Primary HSV-1 infection is usually
established before the age of 5 years after an incubation
period of several days (mean: 4 days). Great variability
exists in the symptoms which may be subclinical or
include variable combinations of fever and malaise, sore
throat, gingivo-stomatitis and lymphadenopathy. Virus
replication at the site of infection causes a localized
vesicular or ulcerative lesion leading to edema, usually in
the oropharyngeal mucosa. However, almost any organ
can be infected with this virus. HSV-1 keratoconjunctivitis
is a major cause of corneal blindness, and, even with
appropriate antiviral therapy, healing of corneal ulcers may
take several weeks. HSV-1 skin infections (eczema
herpeticum) usually occur in patients with atopic dermatitis.
The lesions can be either isolated or disseminated and may
trigger an erythema multiforme. Especially in the immuno-
compromised host, progressive disease may cause virus
dissemination with infection of the skin, the respiratory
tract, the esophagus, and the gastrointestinal tract. The
clinical manifestations of neonatal HSV-1 infection are
summarized elsewhere [271].

From the site of primary virus replication, nucleocapsids
are transported via sensory neurons to the dorsal root
ganglia (e.g., trigeminal ganglion Gasseri), where the virus
enters either a lytic pathway with subsequent production of

progeny virus particles or a latent state [233,272,273]
(Figure 4). Certain stimuli can cause reactivation from
latency with local virus replication within the ganglion,
concurrent axonal transport of virions to the sites of
mucosal membranes or the skin and subsequent recurrent
infection (e.g., herpes labialis or keratoconjunctivitis).
Clinical distinction should be drawn between intraoral
gingival lesions, indicative of primary infection, and lip
lesions, indicative of recurrent infection. More than a third of
the human population have recurrent HSV-1 infections,
which may even occur in the absence of clinical symptoms.
Although usually the host—virus interaction leads to latency
and recurrent infections within the periphery, rarely virions
are transported into the CNS, and may cause life-
threatening CNS infections, most commonly as hemorrha-
gic encephalitis of the temporal lobe. Symptoms of HSV -1
encephalitis include fever, altered consciousness, behavior-
al abnormalities and localized neurologic findings and
seizures. Other manifestations include radiculitis, myelitis
or meningitis similar to complications mediated by varicella
zoster virus [274]. Thus, key elements in HSV-1 pathoge-
nesis are the interaction of the virus with the nervous
system and the immune system.

On average, virus shedding in mouth and stool occurs for
7 to 10 days. Neutralizing antibodies appear between 4 to 7
days after clinical onset and peak ~2 weeks later. In addition,
macrophages, natural killer cells, specific sub-populations of
T-cells (CD4+, CD8+) and a variety of cytokines (e.g., type
1:IL-2, IFN-~, IL-12; type 2: IL-4, IL-5, IL-10, IL-13) take
part in the complex immune response against HSV-1
infection [275,276]. Humoral immunity does not prevent
exogenous reinfection or recurrences, but does limit spread
of the virus in the host.

The diagnosis of HSV-1 is made by virus isolation or
detection of viral DNA by PCR from vesicles, nasopharynx,
conjunctivae, cerebrospinal fluid, stool and urine, and by
serology of rising specific antibodies. In the event of
encephalitis, magnetic resonance imaging and electroence-
phalography reveal the structural and functional conse-
quences of the destructive inflammation. Herpes ence-
phalitis is treated with acyclovir, which can be effective if
administration begins early (within 48 hours) in the course of
CNS infection.

Conclusion

The mounting knowledge of HSV - 1 structure and physiology
has facilitated the development of tools for the rapid
diagnosis and effective treatment of HSV-1 infections as
well as the construction of HSV-1-derived vectors. There
are two principle types of HSV-1-based vector systems:
recombinant HSV -1 vectors and HSV-1 amplicon vectors.
The engineering and possible applications of these vectors
are discussed in detail in Part 1l of this review.
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