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Abstract
We have induced in canines long-term immune tole-
rance to an allogeneic cell line derived from a sponta-
neous canine astrocytoma. Allogeneic astrocytoma
cells were implanted endoscopically into the subcuta-
neous space of fetal dogs before the onset of immune

( )competency -----40th gestational day . At adulthood,
dogs rendered tolerant successfully serve as recipients
of intracranial transplants of their growing allogeneic,
subcutaneous tumor. Transplanted dogs subsequently
develop a solid brain tumor with histological features
similar to the original astrocytoma. This model may
allow rapid development and evaluation of new thera-
pies for brain tumors, as well as afford tumor biology
studies that are untenable in smaller, immune incompe-
tent, or inbred animals harboring less representative
tumors.
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Introduction
Progress in development and testing new anticancer thera-
pies is impeded or delayed by the lack of models accurately
manifesting features of spontaneously arising neoplasms.

[ ]For primary brain tumors, the low incidence in humans 1,2 ,
[ ]coupled with the precipitous lethality of this cancer 3,4 ,

leads to a small and inhomogeneous population by tumor
location, patient age, and histological characteristics of ma-

[ ]lignant astrocytoma 5,6 . Because surgery is the single
most effective treatment for patients with a brain tumor
[ ]7–9 , an optimal brain tumor model for testing new treat-
ments would use an animal of sufficient size to allow mean-
ingful surgical resection of the tumor. Additionally, the tumor
should manifest histological, immunological, genetic, and
therapeutic determinants analogous to those of the sponta-

[ ]neous human counterpart 10 .
Canine brain tumors very closely approximate the human

disease relative to histopathology, epidemiology, and clini-
[ ]cal course 11–16 . Such lesions have proven useful in

development of imaging studies of intracranial masses
[ ]17,18 , as well as in pioneering novel radiation treatment

[ ]strategies 19–21 . A spontaneous canine anaplastic astro-
cytoma was developed into a long-term cell line, DL3580c2
[ ]22 , which grows anchorage-independently, over-ex-
presses epidermal growth factor receptor, and is tumori-
genic in athymic mice. No mutations in exons 4, 5, 6, 7, and

[ ]8 of the canine p53 gene 23–25 have been detected in
this cell line.

DL3580c2 cells were used to induce allogeneic immune
tolerance in outbred beagles according to paradigms and

[ ]hypotheses exploring this concept 26–30 . It is believed
( )that appropriately timed fetal or neonatal exposure to

allogeneic cells can induce native immune tolerance.
Whereas functional immune tolerance can be induced in
experimental animals by the creation of hematopoietic-

[ ]chimeric animals 31 , the intent here was to preserve the
constitutive immunological identity of the host while inducing
tolerance to allogeneic cells. We decided to deposit the
allogeneic astrocytoma cells into the subcutaneous space of
fetal dogs because of the rich immune exposure of this
tissue, and the immunologically naive or preimmune status

[ ]of fetal pups 32 .

Materials and Methods
(Gestational ages of time-dated beagles Marshall Farms,

)NY were determined by serial ultrasound measurements of
chorionic sac diameter, crown-rump length, and head diam-

[ ] 7eter 33 . Fifty-microliter implants containing 10 DL3580c2
cells were delivered separately to each fetus via endoscope
into the subcutaneous space within the flank region. Briefly,
on the 37th gestational day, the gravid uterus was exposed
through a midline abdominal incision. A self-retaining intro-
ducer fitted with a Teflon seal was installed into the uterus
through a 4-mm incision. Access to the fetus was gained by

(use of a 2.8-mm rigid lens endoscope Karl Storz En-
)doscopy-America, Inc., Culver City, CA with a 1.0-mm

working channel; illumination was provided with a 150 W
tungsten halogen lamp. Cells were implanted through a

( )30-cm TFE 30TW cannula Cole-Parmer Instrument Co.
fitted with a 26-gauge sharp needle.

Fetal and placental membranes are potentially significant
obstructions to clear viewing of, and access to, the fetal
skin. The magnitude of the obstruction is highly dependent

( )on fetal age; at later gestational ages )42 days the
membranes retract tightly around the fetus, becoming less
entangling to endoscopic approaches. Scheduling the fetal
implants before the 40th gestational day was based on
reports that later dates were outside the tolerance-induction

[ ]window for soluble antigens in dogs 32 .
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Figure 1. Histological view of subcutaneous tumor generated from subcutaneous allogeneic astrocytoma implant into fetal dogs. H & E stained section
( ) ( )A shows bundles of fibrillary malignant cells within a network of connective tissue. Trichrome staining B shows a rich collagenous network of fibers

( ) ( )around the tumor cell bundles. Immunostaining with anti-GFAP antibodies DAKO Corp., Carpinteria, CA . C portrays a strong presence of this
( ) ( )glial-specific intermediate filament protein. D The isotype matched negative section. Original magnification, 40= objective .

Figure 2. Clinical and postmortem appearance of transplanted intracranial astrocytoma. T1-weighted MRI images after injection of paramagnetic
( ) ( )contrast agent 5 weeks A and 10 weeks B after intracranial implant. Coronal section of the brain at necropsy confirmed the MRI findings, showing a

large, anatomically displacing, hemorrhagic lesion in the left parietal lobe with extension of the mass and edema into the left frontal and temporal lobes.
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Results
Within the first 6 weeks after birth, pups may develop
palpable masses at the site of fetal implantation. After 5
months the lesions were resected and processed for histo-

( )logical analysis. Conventional hematoxylin & eosin H & E

staining showed tightly packed bundles of tumor cells en-
( )meshed in a rich connective tissue network Figure 1A .

Trichrome staining showed the presence of collagenous
( )fibers around the tumor bundles Figure 1B . Immunohisto-

( )chemical staining for glial fibrillary acidic protein GFAP

Figure 3. Histological view of intracranial allogeneic astrocytoma. Regions of the brain specimen shown in Figure 2 were processed in formalin and
( )sectioned from paraffin blocks. The tumor showed heterogeneous hyperdense regions of proliferative, malignant cells with pleomorphic nuclei A ;

( ) ( )surrounding areas showed regions of neovascularization B . The intracranial tumor only stained weakly for GFAP C . Although grossly the tumor
( )appeared to be well demarcated, there were regions of single astrocytoma cell percolation into white matter D , conduits of invasion along perivascular

( ) ( ) ( )structures E , and wide areas of generalized astrocytoma invasion into adjoining normal brain F . Original magnification, 20= objective .
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showed strong expression of this glial cell–specific interme-
( )diate filament marker Figure 1C . Comparative karyotypic

analysis confirmed that the subcutaneous tumor was de-
rived from the cells implanted during fetal development
( )data not shown .

During the same single surgical procedure under isofluo-
rane anesthesia, regions of the resected subcutaneous tu-

( )mors glial lineage confirmed on cryostat sections were
mechanically dissociated into a fresh cell brie, and 50 mL
were injected over a 2-minute interval intracranially into the

[ ]left internal capsule by using stereotactic coordinates 34
(and an external frame David Kopf Instruments, Tujunga,

)CA . Hydrostasis in the cranium after the injection was
re-established by using bone wax in the burr hole, and the
scalp incision was closed in a conventional fashion. After
recovery from anesthesia, the animals were returned to
routine kennel stay including circadian photoperiods, daily
play intervals and ad libitum dog chow according to
IACUC-approved protocol.

Tumor growth was followed by cranial magnetic reso-
( )nance imaging MRI studies every 5 to 7 weeks. MRI of the

brain was performed by using T1-, intermediate, and
T2-weighted images. The intermediate and T2-weighted im-
ages were performed by using a fast-spin echo, dual-echo
technique with a TR 300/TE 40/80 ms on a GE Signa
( )General Electric, Milwaukee, WI . After the intravenous

(infusion of paramagnetic contrast material gadolinium-
)DTPA, Magnevist Abbott Laboratories, Abbott Park, IL ,

T1-weighted images were collected in the axial and sagittal
planes. Five weeks after intracranial transplantation, MRI

( )showed no definitive diagnostic aberrations Figure 2A .
Seven weeks later, a large, anatomically displacing, hemor-

( )rhagic mass was evident Figure 2B . At necropsy, a gross
cranial coronal section showed a highly vascular, apparently

( )well-demarcated tumor Figure 2C . On H&E stained sec-
tions, the microscopic features included regions of dense

(hypercellularity with mitotic figures Figure 3A, pseudopal-
( )isading necrosis, and rich neovascularization Figure 3B .

These are the criteria for a diagnosis of World Health
( ) (Organization WHO grade IV astrocytoma glioblastoma

) [ ]multiforme 35–37 . Immunohistochemical studies indi-
( )cated weak staining by anti-GFAP antibodies Figure 3C .

Modulation of GFAP expression in response to environmen-
tal signals, cell density, and malignant transformation has

[ ]been reported 38–40 .
Because local invasion is such a clinical problem in

[ ]management of patients with astrocytomas 41–43 , brain
sections adjacent to the tumor were processed to determine
patterns of the allogeneic astrocytoma invasion. Solitary

( )tumor cell infiltration into white matter Figure 3D , perivas-
( )cular trajectories Figure 3E , as well as star-burst-like inva-

( )sion from the rim of the tumor Figure 3F were identified.
Overall, the tumor showed the typical centrally expansive
and peripherally diffusively infiltrative growth that character-
izes high grade astrocytomas.

Of 13 attempts to induce allogeneic tolerance by subcu-
(taneous implants into fetal pups wherein a litter of pups

)was successfully whelped , seven litters harbored dogs who

eventually developed glial tumors. The most successful
procedure was a litter wherein 4 of 5 litter mates sustained
allogeneic tumor growth. Reasons for failure may include

[ ]inadequate allogeneic cell inoculum 27 , arrested or stunted
[ ]immune tolerance due to tardiness of the implant 28 , or

possible incompatible major immunohistocompatibility geno-
[ ])types between allograft and host 44–46 .

Discussion
Successful modeling of astrocytoma in a large animal that
preserves significant pathologic features of the spontaneous
disease is likely to afford new opportunities for accelerated

[ ]and novel therapy development 10,47,48 . Whereas an
intracranial xenograft of human gliomas in cats has been

[ ]reported 49 , this system relies on aggressive and persis-
tent immunosuppression of the host, which renders the
model unsuitable for immune-based therapies. Even treat-
ments relying on genetic manipulation of the tumor, such as
gene therapy, may require a functioning immune system to
accurately evaluate the consequences of the intervention
[ ]35,50–52 . A transplantable canine brain tumor model in
immune competent hosts has been used over the past

[ ]decade 16,53 , but this tumor shows a growth pattern and
histological features more consistent with a gliosarcoma.

The brain tumor model described in this report demon-
strates the propagation of a spontaneous, allogeneic canine
astrocytoma in immune competent dogs. The tumor proper-
ties match well the growth patterns, histological character-
istics, and molecular pathology of human astrocytomas.
Because of the surgically accessible anatomical size of the
model and the intact immune status of the host, this allo-
geneic astrocytoma model in dogs may serve as an effec-
tive tool for accelerated cancer therapy development and

[ ]testing. These may include gene therapy 54 , radiation
[ ]treatment 55 , novel treatment delivery strategies such as

[ ]enhanced convection delivery 56–58 or slow release for-
[ ]mulations 59,60 in a system appropriate for prehuman

studies. Because novel cancer treatments inevitably must
[ ]pass toxicity testing in canines 54 , it may be advantageous

to use the allogeneic astrocytoma model to optimize treat-
ment delivery schemes before human trials.
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